## SATPREP

Sum and product of roots of polynomials

## Quadratic equation

$a x^{2}+b x+c=0$
Sum of the roots $=-\mathrm{b} / \mathrm{a} ; \alpha+\beta=\frac{-b}{a}$
Product of the roots $=\mathrm{c} / \mathrm{a} ; \alpha \beta=\frac{c}{a}$

## Cubic equation

$a x^{3}+b x^{2}+c x+d=0$
Sum of the roots $=-\mathrm{b} / \mathrm{a} ; \alpha+\beta+\gamma=\frac{-b}{a}$
Sum of the product of the roots taken two at a time $=\mathrm{c} / \mathrm{a} ; \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
Product of the roots $=-\mathrm{d} / \mathrm{a} ; \alpha \beta \gamma=\frac{-d}{a}$

Biquadratic or a Quartic equation is a polynomial of degree 4
$a x^{4}+b x^{3}+c x^{2}+d x+e=0$
Sum of the roots $=-\mathrm{b} / \mathrm{a} ; \alpha+\beta+\gamma+\theta=\frac{-b}{a}$
Sum of the product of the roots taken two at a time $=c / a$;
$\alpha \beta+\beta \gamma+\gamma \theta+\theta \alpha+\beta \theta+\gamma \alpha=\frac{c}{a}$
Sum of the product of the roots taken three at a time $=-\mathrm{d} / \mathrm{a}$;
$\alpha \beta \gamma+\beta \gamma \theta+\gamma \theta \alpha+\theta \alpha \beta=\frac{-d}{a}$
Product of the roots $=\mathrm{e} / \mathrm{a} ; \alpha \beta \gamma \theta=\frac{e}{a}$

## Quintic is a polynomial of degree 5

$A x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0$
Sum of the roots $=-\mathrm{b} / \mathrm{a} ; \alpha+\beta+\gamma+\theta+\phi=\frac{-b}{a}$
Sum of the product of the roots taken two at a time $=c / a$;

$$
\alpha \beta+\beta \gamma+\gamma \theta+\phi \theta+\theta \alpha+\beta \theta+\gamma \alpha+\alpha \phi+\beta \phi+\gamma \phi=\frac{c}{a}
$$

Sum of the product of the roots taken three at a time $=-\mathrm{d} / \mathrm{a}$;

$$
\alpha \beta \gamma+\beta \gamma \theta+\gamma \theta \phi+\theta \phi \alpha+\phi \alpha \beta=\frac{-d}{a}
$$

Sum of the product of the roots taken four at a time = e/a;

$$
\alpha \beta \gamma \theta+\beta \gamma \theta \phi+\gamma \theta \phi \alpha+\theta \phi \alpha \beta+\phi \alpha \beta \gamma=\frac{e}{a}
$$

Product of the roots $=\mathrm{e} / \mathrm{a} ; \alpha \beta \gamma \theta \phi=\frac{-f}{a}$

