\qquad

Assignment : Equation of plane and applications

Date

\qquad

1. Find a vector that is normal to the plane containing the lines L_{1}, and L_{2}, whose equations are:

$$
\begin{aligned}
& L_{1}: \boldsymbol{r}=\boldsymbol{i}+\boldsymbol{k}+\lambda(2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}) \\
& L_{2}: \boldsymbol{r}=3 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}+\mu(\boldsymbol{j}+3 \boldsymbol{k})
\end{aligned}
$$

2. Consider the points $A(1,2,-4), B(1,5,0)$ and $C(6,5,-12)$. Find the area of $\triangle A B C$.
3. Consider the four points $\mathrm{A}(1,4,-1), \mathrm{B}(2,5,-2), \mathrm{C}(5,6,3)$ and $\mathrm{D}(8,8,4)$. Find the point of intersection of the lines (AB) and (CD).
4. The line $\boldsymbol{r}=\boldsymbol{i}+\boldsymbol{k}+\mu(\boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k})$ and the plane $2 x-y+z+2=0$ intersect at the point P . Find the coordinates of P .
5. Given that $\boldsymbol{a}=2 \boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}, \boldsymbol{b}=2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}$ and $\boldsymbol{c}=-\boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k}$ are the position vectors of the points A, B and C respectively, calculate the area of triangle ABC.
6. Find the coordinates of the point of intersection of the line L with the plane P where:

$$
\begin{aligned}
& L: \frac{x+3}{2}=\frac{y-1}{-1}=\frac{z-1}{2} \\
& P: 2 x+3 y-z=-5
\end{aligned}
$$

7. The point A is the foot of the perpendicular from the point $(1,1,9)$ to the plane $2 x+y-z=6$. Find the coordinates of A.
8. Find the equation of the line of intersection of the two planes $-4 x+y+z=-2$ and $3 x-y+2 z=-1$.
9. Find an equation for the line of intersection of the following two planes.

$$
\begin{aligned}
& x+2 y-3 z=2 \\
& 2 x+3 y-5 z=3
\end{aligned}
$$

10. The vector equations of the lines L_{1} and L_{2} are given by

$$
\begin{aligned}
& L_{1}: \boldsymbol{r}=\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}+\lambda(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}) \\
& L_{2}: \boldsymbol{r}=\boldsymbol{i}+4 \boldsymbol{j}+5 \boldsymbol{k}+\mu(2 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}) .
\end{aligned}
$$

The two lines intersect at the point P. Find the position vector of P .

Answers of Assignment Equation of plane and applications

1. $5 i-6 j+2 k$
2. 21.9
3. $(-1,2,1)$
4. $(0,1,-1)$
5. $\frac{7}{2}$
6. $(-1,0,3)$
7. $(5,3,7)$
8. $x=\frac{3 y+3}{11}=3 z+3$ (or equivalent)

OR
$\boldsymbol{r}=\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 11 \\ 1\end{array}\right)$ (or equivalent)
9. $-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}, \boldsymbol{r}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+t\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
10. $3 \boldsymbol{i}+5 \boldsymbol{j}+7 \boldsymbol{k}$.

