SAT PREP Assignment :Rolle's and MVT Theorem

Determine whether Rolle's Theorem can be applied to f on the interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the interval (a,b) such that f'(c) = 0.

1.
$$f(x) = x^2 - 2x, [0,2]$$

2. $f(x) = (x-1)(x-2)(x-3), [1,3]$
3. $f(x) = x^{\frac{2}{3}} - 1, [-8,8]$
4. $f(x) = \frac{x^2 - 2x - 3}{x+2}, [-1,3]$
5. $f(x) = \sin x, [0,2\pi]$
6. $f(x) = \tan x, [0,\pi]$
7. $f(x) = \sin x, [0,\frac{\pi}{2}]$

Determine whether the Mean Value Theorem can be applied to f on the interval [a,b]. If MVT can be applied, find all values of c in (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. 8. $f(x) = x^2$, [-2,1]9. $f(x) = x^{\frac{2}{3}}$, [0,1]10. $f(x) = \sqrt{2-x}$, [-7,2]11. $f(x) = \sin x$, $[0,\pi]$ 12. $f(x) = \frac{1}{x}$, [-1,1]

Getting at the Concept:

13. Let f be continuous on [a,b] and differentiable on (a,b). If there exists c in (a,b) such that f'(c) = 0, does it follow that f(a) = f(b)? Explain.

14. When an object is removed from a furnace and placed in an environment with a constant temperature of 90° F, its core temperature is 1500° F. Five hours later the core temperature is 390° F. Explain why there must exist a time in the interval when the temperature is decreasing at a rate of 222° F per hour.

Answers:

1.
$$c = 1$$
 2. $c = \frac{6 \pm \sqrt{3}}{3}$

3. Rolle's Theorem cannot be applied to f since f is not differentiable at x = 0 which is on (-8,8)

4.
$$c = -2 + \sqrt{5}$$
 5. $c = \frac{\pi}{2}, \frac{3\pi}{2}$

6. Rolle's Theorem cannot be applied since f is not continuous at $x = \frac{\pi}{2}$ which is on $[0, \pi]$.

7. Rolle's Thrm cannot be applied since $f(0) \neq f\left(\frac{\pi}{2}\right)$ 8. $c = \frac{-1}{2}$ 9. $c = \frac{8}{27}$ 10. $c = \frac{-1}{4}$ 11. $c = \frac{\pi}{2}$

12. MVT cannot be applied since f is not continuous @ x = 0 which is on [-1,1]

ABA

13. No. Ex:
$$f(x) = x^2$$
, $[-2,3]$ $f'(0) = 0$ but $f(-2) \neq f(3)$
390 - 1500

YAME

14. MVT,
$$f'(c) = \frac{390 - 1300}{5 - 0} = -222$$