Name

Assignment : Sequences and Series

Date

- 1. The first term of an infinite geometric sequence is 18, while the third term is 8. There are two possible sequences. Find the sum of each sequence.
- In an arithmetic sequence $u_1 = 7$, $u_{20} = 64$ and $u_n = 3709$. 2.
 - Find the value of the common difference. (a)
 - (b) Find the value of *n*.
- 3. In an arithmetic sequence, $S_{40} = 1900$ and $u_{40} = 106$. Find the value of u_1 and of d.
- 4. The first three terms of an infinite geometric sequence are 32, 16 and 8.
 - Write down the value of *r*. (a)
 - (b) Find *u*6.
 - (c) Find the sum to infinity of this sequence.
- 5. In an arithmetic series, the first term is -7 and the sum of the first 20 terms is 620.
 - Find the common difference. (a)
 - (b) Find the value of the 78^{th} term.
- Let S_n be the sum of the first *n* terms of an arithmetic sequence, whose first three terms 6. are u_1 , u_2 and u_3 . It is known that $S_1 = 7$, and $S_2 = 18$.
 - Write down *u*₁. (a)
 - Calculate the common difference of the sequence. (b)
 - Calculate *u*₄. (c)
- 7. Consider the infinite geometric sequence 25, 5, 1, 0.2, ... ABA
 - Find the common ratio. (a)
 - (b) Find
 - the 10th term: (i)
 - an expression for the n^{th} term. (ii)
 - (c) Find the sum of the infinite sequence.
- In an arithmetic sequence $u_{21} = -37$ and $u_4 = -3$. 8.
 - Find (a)
 - the common difference; (i)
 - (ii) the first term.
 - (b) Find *S*₁₀.

1.
$$S_{n} = 54, \frac{54}{5} (=10.8)$$

2. (a) $d = 3$
(b) 1235
3. $u_{1} = -11 d = 3$
4. (a) $r = \frac{16}{32} \left(= \frac{1}{2} \right)$
(b) $u_{6} = 1$
(c) $S_{\infty} = 64$
5. (a) 620
(b) 301
6. (a) $u_{1} = S_{1} = 7$
(b) $d = 4$
(c) $u_{4} = 19$
7. (a) $\frac{1}{5} (0.2)$
(b) (i) $u_{10} = 25 \left(\frac{1}{5} \right)^{9}$
 $= 0.0000128$
(ii) $u_{n} = 25 \left(\frac{1}{5} \right)^{n-1}$
(c) For attempting to use infinite sum formula for a GP $\left(\frac{25}{1 - \left(\frac{1}{5} \right)} \right)$
 $S = \frac{125}{4} = 31.25 (= 31.3 \text{ to } 3s f)$
8. (a) (i) $d = -2$
(ii) $u_{1} = 3$
(b) $u_{10} = 3 + 9 \times -2 = -15$
 $S_{10} = \frac{10}{2} (3 + (-15))$
 $= -60$