SATPREP

Assignment: Applications of Differentiation

- 1. The function f(x) is given by $f(x) = x^3 3x^2 + 3x$, for $-1 \le x \le 3$.
 - (a) Differentiate f(x) with respect to x.
 - (b) Copy and complete the table below.

x	-1	0	1	2	3
f(x)		0	1	2	9
f(x)	12		0		12

- (c) Use the information in your table to sketch the graph of f(x).
- (d) Write down the gradient of the tangent to the curve at the point (3, 9).
- 2. A farmer wishes to enclose a rectangular field using an existing fence for one of the four sides.

- (a) Write an expression in terms of *x* and *y* that shows the total length of the new fence.
- (b) The farmer has enough materials for 2500 metres of new fence. Show that

y = 2500 - 2x

- (c) A(x) represents the area of the field in terms of x.
 - (i) Show that

 $A(x) = 2500x - 2x^2$

- (ii) Find A'(x).
- (iii) Hence or otherwise find the value of *x* that produces the maximum area of the field.
- (iv) Find the maximum area of the field.

3. The function *g* is defined as follows

$$g: x \mapsto px^2 + qx + c, \quad p, q, c \in \mathbb{R}$$

- (a) Find g'(x)
- (b) If g'(x) = 2x + 6, find the values of p and q.
- (c) g(x) has a minimum value of -12 at the point A. Find
 - (i) the *x*-coordinate of A;
 - (ii) the value of *c*.
- 4. The function f(x) is given by the formula

- (a) Evaluate f(1).
- (b) Calculate f'(x).
- (c) Evaluate f'(2).
- (d) State whether the function f(x) is increasing or decreasing at x = 2.
- (e) The sketch graph shown below is the graph of a cubic function.

- (i) Is it possible that this is the graph of the function f(x) above?
- (ii) State one reason for your decision.

5. A rectangular piece of card measures 24 cm by 9 cm. Equal squares of length x cm are cut from each corner of the card as shown in the diagram below. What is left is then folded to make an **open** box, of length l cm and width w cm.

- (a) Write expressions, in terms of x, for
 - (i) the length, l;
 - (ii) the width, w.
- (b) Show that the volume $(B \text{ m}^3)$ of the box is given by $B = 4x^3 66x^2 + 216x$.
- (c) Find $\frac{dB}{dx}$.
- (d) (i) Find the value of x which gives the maximum volume of the box.
 - (ii) Calculate the maximum volume of the box.
- 6. A closed box has a square base of side x and height h.
 - (a) Write down an expression for the volume, V, of the box.
 - (b) Write down an expression for the total surface area, A, of the box.

The volume of the box is 1000 cm^3

- (c) Express h in terms of x.
- (d) Hence show that $A = 4000x^{-1} + 2x^2$.
- (e) Find $\frac{dA}{dx}$.
- (f) Calculate the value of x that gives a minimum surface area.
- (g) Find the surface area for this value of x.

- 7. Consider the function $f(x) = 2x^3 3x^2 12x + 5$.
 - (a) (i) Find f'(x).
 - (ii) Find the gradient of the curve f(x) when x = 3.
 - (b) Find the *x*-coordinates of the points on the curve where the gradient is equal to -12.
 - (c) (i) Calculate the *x*-coordinates of the local maximum and minimum points.
 - (ii) Hence find the coordinates of the local minimum.
 - (d) For what values of x is the value of f(x) increasing?
- 8. The cost of producing a mathematics textbook is \$ 15 (US dollars) and it is then sold for x.
 - (a) Find an expression for the profit made on each book sold.

A total of $(100\ 000 - 4000x)$ books is sold.

(b) Show that the profit made on all the books sold is

$$P = 160\ 000x - 4000x^2 - 1500\ 000.$$

- (c) (i) Find $\frac{dP}{dx}$.
 - (ii) Hence calculate the value of x to make a maximum profit

DABP

(d) Calculate the number of books sold to make this maximum profit.

9. A function
$$g(x) = x^3 + 6x^2 + 12x + 18$$

- (a) Find g'(x).
- (b) Solve g'(x) = 0.
- (c) (i) Calculate the values of g'(x) when
 - (a) x = -3;
 - (b) x = 0.
 - (ii) Hence state whether the function is increasing or decreasing at
 - (a) x = -3;
 - (b) x = 0.

- 10. A function is given as $y = ax^2 + bx + 6$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) If the gradient of this function is 2 when x is 6 write an equation in terms of a and b.
 - (c) If the point (3, -15) lies on the graph of the function find a second equation in terms of *a* and *b*.

Answer to Assignment Applications of derivative

1. (a)
$$f'(x) = 3x^2 - 6x + 3$$

(b)

x	-1	0	1	2	3
f(x)	-7	0	1	2	9
f'(x)	12	3	0	3	12

(c)

- (d) 12
- **2.** (a) 2x + y

(b) 2500 = 2x + y2500 - 2x = y

- (c) (i) Area A(x) = xy= x(2500 - 2x)= $2500x - 2x^2$
 - (ii) A'(x) = 2500 4x
 - (iii) A'(x) = 0 0 = 2500 - 4x 4x = 2500x = 625
 - (iv) $A(x) = 2500x 2x^2$ $A(625) = 2500 \times 625 - 2(625)^2$ = 781250 $= 781000 \text{ m}^2$
- 3. (a) g'(x) = 2px + q
 - (b) 2px + q = 2x + 6

(c) (i)
$$g'(x) = 0$$

 $\Rightarrow 2x + 6 = 0$
 $\Rightarrow x = -3$

(ii) $-12 = (-3)^2 + 6(-3) + c$ -12 = 9 - 18 + c $\Rightarrow c = -3$

4. (a) Substitute x = 1 into f(x), f(1) = 3.

