\qquad

Assignment: Finding equation of curve.

Date

1) A gradient function is given by $\frac{d y}{d x}=10 e^{2 x}-5$. When $\mathrm{x}=0, \mathrm{y}=8$. Find the value of y when $\mathrm{x}=1$.
2) The graph of the function $y=f(x)$ passes through the point $(3,4)$. The gradient function of f is given as $f^{\prime}(x)=\sin (x-3)$. Find $f(x)$.
3) The velocity v metre per second of a moving body at time t seconds is given by $\mathrm{v}=50-10 \mathrm{t}$. The initial displacement s is 40 metres. Find an expression for s in terms of t.
4) The velocity v of a particle at time t is given by $\mathrm{v}=e^{-2 t}+12 \mathrm{t}$. The displacement of the particle at time t is s. Given that $s=2$ when $t=0$, express s in terms of t.
5) Let $\mathrm{f}^{\prime}(\mathrm{x})=12 x^{2}-2$. Given that $\mathrm{f}(-1)=1$, find $\mathrm{f}(\mathrm{x})$.
6) It is given that $\frac{d y}{d x}=x^{3}+2 \mathrm{x}-1$ and that $\mathrm{y}=13$ when $\mathrm{x}=2$. Find y in terms of x .
7) A curve with equation $y=f(x)$ passes through the point (1, 1). Its gradient function is $f^{\prime}(x)=-2 x$ +3 . Find the equation of the curve.
8) The acceleration, a $\mathrm{m} \mathrm{s}^{-2}$, of a particle at time t seconds is given by

$$
\mathrm{a}=\frac{1}{t}+3 \sin 2 \mathrm{t}, \text { for } \mathrm{t} \geq 1
$$

The particle is at rest when $t=1$.
Find the velocity of the particle when $t=5$.

Answers to Assignment: Find equation of curve.

1) $34.9\left(5 e^{2}-2\right)$
2) $\cos (x-3)+4$
3) $\mathrm{s}=50 \mathrm{t}-5 t^{2}+40$
4) $\mathrm{s}=-0.5 e^{-2 t}+6 t^{2}+2.5$
5) $f(x)=4 x^{3}-2 x+3$
6) $\mathrm{y}=\frac{x^{4}}{4}+x^{2}-\mathrm{x}-7$
7) $f(x)=-x^{2}+3 x-1 \quad$ 8) 2.24
