SAT PREP

Name

Date ____

Assignment : Vector and Vector Equation of line

A line *L* passes through A(1, -1, 2) and is parallel to the line $\mathbf{r} = \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$. Write down a vector 1.

equation for L in the form r = a + tb.

- 2. Line L_1 passes through points A(1, -1, 4) and B(2, -2, 5).
 - Find \overrightarrow{AB} . (a)
 - (b) Find an equation for L_1 in the form $\mathbf{r} = \mathbf{a} + \mathbf{t}\mathbf{b}$.

Line
$$L_2$$
 has equation $\mathbf{r} = \begin{pmatrix} 2\\4\\7 \end{pmatrix} + s \begin{pmatrix} 2\\1\\3 \end{pmatrix}$

- Find the angle between L_1 and L_2 . (c)
- The lines L_1 and L_2 intersect at point C. Find the coordinates of C. (d)

3. Let
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$

- Find \overrightarrow{BC} . (a)
- Find a unit vector in the direction of AB. (b)
- 4. Find the cosine of the angle between the two vectors 3i + 4j + 5k and 4i - 5j - 3k.

5. Two lines with equations
$$\mathbf{r}_1 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{r}_2 = \begin{pmatrix} 9 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix}$ intersect at the point P. Find the coordinates of P.

6. The line
$$L_1$$
 is represented by $\mathbf{r}_1 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the line L_2 by $\mathbf{r}_2 = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}$

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

- A triangle has its vertices at A(-1, 3), B(3, 6) and C(-4, 4). 7.
 - Show that $\overrightarrow{AB} \bullet \overrightarrow{AC} = -9$. (a)
 - Find BÂC. (b)
- 8. The line L passes through the points A (3, 2, 1) and B (1, 5, 3).
 - Find the vector \overrightarrow{AB} . (a)
 - Write down a vector equation of the line L in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. (b)

Answer to Assignment Vector and Vector Equation of line

1.
$$r = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$

2. (a) $\overline{AB} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$
(b) $r = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} r = \begin{pmatrix} 2+t \\ -2-t \\ 5+t \end{pmatrix} r = 2i - 2j + 5k + t(i - j + k)$
(c) $\theta = 0.906 (51.9^{\circ})$
(d) C is (-2, 2, 1)
3. (a) $\overline{BC} = \begin{pmatrix} -8 \\ -1 \\ -1 \end{pmatrix}$
(b) unit vector is $\frac{1}{7} \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$
(c) $f = \begin{pmatrix} 6 \\ -2 \\ -2 \\ 7 \\ 7 \end{pmatrix}$
4. $-\frac{23}{50} (= -0.46)$
5. P is (12, -3, 3) $\left(\operatorname{accept} \begin{pmatrix} 12 \\ -3 \\ 3 \end{pmatrix} \right)$
6. (1, 3, 0)
7. (a) -9
(b) $B\hat{AC} = 2.47 (radians), 125^{\circ}$
8. (a) $A\hat{B} = \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix}$
(b) Using $r = a + tb$
 $\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix} \operatorname{orr} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 3 \\ 7 \end{pmatrix} + t \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix}$