SATPREP	Name	ID: 1
Assignment:Divisibility		Date
Use mathematical induction to prove that	t each statement is true for all positi	ve integers.
1) $7n^3 + 2n$ is divisible by 3		
2) $5n^2 + 5n$ is divisible by 2		
3) $14n^2 - 6n$ is divisible by 4		
	PRA	
4) 4 is a factor of $5^n + 3$	101	
3		
5) $3n^3 + 6n$ is divisible by 9		
6) $21n^2 - 15n$ is divisible by -6		
7) $10n^3 + 8n$ is divisible by 6		
7) $10n^3 + 8n$ is divisible by 6	EDAD	

8) 2 is a factor of $3^{n} - 1$

9) $15n^2 - 3n$ is divisible by 2

10) $2n^3 + 4n$ is divisible by 6

1) Let P_n be the statement $7n^3 + 2n$ is divisible by 3 **Anchor Step** P_1 is true: $7 \cdot 1^3 + 2$ is divisible by 3 Inductive Hypothesis Assume that $7k^3 + 2k$ is divisible by 3. Therefore, $7k^3 + 2k = 3r$ for some integer r. **Inductive Step** $7(k+1)^3 + 2(k+1)$ is divisible by 3 We now show that P_{k+1} is true: $7(k^3 + 3k^2 + 3k + 1) + 2k + 2$ $7k^{3} + 21k^{2} + 21k + 7 + 2k + 2$ $7k^3 + 2k + 21k^2 + 21k + 9$ $3r + 21k^2 + 21k + 9$ $3(r+7k^2+7k+3)$ Conclusion By induction P_n is true for all $n \ge 1$. 2) Let P_n be the statement $5n^2 + 5n$ is divisible by 2 **Anchor Step** P_1 is true: $5 \cdot 1^2 + 5$ is divisible by 2 **Inductive Hypothesis** Assume that $5k^2 + 5k$ is divisible by 2. Therefore, $5k^2 + 5k = 2r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $5(k+1)^2 + 5(k+1)$ is divisible by 2 $5k^2 + 10k + 5 + 5k + 5$ $5k^2 + 5k + 10k + 10$ 2r + 10k + 102(r+5k+5)Conclusion By induction P_n is true for all $n \ge 1$ 3) Let P_n be the statement $14n^2 - 6n$ is divisible by 4 **Anchor Step** P_1 is true: $14 \cdot 1^2 - 6$ is divisible by 4 **Inductive Hypothesis** Assume that $14k^2 - 6k$ is divisible by 4. Therefore, $14k^2 - 6k = 4r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $14(k+1)^2 - 6(k+1)$ is divisible by 4 $14k^2 + 28k + 14 - 6k - 6$ $14k^2 - 6k + 28k + 8$ 4r + 28k + 84(r+7k+2)Conclusion By induction P_n is true for all $n \ge 1$.

4) Let P_{n} be the statement 4 is a factor of $5^{n} + 3$

Anchor Step

 P_1 is true: 4 is a factor of $5^1 + 3$

Inductive Hypothesis

Assume that 4 is a factor of $5^{k} + 3$. Therefore, $5^{k} + 3 = 4r$ for some integer r.

Inductive Step

We now show that P_{k+1} is true: 4 is a factor of $5^{(k+1)} + 3$

 $5 \cdot 5^{k} + 3$ (4 + 1) \cdot 5^{k} + 3 4 \cdot 5^{k} + 5^{k} + 3 4 \cdot 5^{k} + 4r 4(5^{k} + r)

Conclusion

By induction P_n is true for all $n \ge 1$.

5) Let P_n be the statement $3n^3 + 6n$ is divisible by 9

Anchor Step

 P_1 is true: $3 \cdot 1^3 + 6$ is divisible by 9

Inductive Hypothesis

Assume that $3k^3 + 6k$ is divisible by 9. Therefore, $3k^3 + 6k = 9r$ for some integer r. Inductive Step

We now show that P_{k+1} is true: $3(k+1)^3 + 6(k+1)$ is divisible by 9

 $3(k^{3} + 3k^{2} + 3k + 1) + 6k + 6$ $3k^{3} + 9k^{2} + 9k + 3 + 6k + 6$ $3k^{3} + 6k + 9k^{2} + 9k + 9$ $9r + 9k^{2} + 9k + 9$ $9(r + k^{2} + k + 1)$

Conclusion

By induction P_n is true for all $n \ge 1$.

