SATPREP

Assignment : Function and Equation

\qquad

1. Consider the functions given below.

$$
\begin{aligned}
& f(x)=2 x+3 \\
& g(x)=\frac{1}{x}, x \neq 0
\end{aligned}
$$

(a) (i) Find $(g \circ f)(x)$ and write down the domain of the function.
(ii) Find $(f \circ g)(x)$ and write down the domain of the function.
(b) Find the coordinates of the point where the graph of $y=f(x)$ and the graph of $y=\left(g^{-1} \circ f \circ g\right)(x)$ intersect.
2. The quadratic function $f(x)=p+q x-x^{2}$ has a maximum value of 5 when $x=3$.
(a) Find the value of p and the value of q.
(b) The graph of $f(x)$ is translated 3 units in the positive direction parallel to the x-axis. Determine the equation of the new graph.
3. Write $\ln \left(x^{2}-1\right)-2 \ln (x+1)+\ln \left(x^{2}+x\right)$ as a single logarithm, in its simplest form.
4. Consider the function f, where $f(x)=\arcsin (\ln x)$.
(a) Find the domain of f.
(b) Find $f^{-1}(x)$.
5. Solve the equation $4^{x-1}=2^{x}+8$.
6. Let $f(x)=\frac{1-x}{1+x}$ and $g(x)=\sqrt{x+1}, x>-1$.

Find the set of values of x for which $f^{\prime}(x) \leq f(x) \leq g(x)$.
7. A function f is defined by $f(x)=\frac{2 x-3}{x-1}, x \neq 1$.
(a) Find an expression for $f^{-1}(x)$.
(b) Solve the equation $\left|f^{-1}(x)\right|=1+f^{-1}(x)$.
8. Consider the function $f: x \rightarrow \sqrt{\frac{\pi}{4}-\arccos x}$.
(a) Find the largest possible domain of f.
(b) Determine an expression for the inverse function, f^{-1}, and write down its domain.
9. Let $f(x)=\frac{4-x^{2}}{4-\sqrt{x}}$. State the largest possible domain for f.
10. Find the solution of the equation $\ln 2^{4 x-1}=\ln 8^{x+5}+\log _{2} 16^{1-2 x}$, expressing your answer in terms of $\ln 2$.

Answer to Assignment Function and Equation

1. (a) (i) $\frac{1}{2 x+3}, x \neq-\frac{3}{2}$ (or equivalent)
(ii) $\frac{2}{x}+3, x \neq 0$ (or equivalent)
(b) $\frac{1}{2 x+3}=\frac{2}{x}+3$

THEN

$6 x^{2}+12 x+6=0$ (or equivalent)
$x=-1, y=1$ (coordinates are $(-1,1))$
2. (a) $q=6, p=-4$
(b) $\quad g(x)=-4+6(x-3)-(x-3)^{2}\left(=-31+12 x-x^{2}\right)$
3. $\ln x(x-1)$
4. (a) $-1 \leq \ln x \leq 1$
(b) $\quad f^{-1}(x)=\mathrm{e}^{\sin x}$
5. $x=3$
6.

$$
f^{\prime}(x)=\frac{-2}{(1+x)^{2}}
$$

7. (a) $\Rightarrow f^{-1}(x)=\frac{x-3}{x-2}(x \neq 2)$
(b) $\quad x=\frac{8}{3}$
8. (a)

$$
\Rightarrow \frac{\sqrt{2}}{2} \leq x \leq 1 \quad\left(\operatorname{accept} \frac{1}{\sqrt{2}} \leq x \leq 1\right)
$$

(b) $0 \leq x \leq \sqrt{\frac{\pi}{4}}$
9. (a) $x \geq 0$ and $x \neq 16$
(b) $\quad x=0$ or $x=1$ $0 \leq x \leq 1$ or $x>16$
10. (a) $x=\frac{4+16 \ln 2}{8+\ln 2}$
(b) $x=a^{2}$

$$
a=1.318
$$

