SATPREP

Fundamental Counting Principle:

If an event can happen in N ways, and another, independent event can happen in M ways, then both events together can happen in $N \times M$ ways. (Extend this for three or more: $N_1 \times N_2 \times N_3 \dots$)

Permutations and Combinations:

The number of permutations of n things is ${}_{n}P_{n}=n!$

The number of permutations of n things taken r at a time is ${}_{n}P_{r}=n!/(n-r)!$

The number of permutations of n things, a of which are indistinguishable, b of which are indistinguishable, etc., is ${}_{n}P_{n}/(a!\,b!\ldots)=n!/(a!\,b!\ldots)$

The number of combinations of n things taken r at a time is ${}_{n}C_{r} = n!/((n-r)!\,r!)$

Probability:

$$probability = \frac{number of desired outcomes}{number of total outcomes}$$

The probability of two different events A and B both happening is $P(A \text{ and } B) = P(A) \cdot P(B)$, as long as the events are independent (not mutually exclusive).

If the probability of event A happening is P(A), then the probability of event A not happening is P(not A) = 1 - P(A).