6) Let P_n be the statement $21n^2 - 15n$ is divisible by -6

Anchor Step

 P_1 is true: $21 \cdot 1^2 - 15$ is divisible by -6

Inductive Hypothesis

Assume that $21k^2 - 15k$ is divisible by -6. Therefore, $21k^2 - 15k = -6r$ for some integer r. **Inductive Step**

We now show that P_{k+1} is true: $21(k+1)^2 - 15(k+1)$ is divisible by -6

 $21k^{2} + 42k + 21 - 15k - 15$ $21k^{2} - 15k + 42k + 6$ -6r + 42k + 6 -6(r - 7k - 1)Conclusion

By induction P_n is true for all $n \ge 1$.

Worksheet by Kuta Software LLG

7) Let P be the statement $10n^3 + 8n$ is divisible by 6 **Anchor Step** P_1 is true: $10 \cdot 1^3 + 8$ is divisible by 6 Inductive Hypothesis Assume that $10k^3 + 8k$ is divisible by 6. Therefore, $10k^3 + 8k = 6r$ for some integer r. **Inductive Step** $10(k+1)^3 + 8(k+1)$ is divisible by 6 We now show that P_{k+1} is true: $10(k^3 + 3k^2 + 3k + 1) + 8k + 8$ $10k^3 + 30k^2 + 30k + 10 + 8k + 8$ $10k^3 + 8k + 30k^2 + 30k + 18$ $6r + 30k^2 + 30k + 18$ $6(r+5k^2+5k+3)$ Conclusion By induction P_n is true for all $n \ge 1$. 8) Let P_n be the statement 2 is a factor of $3^n - 1$ **Anchor Step** P_1 is true: 2 is a factor of $3^1 - 1$ **Inductive Hypothesis** Assume that 2 is a factor of $3^{k} - 1$. Therefore, $3^{k} - 1 = 2r$ for some integer r. **Inductive Step** 2 is a factor of $3^{(k+1)} - 1$ We now show that P_{k+1} is true: $3 \cdot 3^{k} - 1$ $(2+1) \cdot 3^{k} - 1$ $2 \cdot 3^{k} + 3^{k} - 1$ $2 \cdot 3^k + 2r$ $2(3^{k} + r)$ Conclusion By induction P_n is true for all $n \ge 1$. 9) Let P_n be the statement $15n^2 - 3n$ is divisible by 2 **Anchor Step** P_1 is true: $15 \cdot 1^2 - 3$ is divisible by 2 **Inductive Hypothesis** Assume that $15k^2 - 3k$ is divisible by 2. Therefore, $15k^2 - 3k = 2r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $15(k+1)^2 - 3(k+1)$ is divisible by 2 $15k^2 + 30k + 15 - 3k - 3$ $15k^2 - 3k + 30k + 12$ 2r + 30k + 122(r+15k+6)Conclusion By induction P_n is true for all $n \ge 1$.

10) Let P_n be the statement $2n^3 + 4n$ is divisible by 6 Anchor Step

 P_1 is true: $2 \cdot 1^3 + 4$ is divisible by 6

Inductive Hypothesis

Assume that $2k^3 + 4k$ is divisible by 6. Therefore, $2k^3 + 4k = 6r$ for some integer r. **Inductive Step**

We now show that P_{k+1} is true: $2(k+1)^3 + 4(k+1)$ is divisible by 6

 $2(k^{3} + 3k^{2} + 3k + 1) + 4k + 4$ $2k^{3} + 6k^{2} + 6k + 2 + 4k + 4$ $2k^{3} + 4k + 6k^{2} + 6k + 6$ $6r + 6k^{2} + 6k + 6$ $6(r + k^{2} + k + 1)$

Conclusion

By induction P_n is true for all $n \ge 1$.

