SATPREP

Name

Assignment: Applications of integration(Kinematics)

Date

A particle moves along a vertical line. Its position function is s(t) for $t \ge 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.

1)
$$s(t) = t^2 - 12t - 13; \ 5 \le t \le 9$$

2) $s(t) = t^3 - 12t^2; \ 7 \le t \le 9$

A particle moves along a coordinate line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the position function s(t).

3)
$$v(t) = -3t^2 + 20t$$
; $s(0) = 0$
4) $v(t) = -3t^2 + 8t + 60$; $s(0) = 0$

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the position function s(t) and the velocity function v(t).

5)
$$a(t) = -2; \ s(0) = 20; \ v(0) = 8$$

6) $a(t) = -6t + 44; \ s(0) = 0; \ v(0) = -121$

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.

7)
$$a(t) = -6t + 26; v(0) = -40; 1 \le t \le 7$$

8) $a(t) = -6t + 32; v(0) = -64; 0 \le t \le 5$

A particle moves along a coordinate line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the position, velocity, and speed at the given value for t.

9)
$$v(t) = -3t^2 + 46t - 120$$
; $s(0) = 0$; at $t = 7$ 10) $v(t) = 3t^2 - 46t + 120$; $s(0) = 0$; at $t = 8$

Answers to Assignment: Applications of integration(Kinematics)

- 1) Displacement: 8 Distance traveled: 10 4) $s(t) = -t^3 + 4t^2 + 60t$ b) $s(t) = -t^3 + 22t^2 - 121t$, $v(t) = -3t^2 + 44t - 121$ b) Displacement: 42 D) s(7) = -56, v(7) = 55, speed at 7 = 552881
- Distance traveled: $\frac{2881}{27} \approx 106.704$ 10) s(8) = 0, v(8) = -56, speed at 8 = 56

