SATPREP

Assignment : Properties of curve : Implicit differentiation

- **1.** Show that the points (0, 0) and $(\sqrt{2\pi}, -\sqrt{2\pi})$ on the curve $e^{(x+y)} = \cos(xy)$ have a common tangent.
- 2. The function *f* is defined by $f(x) = e^{x^2 2x 1.5}$.
	- (a) Find $f'(x)$.
	- (b) You are given that $y =$ 1 (x) *x* − $\frac{f(x)}{g(x)}$ has a local minimum at $x = a, a > 1$. Find the value of *a*.
- **3.** Find the gradient of the normal to the curve $3x^2y + 2xy^2 = 2$ at the point (1, –2).
- **4.** The quadratic function $f(x) = p + qx x^2$ has a maximum value of 5 when $x = 3$.
	- (a) Find the value of *p* and the value of *q.*
	- (b) The graph of $f(x)$ is translated 3 units in the positive direction parallel to the *x*-axis. Determine the equation of the new graph.
- **5.** Find the equation of the normal to the curve $5xy^2 2x^2 = 18$ at the point (1, 2).
- **6.** A curve *C* is defined implicitly by $xe^y = x^2 + y^2$. Find the equation of the tangent to C at the point $(1, 0)$.
- **7.** Consider the curve with equation $f(x) = e^{-2x^2}$ for $x < 0$.

Find the coordinates of the point of inflexion and justify that it is a point of inflexion.

- **8.** The function *f* is defined on the domain $x \ge 0$ by $f(x) = \frac{x^2}{e^x}$ e 2 .
	- (a) Find the maximum value of $f(x)$, and justify that it is a maximum.
	- (b) Find the *x* coordinates of the points of inflexion on the graph of *f.*
- **9.** The function *f* is defined by $f(x) = (\ln (x-2))^2$. Find the coordinates of the point of inflexion of *f.*
- **10.** The normal to the curve $xe^{-y} + e^{y} = 1 + x$, at the point $(c, \ln c)$, has a *y*-intercept $c^2 + 1$. Determine the value of *c.*
- **11.** Find the equation of the normal to the curve $x^3y^3 xy = 0$ at the point (1, 1).
- **12.** Find the gradient of the curve $e^{xy} + ln(y^2) + e^y = 1 + e$ at the point (0, 1).

Solutions

1. Attempt at implicit differentiation $\left| e^{(x+y)} \right| 1 + \frac{dy}{y} = -\sin(xy) \left| x \frac{dy}{y} + y \right|$ \overline{a} $\left(x \frac{dy}{dx} + y\right)$ ⎝ $\left| = -\sin(xy) \right| x \frac{dy}{dx} +$ ⎠ $\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)$ ⎝ $\left(1+\frac{dy}{dx}\right) = -\sin(xy)\left(x\frac{dy}{dx} + y\right)$ *x* $xy\left(x\frac{dy}{dx}\right)$ *x y* $1 + \frac{dy}{dx}$ = $-\sin(xy) \left(x \frac{d}{dx}\right)$ let $x = 0, y = 0$ $e^{0}\left(1+\frac{dy}{1}\right)$ ⎠ $\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)$ ⎝ $\left(1+\right.$ *x y* d $\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)=0$ *x y* d $\frac{dy}{dx} = -1$ let $x = \sqrt{2\pi}$, $y = -\sqrt{2\pi}$ $e^{0}\left(1+\frac{dy}{dx}\right) = -\sin(-2\pi)\left(x\frac{dy}{dx} + y\right)$ ⎠ $\left(x \frac{dy}{dx} + y\right)$ ⎝ $\left| = -\sin(-2\pi) \right| x \frac{dy}{dx} +$ \overline{a} $\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)$ ⎝ $\left(1+\frac{dy}{dx}\right) = -\sin(-2\pi)\left(x\frac{dy}{dx}+y\right)$ *x* $\frac{dy}{x}$ *x y* $\left(1+\frac{dy}{dx}\right) = -\sin(-2\pi)\left(x\frac{dy}{dx}+y\right) = 0$ so *x y* d $\frac{dy}{dx} = -1$

since both points lie on the line $y = -x$ this is a common tangent

Note: $y = -x$ must be seen for the final R1. It is not sufficient to note that the gradients are equal.