- (b) $f'(x) = 6x^2 10x + 7$
- (c) Substitute x = 2 into (b) f'(2) = 11.
- (d) Increasing.
- (e) (i) No.
 - (ii) Because the gradient at x = 2 is wrong (or wrong sign) or any other valid reason (*e.g.* f(x) has an inflection not a max/min), (but note that f(1) and f(0) both agree, and both the formula and the graph have a single real root near to 0, so none of these are valid reasons). A sketch of the graph from the GDC with no detailed reason can be awarded (*G1*) if it is reasonable.

BP

5. (a) (i) l = 24 - 2x

(ii)
$$w = 9 - 2x$$

(b)
$$B = x(24 - 2x)(9 - 2x)$$

= $4x^3 - 66x^2 + 216x$

(c)
$$\frac{\mathrm{d}B}{\mathrm{d}x} = 12x^2 - 132x + 216$$

(d) (i)
$$\frac{dB}{dx} = 0 \Rightarrow x^2 - 11x + 18 = 0$$
$$(x - 2)(x - 9) = 0$$
$$\Rightarrow x = 2 \text{ or } x = 9 \text{ (not possible)}$$
Therefore, $x = 2 \text{ cm}$.

(ii)
$$B = 4(2)^3 - 66(2)^2 + 216(2) \text{ (or } 2 \times 20 \times 5)$$

= 200 cm³

BA

6. (a)
$$V = x^2 h$$

(b)
$$A = 2x^2 + 4xh$$

(c)
$$1000 = x^2 h$$

 $h = \frac{1000}{x^2}$

(d)
$$A = 2x^2 + 4x \left(\frac{1000}{x^2}\right)$$

 $A = 2x^2 + \frac{4000}{x}$
 $= 2x^2 + 4000x^{-1}$

(e)
$$\frac{dA}{dx} = 4x - 4000x^{-2}$$

(f)
$$4x - 4000x^{-2} = 0$$

 $4x^3 - 4000 = 0$
 $4x^3 = 4000$
 $x^3 = 1000$
 $x = 10$

OR

(g)
$$h = \frac{1000}{100} = 10$$

$$A = 2(100) + 4(10)(10)$$
$$= 200 + 400 = 600$$

OR

A = 600

7. (a) (i)
$$f'(x) = 6x^2 - 6x - 12 (+0) = 6x^2 - 6x - 12$$

(ii) $f'(3) = 6(3)^2 - 6(3) - 12 = 24$
(b) $6x^2 - 6x \ 12 = -12$
 $\Rightarrow 6x^2 - 6x = 0$
 $\Rightarrow 6x \ (x - 1) = 0$
 $\Rightarrow x = 0 \text{ or } x = 1$
(c) (i) $f'(x) = 0 \Rightarrow 6x - 12 = 0$
 $\Rightarrow 6 \ (x^2 - x - 2) = 0$
 $\Rightarrow 6(x - 2) \ (x + 1) = 0$

$$\Rightarrow x = 2 \text{ or } x = -1$$

- x = 2, y = -15Therefore, minimum is (2, -15)(ii)
- (d) x < -1 and x > 2

8. (a)
$$x - 15$$

(b) Profit =
$$(x - 15) (100 \ 000 - 4000x)$$

= $100000x - 4000x^2 - 1500 \ 000 + 60 \ 000x$
= $160 \ 000x - 4000x^2 - 1500 \ 000$

 $= 160\ 000x - 4000x^2 - 1500\ 000$

(c) (i)
$$\frac{dP}{dx} = 160000 - 8000x$$

(ii)
$$0 = 160000 - 8000x$$

 $x = \frac{160000}{8000}$
 $x = 20$

(d) Books sold = $100\ 000 - 4000 \times 20$ = 20000

9. (a)
$$g'(x) = 3x^2 + 12x + 12$$

(b)
$$3x^2 + 12x + 12 = 0$$

 $x^2 + 4x + 4 = 0$
 $(x + 2)^2 = 0$
 $x = -2$

(c) (i)
$$x = -3 \Rightarrow \frac{dy}{dx} = 3$$

(ii)
$$x = 0 \Rightarrow \frac{dy}{dx} = 12$$

- (iii) (a) Increasing
 - (b) Increasing
- 10. (a) $y = ax^2 + bx + 6$ $\frac{dy}{dx} = 2ax + b$
 - (b) Gradient = 2 when x = 6. Therefore, $2 = 2a \times 6 + b$ 2 = 12 = + b
 - (c) y = -15 when x = 3. Therefore, -15 = 9a + 3b + 6or -21 = 9a + 3b or -7 = 3a + b

YME

DABAS