SATPREP

Name

Assignment: Function and Equation

Date

Consider the functions given below. 1.

$$f(x) = 2x + 3$$
$$g(x) = \frac{1}{x}, x \neq 0$$

- Find $(g \circ f)(x)$ and write down the domain of the function. (a) (i)
 - Find $(f \circ g)(x)$ and write down the domain of the function. (ii)
- Find the coordinates of the point where the graph of y = f(x) and the graph of $y = (g^{-1} \circ f \circ g)(x)$ intersect.
- The quadratic function $f(x) = p + qx x^2$ has a maximum value of 5 when x = 3. 2.
 - Find the value of p and the value of q. (a)
 - The graph of f(x) is translated 3 units in the positive direction parallel to the x-axis. Determine the equation of the new graph.
- Write $\ln(x^2 1) 2\ln(x + 1) + \ln(x^2 + x)$ as a single logarithm, in its simplest form. 3.
- 4. Consider the function f, where $f(x) = \arcsin(\ln x)$.
 - Find the domain of *f*. (a)
 - (b) Find $f^{-1}(x)$.
- Solve the equation $4^{x-1} = 2^x + 8$. 5.
- Let $f(x) = \frac{1-x}{1+x}$ and $g(x) = \sqrt{x+1}$, x > -1. Find the set of values of x for which $f'(x) \le f(x) \le g(x)$.

 A function f'(x) = f(x) + f(x)6.

- A function f is defined by $f(x) = \frac{2x-3}{x-1}$, $x \ne 1$. 7.
 - Find an expression for $f^{-1}(x)$. (a)
 - (b) Solve the equation $|f^{-1}(x)| = 1 + f^{-1}(x)$.
- Consider the function $f: x \to \sqrt{\frac{\pi}{4} \arccos x}$. 8.
 - Find the largest possible domain of f. (a)
 - Determine an expression for the inverse function, f^{-1} , and write down its domain. (b)
 - Let $f(x) = \frac{4-x^2}{4-\sqrt{x}}$. State the largest possible domain for f.
- Find the solution of the equation $\ln 2^{4x-1} = \ln 8^{x+5} + \log_2 16^{1-2x}$, expressing your answer in terms of $\ln 2$. 10.

1. (a) (i)
$$\frac{1}{2x+3}$$
, $x \neq -\frac{3}{2}$ (or equivalent)

(ii)
$$\frac{2}{x} + 3, x \neq 0$$
 (or equivalent)

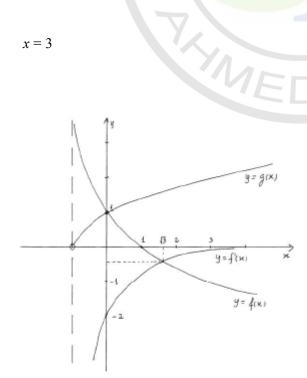
(b)
$$\frac{1}{2x+3} = \frac{2}{x} + 3$$

THEN

$$6x^2 + 12x + 6 = 0$$
 (or equivalent)
 $x = -1, y = 1$ (coordinates are $(-1, 1)$)

2. (a)
$$q = 6, p = -4$$

(b)
$$g(x) = -4 + 6(x - 3) - (x - 3)^2 (= -31 + 12x - x^2)$$


3.
$$\ln x(x-1)$$

4. (a)
$$-1 \le \ln x \le 1$$

(b)
$$f^{-1}(x) = e^{\sin x}$$

5.
$$x = 3$$

6.

$$f'(x) = \frac{-2}{(1+x)^2}$$

7. (a)
$$\Rightarrow f^{-1}(x) = \frac{x-3}{x-2} \ (x \neq 2)$$

(b)
$$x = \frac{8}{3}$$

8. (a)
$$\Rightarrow \frac{\sqrt{2}}{2} \le x \le 1 \quad \left(\operatorname{accept} \frac{1}{\sqrt{2}} \le x \le 1 \right)$$

(b)
$$0 \le x \le \sqrt{\frac{\pi}{4}}$$

9. (a)
$$x \ge 0$$
 and $x \ne 16$

(b)
$$x = 0 \text{ or } x = 1$$

 $0 \le x \le 1 \text{ or } x > 16$

10. (a)
$$x = \frac{4+16 \ln 2}{8+\ln 2}$$

(b)
$$x = a^2$$

 $a = 1.318$