\qquad

Assigment : Derivative of Polar Equation

Date \qquad

1. The graphs of the polar curves $r_{1}=6 \sin 3 \theta$ and $r_{2}=3$ are shown to the right.
(You may use your calculator for all sections of this problem.)
a) Find the coordinates of the points of intersection of both curves for $0 \leq \theta<\frac{\pi}{2}$. Write your answers using polar coordinates.
b) Write the coordinates of the points of intersection using now rectangular coordinates.

c) Find $\left.\frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{4}}$. Interpret the meaning of your answer in the context of the problem.
d) For $0 \leq \theta<\frac{\pi}{2}$, there are two points on r_{1} with x-coordinate equal to 4 . Find the subject points. Express your answer using polar coordinates.
e) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r_{1}.
f) Write in terms of x and y an equation for the line tangent to the graph of the curve r_{1} at the point where $\theta=\frac{\pi}{4}$.
2. The graph of the polar curve $r=4-4 \sin \theta$ is shown to the right.
(You may use your calculator for all sections of this problem.)
a) For $0 \leq \theta<2 \pi$, there are two points on r with y coordinate equal to -4 . Find the subject points. Express your answers using polar coordinates.
b) Write an expression for the x-coordinate of each point on the graph of $r=4-4 \sin \theta$. Express your answer in terms of θ.
c) A particle moves along the polar curve $r=4-4 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the time interval $1 \leq t \leq 2$ for which the x -
 coordinate of the particle's position is -1 .
d) Find $\left.\frac{d r}{d t}\right|_{t=2}$. Interpret the meaning of your answer in the context of the problem.
e) Find $\left.\frac{d x}{d t}\right|_{t=2}$. Interpret the meaning of your answer in the context of the problem.
3. The graphs of the polar curves $r_{1}=4+3 \cos \theta$ and $r_{2}=2 \theta$ are shown below.

(Do NOT use your calculator for this problem unless indicated!)
a) Find the coordinates of the point of intersection of both curves for $0 \leq \theta<\pi$. Write your answer using polar coordinates. (You may use your calculator for this section.)
b) As the curves are traced, the distance between them, $r(\theta)$, changes (see drawing.) Find an expression for $r(\theta)$ the distance between both curves in the interval $0 \leq \theta \leq \frac{\pi}{2}$.
c) Write in terms of θ an expression for $\frac{d r}{d \theta}$. Use your answer to find $\left.\frac{d r}{d \theta}\right|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answer in the context of the problem.
d) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r_{2}.
e) Find the coordinates of the point where curve r_{2} has a horizontal tangent line in the interval $0<\theta<\pi$. Write your answer using rectangular coordinates. (You may use your calculator for this section.)
4. The graph of the polar curve $r=3-2 \sin (2 \theta)$ for $0 \leq \theta<2 \pi$ is shown to the right.
(You may use your calculator for all sections of this problem.)
a) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r.
b) Find the coordinates of the point where curve r has a vertical tangent line in the interval $0 \leq \theta<\pi$. Write your answer using polar coordinates.
c) Write in terms of x and y an equation for the line tangent to the graph of the curve r at the point where $\theta=\frac{\pi}{6}$.

d) A particle moves along the polar curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=2$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$. Interpret the meaning of your answer in the context of the problem.
e) Assume now that for the particle whose motion was described in section (d) we have $\theta=2 t$. Find the position vector of the particle $\langle x(t), y(t)\rangle$ in terms of t. Use your calculator to find the velocity vector and the speed of the particle at $t=1.5$.

ANSWER KEY

1. The graphs of the polar curves $r_{1}=6 \sin 3 \theta$ and $r_{2}=3$ are shown to the right.
(You may use your calculator for all sections of this problem.)
a) Find the coordinates of the points of intersection of both curves for $0 \leq \theta<\frac{\pi}{2}$. Write your answers using polar coordinates.
Points of intersection are collision points:

$$
6 \sin 3 \theta=3 \rightarrow \theta=\frac{\pi}{18} \text { and } \frac{5 \pi}{18}
$$

$$
\text { Or } \theta \approx 0.1745 \text { and } 0.8726
$$

$$
r=3 \rightarrow(3,0.1745) \text { and }(3,0.8726)
$$

b) Write the coordinates of the points of intersection using now rectangular coordinates.

$$
\begin{aligned}
(3,0.1745) & \rightarrow\left\{\begin{array}{l}
x=r \cdot \cos \theta=2.954 \\
y=r \cdot \sin \theta=0.5209
\end{array}\right. \\
(3,0.8726) & \rightarrow\left\{\begin{array}{l}
x=r \cdot \cos \theta=1.928 \\
y=r \cdot \sin \theta=2.298
\end{array}\right.
\end{aligned} \rightarrow(1.928,2.298)
$$

c) Find $\left.\frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{4}}$. Interpret the meaning of your answer in the context of the problem.

