

SAT PREP Circle and Sector

Circles

 $Area = \pi r^2$ Circumference = $2\pi r$ Full circle = 360°

Length Of Arc =
$$(n^{\circ}/360^{\circ}) \cdot 2\pi r$$

Area Of Sector = $(n^{\circ}/360^{\circ}) \cdot \pi r^2$

Equation of the circle (above left figure): $(x-h)^2 + (y-k)^2 = r^2$.

Another way to measure angles is with radians. These are defined such that π radians is equal to 180°, so that the number of radians in a circle is 2π (or 360°).

To convert from degrees to radians, just multiply by $\pi/180^{\circ}$. For example, the number of radians in 45° is 0.785, since $45^{\circ} \cdot \pi/180^{\circ} = \pi/4 \text{ rad} \approx 0.785 \text{ rad}$.