SATPREP

Name_____

Assignment : Function and Equation

Date _____

- 1. The number of bacteria, *n*, in a dish, after *t* minutes is given by $n = 800e^{013t}$.
 - (a) Find the value of n when t = 0.
 - (b) Find the rate at which *n* is increasing when t = 15.
 - (c) After k minutes, the rate of increase in n is greater than 10 000 bacteria per minute. Find the least value of k, where $k \in \mathbb{Z}$.
- 2. Let g(x) = 3x 2, $h(x) = \frac{5x}{x 4}$, $x \neq 4$.
 - (a) Find an expression for $(h \circ g)(x)$. Simplify your answer.
 - (b) Solve the equation $(h \circ g)(x) = 0$.
- **3.** Each year for the past five years the population of a certain country has increased at a steady rate of 2.7% per annum. The present population is 15.2 million.
 - (a) What was the population one year ago?
 - (b) What was the population five years ago?
- 4. A population of bacteria is growing at the rate of 2.3% per minute. How long will it take for the size of the population to double? Give your answer to the nearest minute.
- 5. \$1000 is invested at 15% per annum interest, **compounded monthly**. Calculate the minimum number of months required for the value of the investment to exceed \$3000.
- 6. The population of a city at the end of 1972 was 250 000. The population increases by 1.3% per year.
 - (a) Write down the population at the end of 1973.
 - (b) Find the population at the end of 2002.
- 7. A machine was purchased for \$10000. Its value V after t years is given by $V = 100000e^{-0.3t}$. The machine must be replaced at the end of the year in which its value drops below \$1500. Determine in how many years the machine will need to be replaced.

- 8. The quadratic function f is defined by $f(x) = 3x^2 12x + 11$.
 - (a) Write f in the form $f(x) = 3(x-h)^2 k$.
 - (b) The graph of *f* is translated 3 units in the positive *x*-direction and 5 units in the positive *y*-direction. Find the function *g* for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q.$

9. Let
$$f(x) = \frac{3x}{2} + 1$$
, $g(x) = 4\cos\left(\frac{x}{3}\right) - 1$. Let $h(x) = (g \circ f)(x)$.

- (a) Find an expression for h(x).
- (b) Write down the period of h.
- (c) Write down the range of h.
- 10. Let f be the function given by $f(x) = e^{0.5x}$, $0 \le x \le 3.5$. The diagram shows the graph of f.

- (a) On the same diagram, sketch the graph of f^{-1} .
- (b) Write down the range of f^{-1} .
- (c) Find $f^{-1}(x)$.

Answer to Assignment Function and Equation

- 1. (a) $n = 800e^0$ n = 800
 - (b) *n*′(15) = 731
 - (c) least value of k is 36

2. (a)
$$\frac{5(3x-2)}{(3x-6)}$$

(b)
$$x = \frac{2}{3} (=0.667)$$

3. (a)
$$\frac{15.2}{1.027} = 14.8$$
 million

(b)
$$\frac{15.2}{(1.027)^5} = 13.3$$
 million

- 4. 30 minutes (nearest minute)
- 5. n = 89 months.
- **6.** (a) 253250
 - (b) 368000 (accept 368318)
- 7. 7 (years)

8. (a)
$$f(x) = 3(x-2)^2 - 1$$
 (accept $h = 2, k = 1$)

(b)
$$3(x-5)^2 + 4$$
 (accept $p = 5, q = 4$)

9. (a)
$$h(x) = 4\cos\left(\frac{\frac{3x}{2}+1}{3}\right) - 1 \left(4\cos\left(\frac{1}{2}x+\frac{1}{3}\right) - 1, 4\cos\left(\frac{3x+2}{6}\right) - 1\right)$$

ABA

- (b) period is $4\pi(12.6)$
- (c) range is $-5 \le h(x) \le 3$ ([-5, 3])