$$
\begin{aligned}
& \text { By hand: } \frac{d r_{1}}{d \theta}=\left.18 \cos 3 \theta \rightarrow \frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{4}}=-9 \sqrt{2} \\
& \text { Using a calculator: }\left.\frac{d}{d \theta}(6 \sin 3 \theta)\right|_{\theta=\frac{\pi}{4}} \approx-12.7279
\end{aligned}
$$

When the graph of $r_{1}=6 \sin 3 \theta$ is traced at $\theta=\frac{\pi}{4}$ radians the distance to the pole is decreasing at a rate equal to 12.7279 units per radian.
d) For $0 \leq \theta<\frac{\pi}{2}$, there are two points on r_{1} with x-coordinate equal to 4 . Find the subject points. Express your answer using polar coordinates.

$$
\begin{gathered}
x=r_{1} \cdot \cos \theta=6 \sin 3 \theta \cdot \cos \theta=4 \rightarrow \theta \approx 0.253 \text { and } 0.696 \\
\theta \approx 0.253 \rightarrow r_{1}=6 \sin (3(0.253))=4.1317 \rightarrow(4.137,0.253) \\
\theta \approx 0.696 \rightarrow r_{1}=6 \sin (3(0.696))=5.213 \rightarrow(5.213,0.696)
\end{gathered}
$$

e) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r_{1}.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 \cos 3 \theta \sin \theta+\sin 3 \theta \cos \theta}{3 \cos 3 \theta \cos \theta-\sin 3 \theta \sin \theta}
$$

f) Write in terms of x and y an equation for the line tangent to the graph of the curve r_{1} at the point where $\theta=\frac{\pi}{4}$.

$$
\left.\begin{array}{c}
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{4}}=\frac{1}{2} \\
x=r_{1} \cdot \cos \theta=3 \\
y=r_{1} \cdot \sin \theta=3
\end{array}\right\} \rightarrow y-3=\frac{1}{2}(x-3)
$$

2. The graph of the polar curve $r=4-4 \sin \theta$ is shown to the right.
(You may use your calculator for all sections of this problem.)
a) For $0 \leq \theta<2 \pi$, there are two points on r with y coordinate equal to -4 . Find the subject points. Express your answers using polar coordinates.

$$
\begin{aligned}
y=r \cdot \sin \theta= & (4-4 \sin \theta) \sin \theta=-4 \\
\rightarrow \theta \approx & 3.8078 \text { and } 5.6169 \\
\theta \approx 3.8078 \rightarrow & r=4-4 \sin 3.8078=6.472 \\
& \rightarrow(6.472,3.8078) \\
\theta \approx 5.6169 \rightarrow & r=4-4 \sin 5.6169=6.472 \\
& \rightarrow(6.472,5.6169)
\end{aligned}
$$

b) Write an expression for the x -coordinate of each point on the graph of $r=4-4 \sin \theta$. Express your answer in terms of θ.

$$
x=r \cdot \cos \theta=(4-4 \sin \theta) \cos \theta
$$

c) A particle moves along the polar curve $r=4-4 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the time interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .

$$
x=\left(4-4 \sin t^{2}\right) \cos t^{2}=-1 \rightarrow t \approx 1.5536
$$

d) Find $\left.\frac{d r}{d t}\right|_{t=2}$. Interpret the meaning of your answer in the context of the problem.

$$
\begin{aligned}
& \qquad r=4-4 \sin t^{2} \\
& \text { By hand: } \frac{d r}{d t}=-\left.8 t \cos t^{2} \rightarrow \frac{d r}{d t}\right|_{t=2}=-16 \cos 4 \\
& \text { Using a calculator: }\left.\frac{d}{d t}\left(4-4 \sin t^{2}\right)\right|_{t=2} \approx 10.458
\end{aligned}
$$

As the particle moves on the graph of $r=4-4 \sin \theta$, when $t=2$ seconds the distance to the pole is increasing at a rate equal to 10.458 units per second.
e) Find $\left.\frac{d x}{d t}\right|_{t=2}$. Interpret the meaning of your answer in the context of the problem.

$$
\text { Using a calculator: }\left.\frac{d}{d t}\left(\left(4-4 \sin t^{2}\right) \cos t^{2}\right)\right|_{t=2} \approx 14.4368
$$

As the particle moves on the graph of $r=4-4 \sin \theta$, when $t=2$ seconds the particle moves to the right with a horizontal speed equal to 14.4368 units per second.
3. The graphs of the polar curves $r_{1}=4+3 \cos \theta$ and $r_{2}=2 \theta$ are shown below.

(Do NOT use your calculator for this problem unless indicated!)
a) Find the coordinates of the point of intersection of both curves for $0 \leq \theta<\pi$. Write your answer using polar coordinates. (You may use your calculator for this section.)

