SAT PREP

Complex No and Powers of i

The Number i - i is the unique number for which $i = \sqrt{-1}$ and $i^2 = -1$.

<u>Imaginary Number</u> – any number that can be written in the form a + bi, where a and b are real numbers and $b \neq 0$.

<u>Complex Number</u> — any number that can be written in the form a + bi, where a and b are real numbers. (Note: a and b both **can** be 0.) The union of the set of all imaginary numbers and the set of all real numbers is the set of complex numbers.

Addition / Subtraction - Combine like terms (i.e. the real parts with real parts and the imaginary parts with imaginary parts).

Example -
$$(2-3i) - (4-6i)$$
 = $2-3i-4+6i$ = $-2+3i$

Multiplication - When multiplying square roots of negative real numbers, begin by expressing them in terms of i.

Example -
$$\sqrt{-4} \cdot \sqrt{-8}$$
 = $\sqrt{-1} \cdot \sqrt{4} \cdot \sqrt{-1} \cdot \sqrt{8}$
= $i \cdot 2 \cdot i \cdot 2\sqrt{2}$
= $i^2 \cdot 4\sqrt{2}$
= $(-1) \cdot 4\sqrt{2}$
= $-4\sqrt{2}$

Note: The answer is not $+4\sqrt{2}$, which could be calculated erroneously if the radicands were simply multiplied as

$$\sqrt{-4} \cdot \sqrt{-8} \neq \sqrt{(-4)(-8)} \neq \sqrt{32}$$

Multiplication (Cont'd) – When multiplying two complex numbers, begin by F O I L ing them together and then simplify.

Example -
$$(2+3i) \cdot (8-7i)$$
 = $16-14i+24i-21i^2$
= $16+10i-21i^2$
= $16+10i-21(-1)$
= $16+10i+21$
= $37+10i$

Division – When dividing by a complex number, multiply the top and bottom by the <u>complex conjugate</u> of the denominator. Then FOIL the top and the bottom and simplify. The answer should be written in standard form (a + bi.)

Example -
$$\frac{2+3i}{1-5i}$$
 = $\frac{(2+3i)}{(1-5i)} \cdot \frac{(1+5i)}{(1+5i)}$ (Multiply by complex conjugate)

= $\frac{2+10i+3i+15i^2}{1+5i-5i-25i^2}$ = $\frac{2+13i+15(-1)}{1-25(-1)}$

= $\frac{2+13i-15}{1+25}$ = $\frac{-13+13i}{26}$

= $\frac{-1+i}{2}$ = $\frac{-1}{2} + \frac{1}{2}i$

Example -
$$\frac{14}{i}$$
 = $\frac{14}{i} \cdot \frac{-i}{-i}$ (Multiply by complex conjugate)
$$= \frac{-14i}{-i^2} = \frac{-14i}{-(-1)}$$

$$= \frac{-14i}{1} = -14i$$

Powers of i – Given a number, i^n , the number can be simplified by using the following chart.

i^n	Is Equivalent	Because
	to	
i^0	1	a number raised to the 0 power is 1
i^1	i	a number raised to the 1 power is that same number
i^2	(-1)	$i^2 = -1$ (definition of i)
i^3	-i	$i^3 = i^2 \cdot i = (-1) \cdot i = -i$
i ⁴	1	$i^4 = i^2 \cdot i^2 = (-1) \cdot (-1) = 1$
i^5	i	$i^5 = i^4 \cdot i = (1) \cdot i = i$

Because the powers of i will cycle through 1, i, -1, and - i, this repeating pattern of four terms can be used to simplify i^n .

Example - Simplify
$$i^{25}$$

Step 1 - Divide 25 (the power) by 4.

 $\frac{25}{4}$ = quotient of 6 with a remainder of 1

Step 2 - Note the quotient (i.e. 6) and the remainder (i.e. 1).

Step 3 - Rewrite the problem.

$$i^{25} = (i^4)^{quotient} \cdot i^{remainder} = (i^4)^6 \cdot i^1$$

Step 4 - Simplify by recalling that $i^4 = 1$

$$(i^4)^6 \cdot i^1 = (1)^6 \cdot i^1 = 1 \cdot i = i$$

Note: Because the powers of i cycle through 1, i, -1, and i, these types of problems can always be simplified by noting what the <u>remainder</u> is in step 2 above. In fact, the problem can be re-written as...

 $i^n=i^{remainder}$ (Divide n by 4 and determine the remainder).

The remainder will always be either 0, 1, 2, or 3.

Example - Simplify i^{59}

$$i^{59} = i^3$$
 (because $\frac{59}{4}$ has a remainder of 3.)

So,
$$i^{59} = i^3 = -i$$

Imaginary and Complex Numbers Practice

Simplify:

1)
$$(4 + 2i) + (-3 - 5i)$$

2)
$$(-3 + 4i) - (5 + 2i)$$

3)
$$(-8-7i)-(5-4i)$$

4)
$$(3-2i)(5+4i)$$

5)
$$(3-4i)^2$$

6)
$$(3-2i)(5+4i)-(3-4i)^2$$

7) Write
$$\frac{3+7i}{5-3i}$$
 in standard form

10) Write
$$\frac{1-4i}{5+2i}$$
 in standard form

11)
$$\sqrt{-16}$$

12)
$$\sqrt{-8}$$

13)
$$\sqrt{-6} \sqrt{-6}$$

14)
$$4 + \sqrt{-25}$$

15)
$$\frac{6-\sqrt{-8}}{-2}$$

Answers:

$$(1) 1 - 3i$$

$$(2) -8 + 2i$$

$$(3) -13 - 3i$$

$$(4) 23 + 2i$$

(7)
$$\frac{-3}{17} + \frac{22}{17}i$$

$$(10) \; \frac{-2}{29} - \frac{22}{29}i$$

(12)
$$2\sqrt{2}$$
 i

(15)
$$-3 + \sqrt{2}i$$