⎠

2. (a)
$$
\left(u = x^2 - 2x - 1.5; \frac{du}{dx} = 2x - 2\right)
$$

\n $\frac{df}{dx} = \frac{df}{du} \frac{du}{dx} = e^x (2x - 2)$
\n $= 2(x - 1) e^{x^2 - 2x - 1.5}$

(b)
$$
\frac{dy}{dx} = \frac{(x-1) \times 2(x-1)e^{x^2 - 2x - 1.5} - 1 \times e^{x^2 - 2x - 1.5}}{(x-1)^2}
$$

$$
= \frac{2x^2 - 4x + 1}{(x+1)^2} e^{x^2 - 2x - 1.5}
$$

minimum occurs when $\frac{dy}{dx} = 0$ $\frac{dy}{dx} =$

$$
x = 1 \pm \sqrt{\frac{1}{2}} \left(\operatorname{accept} x = \frac{4 \pm \sqrt{8}}{4} \right)
$$

$$
a = 1 + \sqrt{\frac{1}{2}} \left(\operatorname{accept} a = \frac{4 + \sqrt{8}}{4} \right)
$$

3. Attempting to differentiate implicitly

$$
3x^{2}y + 2xy^{2} = 2 \implies 6xy + 3x^{2} \frac{dy}{dx} + 2y^{2} + 4xy \frac{dy}{dy} = 0
$$

Substituting $x = 1$ and $y = -2$

$$
-12 + 3 \frac{dy}{dx} + 8 - 8 \frac{dy}{dx} = 0
$$

$$
\implies -5 \frac{dy}{dx} = 4 \implies \frac{dy}{dx} = -\frac{4}{5}
$$

Gradient of normal is $\frac{5}{4}$

4. (a) **METHOD 1**

$$
f'(x) = q - 2x = 0
$$

\n
$$
f'(3) = q - 6 = 0
$$

\n
$$
q = 6
$$

\n
$$
f(3) = p + 18 - 9 = 5
$$

\n
$$
p = -4
$$

METHOD 2

$$
f(x) = -(x-3)2 + 5
$$

= -x² + 6x - 4

$$
q = 6, p = -4
$$

(b)
$$
g(x) = -4 + 6(x-3) - (x-3)^2 = -31 + 12x - x^2
$$

)

BA

Note: Accept any alternative form that is correct. Award M1A0 for a substitution of $(x + 3)$.

5.
$$
5y^2 + 10xy \frac{dy}{dx} - 4x = 0
$$

Note: Award A1A1 for correct differentiation of $5xy^2$. A1 for correct differentiation of $-2x^2$ and 18.

At the point (1, 2),
$$
20 + 20 \frac{dy}{dx} - 4 = 0
$$

\n
$$
\Rightarrow \frac{dy}{dx} = -\frac{4}{5}
$$
\nGradient of normal = $\frac{5}{4}$
\nEquation of normal y - 2 = $\frac{5}{4}(x - 1)$
\n
$$
y = \frac{5}{4}x - \frac{5}{4} + \frac{8}{4}
$$

\n
$$
y = \frac{5}{4}x + \frac{3}{4}
$$
 (4y = 5x + 3)

6. $xe^y = x^2 + y^2$ *x* $x + 2y \frac{dy}{dx}$ *x* $y + xe^y \frac{dy}{dx}$ d $2x + 2y - \frac{d}{dx}$ d $e^{y} + xe^{y} \frac{dy}{dx} = 2x +$ $(1, 0)$ fits *x y* d \Rightarrow 1 + $\frac{dy}{dx}$ = 2 + 0 *x y* d $\Rightarrow \frac{dy}{dx} = 1$ Equation of tangent is $y = x + c$ $(1, 0)$ fits \Rightarrow $c = -1$ \Rightarrow $y = x - 1$

7. .

$$
f'(x) = -4x e^{-2x^2}
$$

$$
f''(x) = -4 e^{-2x^2} + 16x^2 e^{-2x^2} \quad (=(16x^2 - 4)e^{-2x^2})
$$

Attempting to solve $f''(x) = 0$

$$
x = -\frac{1}{2}
$$

Note: Do not award this A1 for stating $x = \pm \frac{1}{2}$ as the final answer for x.

$$
f\left(-\frac{1}{2}\right) = \frac{1}{\sqrt{e}}\left(-0.607\right)
$$

Note: Do not award this A1 for also stating $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ ⎠ ⎞ ⎝ $\sqrt{2}$ e $\frac{1}{\sqrt{2}}$ 2 as a coordinate.

EITHER

Correctly labelled graph of $f'(x)$ for $x < 0$ denoting the maximum $f'(x)$

(e.g. *f* ′(−0.6) = 1.17 and *f* ′ (−0.4) = 1.16 stated)

OR

Correctly labelled graph of $f''(x)$ for $x < 0$ denoting the maximum $f'(x)$ $(e.g. f''(-0.6) = 0.857 \text{ and } f''(-0.4) = -1.05 \text{ stated})$

$$
f'(0.5) \approx 1.21
$$
. $f'(x) < 1.21$ just to the left of $x = -\frac{1}{2}$

and $f'(x) < 1.21$ just to the right of $x = -\frac{1}{2}$ $x = -\frac{1}{2}$

(e.g. *f*′ (−0.6) = 1.17 and *f*′ (−0.4) =1.16 stated)

OR

 $f''(x) > 0$ just to the left of $x = -\frac{1}{2}$ $x = -\frac{1}{2}$ and $f''(x) \le 0$ just to the right of 2 $x = -\frac{1}{2}$