The point of intersection is also a collision point:

$$
4+3 \cos \theta=2 \theta \rightarrow \theta \approx 1.7429
$$

$$
r=2(1.7429)=3.4859 \rightarrow(3.4859,1.7429)
$$

b) As the curves are traced, the distance between them, $r(\theta)$, changes (see drawing.) Find an expression for $r(\theta)$ the distance between both curves in the interval $0 \leq \theta \leq \frac{\pi}{2}$.

$$
r(\theta)=r_{1}-r_{2}=4+3 \cos \theta-2 \theta
$$

c) Write in terms of θ an expression for $\frac{d r}{d \theta}$. Use your answer to find $\left.\frac{d r}{d \theta}\right|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answer in the context of the problem.

$$
\frac{d r}{d \theta}=-3 \sin \theta-\left.2 \rightarrow \frac{d r}{d \theta}\right|_{\theta=\frac{\pi}{3}}=-\frac{3 \sqrt{3}}{2}-2
$$

When the graphs of $r_{1}=6 \sin 3 \theta$ and $r_{2}=2 \theta$ are traced at $\theta=\frac{\pi}{3}$ radians the distance between the two graphs is decreasing at a rate equal to $-\frac{3 \sqrt{3}}{2}-2$ units per radian.
d) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r_{2}.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\sin \theta+\theta \cos \theta}{\cos \theta-\theta \sin \theta}
$$

e) Find the coordinates of the point where curve r_{2} has a horizontal tangent line in the interval $0<\theta<\pi$. Write your answer using rectangular coordinates. (You may use your calculator for this section.)

$$
\begin{aligned}
& \frac{d y}{d x}=0 \rightarrow \sin \theta+\theta \cos \theta=0 \rightarrow \theta \approx 2.0287 \\
& r=2(2.0287)=4.0575 \\
& \left\{\begin{array}{c}
x=r \cdot \cos \theta=-1.7939 \\
y=r \cdot \sin \theta=3.639
\end{array} \rightarrow(-1.7939,3.639)\right.
\end{aligned}
$$

4. The graph of the polar curve $r=3-2 \sin (2 \theta)$ for $0 \leq \theta<2 \pi$ is shown to the right.
(You may use your calculator for all sections of this problem.)
a) Write in terms of θ an expression for $\frac{d y}{d x}$, the slope of the tangent line to the graph of r.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-4 \cos 2 \theta \sin \theta+(3-2 \sin (2 \theta)) \cos \theta}{-4 \cos 2 \theta \cos \theta-(3-2 \sin (2 \theta)) \sin \theta}
$$

b) Find the coordinates of the point where curve r has a vertical tangent line in the interval $0 \leq \theta<\pi$. Write your answer using polar
 coordinates.

$$
\begin{gathered}
\frac{d y}{d x} \text { is undefined } \rightarrow-4 \cos 2 \theta \cos \theta-(3-2 \sin (2 \theta)) \sin \theta=0 \rightarrow \theta \approx 2.670 \\
r=3-2 \sin (2(2.670))=4.6177 \rightarrow(4.6177,2.670)
\end{gathered}
$$

c) Write in terms of x and y an equation for the line tangent to the graph of the curve r at the point where $\theta=\frac{\pi}{6}$.

$$
\left.\begin{array}{l}
\left.\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{6}} \approx-0.041 \quad \text { (by hand: }\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{6}}=\frac{3 \sqrt{3}-5}{-3-\sqrt{3}}\right) \\
x=r \cdot \cos \theta=\frac{3 \sqrt{3}-3}{2}=1.098 \\
y=r \cdot \sin \theta=\frac{3-\sqrt{3}}{2}=0.6339
\end{array}\right\} \rightarrow y-0.6339=-0.041(x
$$

d) A particle moves along the polar curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=2$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$. Interpret the meaning of your answer in the context of the problem.

$$
\begin{gathered}
\frac{d r}{d t}=\frac{d r}{d \theta} \cdot \frac{d \theta}{d t}=(-4 \cos (2 \theta))(2) \\
\left.\quad \frac{d r}{d t}\right|_{\theta=\frac{\pi}{6}}=-4
\end{gathered}
$$

As the particle moves on the graph of $r=3-2 \sin (2 \theta)$, when it is at the point where $\theta=\frac{\pi}{6}$ radians the distance to the pole is decreasing at a rate equal to 4 units per second.
e) Assume now that for the particle whose motion was described in section (d) we have
$\theta=2 t$. Find the position vector of the particle $\langle x(t), y(t)\rangle$ in terms of t. Use your calculator to find the velocity vector and the speed of the particle at $t=1.5$.
$\left.\begin{array}{l}x=r \cdot \cos \theta=(3-2 \sin (4 t)) \cos (2 t) \\ y=r \cdot \sin \theta=(3-2 \sin (4 t)) \sin (2 t)\end{array}\right\} \rightarrow\langle(3-2 \sin (4 t)) \cos (2 t),(3-2 \sin (4 t)) \sin (2 t)\rangle$
Velocity vector: $\left\langle\left.\frac{d x}{d t}\right|_{t=1.5},\left.\frac{d y}{d t}\right|_{t=1.5}\right\rangle=\langle 6.600,-8.130\rangle$
Speed: $\sqrt{\left(\left.\frac{d x}{d t}\right|_{t=1.5}\right)^{2}+\left(\left.\frac{d y}{d t}\right|_{t=1.5}\right)^{2}}=10.472$

