SAT PREP

APCalculusAB&BCPlanner

S.No.	Month	Week	Unit	Topics	Remark
1	November	1	1	Limits and Continuity	
				Rates of Change	
				Limits at a point	
				Limits involving infinity	
2		2	1	Continuity	
				 Continuous functions 	
				 Discontinuous functions 	
				 Instantaneous Rates of Change 	
3		3	2	Definition of the derivative	
				Differentiability	
				 Derivatives of Algebraic functions 	
				Derivative rules when combining functions	
				 Applications to velocity and acceleration 	
4		4	2	Derivatives of trigonometric functions	
				The chain rule	
				 Leibniz notation 	
				 Function notation 	
				 Parametric notation 	
				Implicit derivatives	
				 Differential method 	
				o y' method	
				Derivatives of inverse trigonometric functions	
				Derivatives of logarithmic and	
				exponential functions	
5	December	1 2	3	Applications of the Derivative	
				Extreme Values	
			4	Using the Derivative	
				 Mean Value Theorem (MVT) 	
				 Rolle's Theorem 	
				 Increasing and decreasing functions 	
				 Analysis of graphs using the first and second 	
				derivatives	
				Optimization problems	
				Linearization models	
				Related Rates	

AP Calculus AB &BC Planner

6		2	3	 Euler's Method to approximate the solution to a 	
				differential equation	
				• L'Hospital's rule for cases 0/0 and ∞/∞	
				Motion on a line: moving left and right, speeding up	
				and slowing down	
				Relationship of moving right and speeding up to a	
				graph this is increasing and concave up, moving left	
				and slowing down to decreasing and concave up.	
7		3	4	The Definite Integral	
				Approximating areas	
				 Riemann sums 	
				 Trapezoidal rule 	
				 Definite integrals 	
			-	The fundamental theorem of calculus (part 1)	
8		4	4	 Definite integrals and antiderivatives 	
		0	21	 The average value theorem 	
				The fundamental theorem of calculus (part 2)	
9	January	1	5	Differential Equations and Mathematical	
	,			Modeling	
				Antiderivatives	
				 Integration using u-substitution 	
10		2	5	Separable differential equations	
11		3	6	From known derivatives	
				From a graph of a derivative	
				 Simple substitution – form completion 	
		4		 Substitution – actual substitution needs to be 	
		2	7	made, including tri substitution	
12		4	6	• Parts	
				Improper Integrals	
13	February	All Weeks	7	Applications of Definite Integrals and	
				Antidifferentiation	
				Determine specific antiderivatives using initial	
				conditions	
				Solution to separable differential equation with and	
				without initial conditions	
				Writing a differential equation to translate a verbal	
				description	
				Partial fractions in the context of the logistic	
				equation	
				 Representation of a particular antiderivative by 	
				using the fundamental theorem of calculus	

AP Calculus AB &BC Planner

				Analysis of functions defined by a definite integral	
				Area, including regions bounded by polar curves	
				Average value of a function	
				Distance as the definite integral of speed	
				Length of a curve,	
				• Polar	
				 Parametric 	
				• Variety of other problems using the integral of a	
				rate of change to determine total or accumulated	
				change	
				Variety of other problems where the emphasis is on	
				ting up a Riemann sum and taking its limit	
14	March	All Weeks	8	Series	
				Infinite series defined as the limit of a sequence of	
			-	partial sums	
				Series of constants	
				 Geometric series 	
				• Harmonic series, p-series	
				 Alternating series 	
				Tests for convergence	
				o Integral	
				 Comparison 	
				 Limit comparison 	
				 Ratio test – thought of as 	
				eventually geometric	
				Power Series	
		2		 Taylor polynomials 	
		5		 Use of known Maclaurin series for 	
				e_x , sin x, 1/(x+1), (1+x) _P to form new	
			- · .	o series	
				 Differentiation and 	
				antidifferentiation of series to	
				determine new series	
				 Functions defined by power series 	
				 Interval and radius of convergence 	
				• Error bounds	
15	April	All Weeks		Practice Test (Full length)	