 $(e.g. f''(-0.6) = 0.857 \text{ and } f''(-0.4) = -1.05 \text{ stated})$

8. (a)
$$
f'(x) = \frac{2xe^x - x^2e^x}{e^{2x}} \left(= \frac{2x - x^2}{e^x} \right)
$$

\nFor a maximum $f'(x) = 0$
\n $2x - x^2 = 0$
\ngiving $x = 0$ or 2
\n $f''(x) = \frac{(2 - 2x)e^x - e^x(2x - x^2)}{e^{2x}} \left(= \frac{x^2 - 4x + 2}{e^x} \right)$
\n $f''(0) = 2 > 0 \implies \text{minimum}$
\n $f''(2) = -\frac{2}{e^2} < 0 \implies \text{maximum}$
\nMaximum value $= \frac{4}{e^2}$

(b) For a point of inflexion,
\n
$$
f''(x) = \frac{x^2 - 4x + 2}{e^x} = 0
$$
\n
$$
giving x = \frac{4 \pm \sqrt{16 - 8}}{2}
$$
\n
$$
= 2 \pm \sqrt{2}
$$

(c)
$$
\int_0^1 x^2 e^{-x} dx = \left[-x^2 e^{-x} \right]_0^1 + 2 \int_0^1 x e^{-x} dx
$$

$$
= -e^{-1} - 2 \left[x e^{-x} \right]_0^1 + 2 \int_0^1 e^{-x} dx
$$

$$
= -e^{-1} - 2e^{-1} - 2 \left[e^{-x} \right]_0^1
$$

$$
= -3e^{-1} - 2e^{-1} + 2 (= 2 - 5e^{-1})
$$

9.
$$
f(x) = \frac{2(\ln(x-2))}{x-2}
$$

\n
$$
f''(x) = \frac{(x-2)\left(\frac{1}{x-2}\right) - 2\ln(x-2) \times 1}{(x-2)^2}
$$

\n
$$
= \frac{2-2\ln(x-2)}{(x-2)^2}
$$

\n
$$
f''(x) = 0 \text{ for point of inflexion}
$$

\n
$$
\Rightarrow 2-2\ln(x-2) = 0
$$

\n
$$
\ln(x-2) = 1
$$

\n
$$
x-2 = e
$$

\n
$$
x = e + 2
$$

\n
$$
\Rightarrow f(x) = (\ln(e + 2 - 2))^2 = (\ln e)^2 = 1
$$

\n
$$
(\Rightarrow \text{ coordinates are } (e + 2, 1))
$$

 $\sum_{i=1}^{n}$

ABP2

10. EITHER

differentiating implicitly: $1 \times e^{-y} - xe^{-y}$ *x y x y ^y* d $e^y \frac{d}{dx}$ d $\frac{dy}{dx} + e^y \frac{dy}{dx} = 1$ at the point $(c, \ln c)$ 1 d d $\frac{1}{c} - c \times \frac{1}{c} \frac{dy}{dx} + c \frac{dy}{dx} =$ *x y c c c x c y* 1 d $\frac{dy}{dx} = \frac{1}{c} (c \neq 1)$

reasonable attempt to make expression explicit $xe^{-y} + e^y = 1 + x$ $x + e^{2y} = e^{y}(1 + x)$ $e^{2y} - e^{y}(1 + x) + x = 0$ $(e^y - 1)(e^y - x) = 0$ $e^y = 1, e^y = x$ $y = 0, y = \ln x$

Note: Do not penalize if $y = 0$ not stated.

2 1 $\frac{dy}{dx} =$

gradient of tangent = *c* 1

Note: If candidate starts with $y = \ln x$ with no justification, award (M0)(A0)A1A1*.*

THEN

the equation of the normal is $y - \ln c = -c(x - c)$ $x = 0, y = c^2 + 1$ $c^2 + 1 - \ln c = c^2$ ln $c = 1$ $c = e$

11.
$$
x^3y^3 - xy = 0
$$

\n $3x^2y^3 + 3x^3y^2y' - y - xy' = 0$

Note: Award A1 for correctly differentiating each term.

 $x = 1, y = 1$ $3 + 3y' - 1 - y' = 0$ $2y' = -2$ $y' = -1$ gradient of normal $= 1$ equation of the normal $y - 1 = x - 1$ *y* = *x*

OR

12.
$$
e^{xy} + \ln(y^2) + e^y = 1 + e
$$

\n $e^{xy} \left(y + x \frac{dy}{dx} \right) + \frac{2}{y} \frac{dy}{dx} + e^y \frac{dy}{dx} = 0$, at (0, 1)
\n $1(1+0) + 2 \frac{dy}{dx} + e \frac{dy}{dx} = 0$
\n $1 + 2 \frac{dy}{dx} + e \frac{dy}{dx} = 0$
\n $\frac{dy}{dx} = -\frac{1}{2+e} (= -0.212)$

