SAT PREP

Complex No and Powers of \boldsymbol{i}

The Number \boldsymbol{i} - i is the unique number for which $i=\sqrt{-1}$ and $i^{2}=-1$.

Imaginary Number - any number that can be written in the form $a+b i$, where a and b are real numbers and $b \neq 0$.

Complex Number - any number that can be written in the form $a+b i$, where a and b are real numbers. (Note: a and b both can be 0 .) The union of the set of all imaginary numbers and the set of all real numbers is the set of complex numbers.

Addition / Subtraction - Combine like terms (i.e. the real parts with real parts and the imaginary parts with imaginary parts).

Multiplication - When multiplying square roots of negative real numbers, begin by expressing them in terms of i.

Example - $\sqrt{-4} \cdot \sqrt{-8}=\sqrt{-1} \cdot \sqrt{4} \cdot \sqrt{-1} \cdot \sqrt{8}$

$$
=\quad i \cdot 2 \cdot i \cdot 2 \sqrt{2}
$$

$$
=\quad i^{2} \cdot 4 \sqrt{2}
$$

$$
=\quad(-1) \cdot 4 \sqrt{2}
$$

$$
=\quad-4 \sqrt{2}
$$

Note: The answer is not $+4 \sqrt{2}$, which could be calculated erroneously if the radicands were simply multiplied as
$\sqrt{-4} \cdot \sqrt{-8} \neq \sqrt{(-4)(-8)} \neq \sqrt{32}$

$$
\begin{aligned}
& \text { Example - }(2-3 i)-(4-6 i)=2-3 i-4+6 i \\
& =\quad-2+3 i
\end{aligned}
$$

Multiplication (Cont'd) - When multiplying two complex numbers, begin by F O I Ling them together and then simplify.

$$
\begin{aligned}
\text { Example - }(2+3 i) \cdot(8-7 i) & =16-14 i+24 i-21 i^{2} \\
& =16+10 i-21 i^{2} \\
& =16+10 i-21(-1) \\
& =16+10 i+21 \\
& =37+10 i
\end{aligned}
$$

Division - When dividing by a complex number, multiply the top and bottom by the complex conjugate of the denominator. Then F O I L the top and the bottom and simplify. The answer should be written in standard form ($a+b i$.)

$$
\text { Example - } \begin{aligned}
\frac{2+3 i}{1-5 i} & =\frac{(2+3 i)}{(1-5 i)} \cdot \frac{(1+5 i)}{(1+5 i)} \\
& =\frac{2+10 i+3 i+15 i^{2}}{1+5 i-5 i-25 i^{2}}=\frac{2+13 i+15(-1)}{1-25(-1)} \\
& =\frac{2+13 i-15}{1+25}=\frac{-13+13 i}{26} \\
& =\frac{-1+i}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Example }-\frac{14}{i} & =\frac{14}{i} \cdot \frac{-i}{-i} \quad \text { (Multiply by complex conjugate) } \\
& =\frac{-14 i}{-i^{2}}=\frac{-14 i}{-(-1)} \\
& =\frac{-14 i}{1}=-14 i
\end{aligned}
$$

Powers of \boldsymbol{i}-Given a number, i^{n}, the number can be simplified by using the following chart.

$\boldsymbol{i}^{\boldsymbol{n}}$	Is Equivalent to...	Because...
i^{0}	1	a number raised to the 0 power is 1
i^{1}	i	a number raised to the 1 power is that same number
i^{2}	(-1)	$i^{2}=-1$ (definition of i)
i^{3}	$-i$	$i^{3}=i^{2} \cdot i=(-1) \cdot i=-i$
i^{4}	1	$i^{4}=i^{2} \cdot i^{2}=(-1) \cdot(-1)=1$
i^{5}	i	$i^{5}=i^{4} \cdot i=(1) \cdot i=i$

Because the powers of i will cycle through $1, i,-1$, and $-i$, this repeating pattern of four terms can be used to simplify i^{n}.

Example - Simplify i^{25}
Step 1- Divide 25 (the power) by 4.

$$
\frac{25}{4}=\text { quotient of } 6 \text { with a remainder of } 1
$$

Step 2 - \quad Note the quotient (i.e. 6) and the remainder (i.e. 1).
Step 3 - Rewrite the problem.

$$
i^{25}=\left(i^{4}\right)^{\text {quotient }} \cdot i^{\text {remainder }}=\left(i^{4}\right)^{6} \cdot i^{1}
$$

Step 4- \quad Simplify by recalling that $i^{4}=1$

$$
\left(i^{4}\right)^{6} \cdot i^{1}=(1)^{6} \cdot i^{1}=1 \cdot i=i
$$

Note: Because the powers of i cycle through $1, i,-1$, and i, these types of problems can always be simplified by noting what the remainder is in step 2 above. In fact, the problem can be re-written as...

$$
i^{n}=i^{\text {remainder }} \text { (Divide } \mathrm{n} \text { by } 4 \text { and determine the remainder). }
$$

The remainder will always be either $0,1,2$, or 3.
Example - Simplify ${ }^{59}$

$$
i^{59}=i^{3} \quad \text { (because } \frac{59}{4} \text { has a remainder of 3.) }
$$

So, $\quad i^{59}=i^{3}=-i$

Imaginary and Complex Numbers Practice

Simplify:

1) $(4+2 \mathrm{i})+(-3-5 \mathrm{i})$
2) $(-3+4 \mathrm{i})-(5+2 \mathrm{i})$
3) $(-8-7 \mathrm{i})-(5-4 \mathrm{i})$
4) $(3-2 i)(5+4 i)$
5) $(3-4 i)^{2}$
6) $(3-2 \mathrm{i})(5+4 \mathrm{i})-(3-4 \mathrm{i})^{2}$
7) Write $\frac{3+7 i}{5-3 i}$ in standard form
8) Simplify i^{925}
9) Simplify i^{460}
10) Write $\frac{1-4 i}{5+2 i}$ in standard form
11) $\sqrt{-16}$
12) $\sqrt{-8}$
13) $\sqrt{-6} \sqrt{-6}$
14) $4+\sqrt{-25}$
15) $\frac{6-\sqrt{-8}}{-2}$

Answers:
(1) $1-3 i$
(2) $-8+2 i$
(3) $-13-3 i$
(4) $23+2 i$
(5) $-7-24 i$
(6) $30+26 i$
(7) $\frac{-3}{17}+\frac{22}{17} i$
(8) i
(9) 1
(10) $\frac{-2}{29}-\frac{22}{29} i$
(11) $4 i$
(12) $2 \sqrt{2} i$
(13) -6
(14) $4+5 i$
(15) $-3+\sqrt{2} i$

