## SAT PREP

## EULER ‘S

1. Given the differential equation $\frac{d y}{d x}=x+2$ and $y(0)=3$. Find an approximation for y (1) by using Euler's method with two equal steps.
2. Given the differential equation $\frac{d y}{d x}=\frac{1}{x+2}$ find an approximation of $\mathrm{y}(1)$ using Euler's Method with two steps and step size $\Delta x=0.5$.
3. The curve passing through $(2,0)$ satisfies the differential equation $\frac{d y}{d x}=4 x+y$ Find an approximation to y (3) using Euler's Method with two equal steps.
4. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the particular solution to the differential equation $\frac{d y}{d x}=x+2 y$ with the initial condition $\mathrm{f}(0)=1$. Use Euler's Method, starting at $\mathrm{x}=0$ with two steps of equal size to approximate $f(-0.6)$.
5. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+2}{x y+1}$ and $y=1$ when $x=0$, use Euler's method with interval $h=05$. to find an approximate value of $y$ when $x=1$.
6. Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=\sin x$ with boundary condition $y=1$ when $x=0$.

Use four steps of Euler's method starting at $x=0$, with interval $h=0.1$, to find an approximate value for $y$ when $x=0.4$.
7. A curve that passes through the point $(1,2)$ is defined by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(1+x^{2}-y\right) .
$$

Use Euler's method to get an approximate value of y when $x=1.3$, taking steps of 0.1 . Show intermediate steps to four decimal places in a table.
8. Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+(2 x-1) y=0$ given that $y=2$ when $x=0$.

Use Euler's method with a step value of 0.1 to obtain a second approximation for the maximum value of $y$. Set out your solution in tabular form.

