SATPREP

Name

Assignment Domain and Range of function

- 1. The function f is given by $f(x) = \sqrt{\ln (x-2)}$. Find the domain of the function.
- 2. The function f is defined for $x \le 0$ by $f(x) = \frac{x^2 1}{x^2 + 1}$. Find an expression for $f^{-1}(x)$.
- 3. Find the largest domain for the function $f: x \mapsto \frac{1}{\sqrt{4-9x^2}}$.
- 4. Consider the function $f: x \mapsto \sqrt{x+1}, x \ge -1$
 - (a) Determine the inverse function f^{-1} .
 - (b) What is the domain of f^{-1} ?

5. The one-one function f is defined on the domain x > 0 by $f(x) = \frac{2x-1}{x+2}$

- (a) State the range, A, of f.
- (b) Obtain an expression for $f^{-1}(x)$, for $x \in A$.
- 6. Let $f: x \mapsto \sqrt{\frac{1}{x^2} 2}$. Find
 - (a) the set of real values of x for which f is real and finite;
 - (b) the range of f.
- 7. The function $f: x \mapsto \frac{2x+1}{x-1}$, $x \in \mathbb{R}$, $x \neq 1$. Find the inverse function, f^{-1} , clearly stating its domain.
- 8. (a) Find the largest set S of values of x such that the function $f(x) = \frac{1}{\sqrt{3-x^2}}$ takes real values.
 - (b) Find the range of the function f defined on the domain S.

Date

1.
$$x \ge 3$$

2.
$$f^{-1}(x) = -\sqrt{\frac{1+x}{1-x}}$$
 (A1)

3. Domain =
$$\left\{x : -\frac{2}{3} < x < \frac{2}{3}\right\}$$
 OR $\left\{x : |x| < \frac{2}{3}\right\}$

4. (a)
$$f^{-1}(x) = x^2 - 1$$
 (or $y = x^2 - 1$)

(b) Domain of
$$f^{-1}(x) = \text{range of } f(x) \Rightarrow x > 0$$

5. (a) $A = \left[-\frac{1}{2}, 2 \right]$

(b)
$$f^{-1}(x) = \frac{1+2x}{2-x}$$

6. (a)
$$-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}, x \ne 0$$

(b)
$$y \ge 0$$

 $f^{-1}: x \mapsto \frac{x+1}{x-2},$ Domain $x \in \mathbb{R}, x \neq 2$ 7.

7.
$$f^{-1}: x \mapsto \frac{x+1}{x-2},$$

Domain $x \in \mathbb{R}, x \neq 2$
8. (a) $-\sqrt{3} \le x \le \sqrt{3} \text{ or } \left[-\sqrt{3}, \sqrt{3}\right]$

A sketch of f(x) over this interval is (b)

$$\frac{1}{\sqrt{3}} \le f(x) < \infty$$
, or $f(x) \ge \frac{1}{\sqrt{3}}$, or $f(x) \ge 0.577$.