Derivatives Definition and Notation

If $y = f(x)$ then the derivative is defined to be $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ \rightarrow ⁰ h $f(x) = \lim \frac{f(x+h) - f(x)}{h}$.

If $y = f(x)$ then all of the following are equivalent notations for the derivative.

$$
f'(x) = y' = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = Df(x)
$$

If $y = f(x)$ all of the following are equivalent notations for derivative evaluated at $x = a$.

$$
f'(a) = y'|_{x=a} = \frac{df}{dx}|_{x=a} = \frac{dy}{dx}|_{x=a} = Df(a)
$$

Interpretation of the Derivative

If $y = f(x)$ then,

- 1. $m = f'(a)$ is the slope of the tangent line to $y = f(x)$ at $x = a$ and the equation of the tangent line at $x = a$ is given by $y = f(a) + f'(a)(x-a)$.
- 2. $f'(a)$ is the instantaneous rate of change of $f(x)$ at $x = a$.
- 3. If $f(x)$ is the position of an object at time *x* then $f'(a)$ is the velocity of the object at $x = a$.

Basic Properties and Formulas

If $f(x)$ and $g(x)$ are differentiable functions (the derivative exists), *c* and *n* are any real numbers,

x

 $^{-1} x =$

 $x = -1$

 $^{-1} x$) =

1

- 1. $(c f)' = c f'(x)$ 2. $(f \pm g)' = f'(x) \pm g'(x)$
- 3. $(f g)' = f' g + f g'$ Product Rule
- 4. $\left(\frac{f}{g}\right) = \frac{f'g fg}{g^2}$ *g g* $(f)'$ $f'g-fg'$ $\left| \frac{J}{a} \right|$ = (g) **– Quotient Rule**
- 5. $\frac{d}{t}(c) = 0$ *dx* = 6. $\frac{d}{dx}(x^n) = nx^{n-1}$ *dx* $= n x^{n-1} -$ **Power** Rule 7. $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$ *dx* $=f'(g(x))g'$

This is the **Chain Rule**

$$
\frac{d}{dx}(x) = 1
$$
\n
$$
\frac{d}{dx}(\sin x) = \cos x
$$
\n
$$
\frac{d}{dx}(\cos x) = -\sin x
$$
\n
$$
\frac{d}{dx}(\cos x) = -\sin x
$$
\n
$$
\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x}}
$$
\n
$$
\frac{d}{dx}(\tan x) = \sec^2 x
$$
\n
$$
\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x}}
$$
\n
$$
\frac{d}{dx}(\sec x) = \sec x \tan x
$$
\n
$$
\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}
$$

Common Derivatives
\n
$$
\frac{d}{dx}(\csc x) = -\csc x \cot x \qquad \frac{d}{dx}(a^x) = a^x \ln(a)
$$
\n
$$
\frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(e^x) = e^x
$$
\n
$$
\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\ln(x)) = \frac{1}{x}, \ x > 0
$$
\n
$$
\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\ln|x|) = \frac{1}{x}, \ x \neq 0
$$
\n
$$
\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln a}, \ x > 0
$$

Chain Rule Variants

The chain rule applied to some specific functions.

1.
$$
\frac{d}{dx} \Big(\Big[f(x) \Big]^n \Big) = n \Big[f(x) \Big]^{n-1} f'(x)
$$

2.
$$
\frac{d}{dx} \Big(e^{f(x)} \Big) = f'(x) e^{f(x)}
$$

2.
$$
\frac{d}{dx}(\mathbf{C}) = f(x)\mathbf{C}
$$

3.
$$
\frac{d}{dx} \left(\ln \left[f(x) \right] \right) = \frac{f'(x)}{f(x)}
$$

4.
$$
\frac{d}{dx} \left(\sin[f(x)] \right) = f'(x) \cos[f(x)]
$$

5.
$$
\frac{d}{dx} \left(\cos[f(x)] \right) = -f'(x) \sin[f(x)]
$$

\n6.
$$
\frac{d}{dx} \left(\tan[f(x)] \right) = f'(x) \sec^2[f(x)]
$$

\n7.
$$
\frac{d}{dx} \left(\sec[f(x)] \right) = f'(x) \sec[f(x)] \tan[f(x)]
$$

\n8.
$$
\frac{d}{dx} \left(\tan^{-1}[f(x)] \right) = \frac{f'(x)}{1 + [f(x)]^2}
$$

Higher Order Derivatives

The Second Derivative is denoted as

$$
f''(x) = f^{(2)}(x) = \frac{d^2 f}{dx^2}
$$
 and is defined as

$$
f''(x) = (f'(x))'
$$
, *i.e.* the derivative of the
first derivative, $f'(x)$.

 $\binom{n}{x}$ = $\frac{d^n}{1}$ $f^{(n)}(x) = \frac{d^n f}{dx^n}$ *dx* $=\frac{a^2}{1+r^2}$ and is defined as $f^{(n)}(x) = (f^{(n-1)}(x))'$, *i.e.* the derivative of the $(n-1)$ st derivative, $f^{(n-1)}(x)$.

The nth Derivative is denoted as

Implicit Differentiation

Find y' if $e^{2x-9y} + x^3y^2 = \sin(y) + 11x$. Remember $y = y(x)$ here, so products/quotients of x and y will use the product/quotient rule and derivatives of *y* will use the chain rule. The "trick" is to differentiate as normal and every time you differentiate $a y$ you tack on a y' (from the chain rule). After differentiating solve for y' .

$$
e^{2x-9y}(2-9y')+3x^2y^2+2x^3y y'=cos(y)y'+11
$$

\n
$$
2e^{2x-9y}-9y'e^{2x-9y}+3x^2y^2+2x^3y y'=cos(y)y'+11 \Rightarrow y'=\frac{11-2e^{2x-9y}-3x^2y^2}{2x^3y-9e^{2x-9y}-cos(y)}
$$

\n
$$
(2x^3y-9e^{2x-9y}-cos(y))y'=11-2e^{2x-9y}-3x^2y^2
$$

Increasing/Decreasing – Concave Up/Concave Down

Critical Points

 $x = c$ is a critical point of $f(x)$ provided either **1.** $f'(c) = 0$ or **2.** $f'(c)$ doesn't exist.

Increasing/Decreasing

- 1. If $f'(x) > 0$ for all x in an interval I then $f(x)$ is increasing on the interval *I*.
- 2. If $f'(x) < 0$ for all x in an interval I then $f(x)$ is decreasing on the interval *I*.
- 3. If $f'(x) = 0$ for all x in an interval I then $f(x)$ is constant on the interval *I*.

Concave Up/Concave Down

- 1. If $f''(x) > 0$ for all x in an interval I then $f(x)$ is concave up on the interval *I*.
- 2. If $f''(x) < 0$ for all x in an interval I then $f(x)$ is concave down on the interval *I*.

Inflection Points

 $x = c$ is a inflection point of $f(x)$ if the concavity changes at $x = c$.