\qquad
Assignment : Sequences and Series
Date \qquad

1. The first term of an infinite geometric sequence is 18 , while the third term is 8 . There are two possible sequences. Find the sum of each sequence.
2. In an arithmetic sequence $u_{1}=7, u_{20}=64$ and $u_{n}=3709$.
(a) Find the value of the common difference.
(b) Find the value of n.
3. In an arithmetic sequence, $S 40=1900$ and $u 40=106$. Find the value of $u 1$ and of d.
4. The first three terms of an infinite geometric sequence are 32,16 and 8 .
(a) Write down the value of r.
(b) Find u_{6}.
(c) Find the sum to infinity of this sequence.
5. In an arithmetic series, the first term is -7 and the sum of the first 20 terms is 620 .
(a) Find the common difference.
(b) Find the value of the $78^{\text {th }}$ term.
6. Let S_{n} be the sum of the first n terms of an arithmetic sequence, whose first three terms are u_{1}, u_{2} and u_{3}. It is known that $S_{1}=7$, and $S_{2}=18$.
(a) Write down u_{1}.
(b) Calculate the common difference of the sequence.
(c) Calculate $u 4$.
7. Consider the infinite geometric sequence $25,5,1,0.2, \ldots$.
(a) Find the common ratio.
(b) Find
(i) the $10^{\text {th }}$ term;
(ii) an expression for the $n^{\text {th }}$ term.
(c) Find the sum of the infinite sequence.
8. In an arithmetic sequence $u 21=-37$ and $u 4=-3$.
(a) Find
(i) the common difference;
(ii) the first term.
(b) Find S_{10}.
9. $S_{\infty}=54, \frac{54}{5}(=10.8)$
10. (a) $d=3$
(b) 1235
11. $u_{1}=-11 d=3$
12. (a) $r=\frac{16}{32}\left(=\frac{1}{2}\right)$
(b) $\quad u_{6}=1$
(c) $S_{\infty}=64$
13. (a) 620
(b) 301
14. (a) $u_{1}=S_{1}=7$
(b) $d=4$
(c) $u_{4}=19$
15. (a) $\frac{1}{5}(0.2)$
(b) (i)

$$
\begin{aligned}
u_{10} & =25\left(\frac{1}{5}\right)^{9} \\
& =0.0000128
\end{aligned}
$$

(ii) $u_{n}=25\left(\frac{1}{5}\right)^{n-1}$
(c) For attempting to use infinite sum formula for a GP $\left(\frac{25}{1-\left(\frac{1}{5}\right)}\right)$

$$
S=\frac{125}{4}=31.25(=31.3 \text { to } 3 s f)
$$

8. (a) (i) $d=-2$
(ii) $u_{1}=3$
(b) $u_{10}=3+9 \times-2=-15$
$S_{10}=\frac{10}{2}(3+(-15))$
$=-60$
