\qquad

Assignment: Applications of integration(Kinematics)

\qquad
A particle moves along a vertical line. Its position function is $s(t)$ for $t \geq 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.

1) $s(t)=t^{2}-12 t-13 ; 5 \leq t \leq 9$
2) $s(t)=t^{3}-12 t^{2} ; 7 \leq t \leq 9$

A particle moves along a coordinate line. Its velocity function is $\boldsymbol{v}(t)$ for $\boldsymbol{t} \geq 0$. For each problem, find the position function $s(t)$.
3) $v(t)=-3 t^{2}+20 t ; s(0)=0$
4) $v(t)=-3 t^{2}+8 t+60 ; s(0)=0$

A particle moves along a coordinate line. Its acceleration function is $\boldsymbol{a}(t)$ for $\boldsymbol{t} \geq 0$. For each problem, find the position function $s(t)$ and the velocity function $\boldsymbol{v}(t)$.
5) $a(t)=-2 ; s(0)=20 ; v(0)=8$
6) $a(t)=-6 t+44 ; s(0)=0 ; v(0)=-121$

A particle moves along a coordinate line. Its acceleration function is $\boldsymbol{a}(t)$ for $t \geq 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.
7) $a(t)=-6 t+26 ; v(0)=-40 ; 1 \leq t \leq 7 \quad$ 8) $a(t)=-6 t+32 ; v(0)=-64 ; 0 \leq t \leq 5$

A particle moves along a coordinate line. Its velocity function is $\boldsymbol{v}(t)$ for $t \geq 0$. For each problem, find the position, velocity, and speed at the given value for \boldsymbol{t}.
9) $v(t)=-3 t^{2}+46 t-120 ; s(0)=0$; at $t=7$
10) $v(t)=3 t^{2}-46 t+120 ; s(0)=0$; at $t=8$

Answers to Assignment: Applications of integration(Kinematics)

1) Displacement: 8

Distance traveled: 10
4) $s(t)=-t^{3}+4 t^{2}+60 t$
6) $s(t)=-t^{3}+22 t^{2}-121 t, v(t)=-3 t^{2}+44 t-121$
5) $s(t)=-t^{2}+8 t+20, v(t)=-2 t+8$
7) Displacement: 42

Distance traveled: $\frac{1610}{27} \approx 59.63$
8) Displacement: -45

Distance traveled: $\frac{2881}{27} \approx 106.704$
10) $s(8)=0, v(8)=-56$, speed at $8=56$

