Subject - Math(Standard Level)
 Topic - Algebra
 Year - Nov 2011 - Nov 2019

Question -1
attempt to expand $\left(1+\frac{2}{3} x\right)^{n}$
(M1)
e.g. Pascal's triangle, $\left(1+\frac{2}{3} x\right)^{n}=1+\frac{2}{3} n x+\ldots$
correct first two terms of $\left(1+\frac{2}{3} x\right)^{n} \quad$ (seen anywhere)
e.g. $1+\frac{2}{3} n x$
correct first two terms of quadratic (seen anywhere)
e.g. $9,6 n x ;\left(9+6 n x+n^{2} x^{2}\right)$
correct calculation for the x-term
e.g. $\frac{2}{3} n x \times 9+6 n x ; 6 n+6 n, 12 n$
correct equation
e.g. $6 n+6 n=84,12 n x=84 x$
$n=7$

Question -2
(a) evidence of correct formula
eg $\quad \log a-\log b=\log \frac{a}{b}, \log \left(\frac{40}{5}\right), \log 8+\log 5-\log 5$
Note: Ignore missing or incorrect base.
correct working
eg $\quad \log _{2} 8,2^{3}=8$
$\log _{2} 40-\log _{2} 5=3$
A1 N2 [3 marks]
(b) attempt to write 8 as a power of 2 (seen anywhere)
(M1)
eg $\quad\left(2^{3}\right)^{\log _{2} 5}, 2^{3}=8,2^{a}$
multiplying powers
eg $\quad 2^{3 \log _{2} 5}, a \log _{2} 5$
correct working
eg $\quad 2^{\log _{2} 125}, \log _{2} 5^{3},\left(2^{\log _{2} 5}\right)^{3}$
$8^{\log _{2} 5}=125$
A1 N3
[4 marks]

Question -3

(a) METHOD 1
evidence of correct formula
(M1)
eg $\quad \log u^{n}=n \log u, 2 \log _{3} p$
$\log _{3}\left(p^{2}\right)=12 \quad$ A1
$A 1 \quad N 2$

METHOD 2
valid method using $p=3^{6}$
(M1)
eg $\quad \log _{3}\left(3^{6}\right)^{2}, \log 3^{12}, 12 \log _{3} 3$
$\log _{3}\left(p^{2}\right)=12$
A1 N2
[2 marks]
(b) METHOD 1
evidence of correct formula
(M1)
eg $\quad \log \left(\frac{p}{q}\right)=\log p-\log q, 6-7$
$\log _{3}\left(\frac{p}{q}\right)=-1$
METHOD 2
valid method using $p=3^{6}$ and $q=3^{7}$
eg

$$
\log _{3}\left(\frac{3^{6}}{3^{7}}\right), \log 3^{-1},-\log _{3} 3
$$

$\log _{3}\left(\frac{p}{q}\right)=-1$
(c) METHOD 1
evidence of correct formula
(M1)
eg $\quad \log _{3} u v=\log _{3} u+\log _{3} v, \log 9+\log p$
$\log _{3} 9=2$ (may be seen in expression)
A1
eg $\quad 2+\log p$
$\log _{3}(9 p)=8$
A1 N2

METHOD 2

valid method using $p=3^{6}$
(M1)
eg $\quad \log _{3}\left(9 \times 3^{6}\right), \log _{3}\left(3^{2} \times 3^{6}\right)$
correct working
A1
eg $\quad \log _{3} 9+\log _{3} 3^{6}, \log _{3} 3^{8}$
$\log _{3}(9 p)=8$

Question -4
(a) (i) correct expression for r

A1
eg $\quad r=\frac{6}{m-1}, \frac{m+4}{6}$
(ii) correct equation
eg $\quad \frac{6}{m-1}=\frac{m+4}{6}, \frac{6}{m+4}=\frac{m-1}{6}$
correct working
eg $\quad(m+4)(m-1)=36$
correct working
eg $\quad m^{2}-m+4 m-4=36, m^{2}+3 m-4=36$
$m^{2}+3 m-40=0$
$A G \quad$ No
[4 marks]
(b) (i) valid attempt to solve
$e g \quad(m+8)(m-5)=0, m=\frac{-3 \pm \sqrt{9+4 \times 40}}{2}$
$m=-8, m=5$
A1A1
N3
(ii) attempt to substitute any value of m to find r
eg $\frac{6}{-8-1}, \frac{5+4}{6}$
$r=\frac{3}{2}, r=-\frac{2}{3}$
(c) (i) $r=-\frac{2}{3}$ (may be seen in justification)
valid reason
eg $|r|<1,-1<\frac{-2}{3}<1$
Notes: Award R1 for $|r|<1$ only if $\boldsymbol{A} \mathbf{1}$ awarded.
finding the first term of the sequence which has $|r|<1$
eg $\quad-8-1,6 \div \frac{-2}{3}$
$u_{1}=-9 \quad$ (may be seen in formula)
correct substitution of u_{1} and their r into $\frac{u_{1}}{1-r}$, as long as $|r|<1$
eg $\quad S_{\infty}=\frac{-9}{1-\left(-\frac{2}{3}\right)}, \frac{-9}{\frac{5}{3}}$
$S_{\infty}=-\frac{27}{5}(=-5.4)$

A1
N3
(a) attempt to find d
$e g \quad \frac{16-10}{2}, 10-2 d=16-4 d, 2 d=6, d=6$
$d=3$

$$
\begin{array}{llr}
\text { A1 } & N 2 \\
& {[2 \text { marks] }}
\end{array}
$$

(b) correct approach
(A1)
eg $\quad 10=u_{1}+2 \times 3,10-3-3$
$u_{1}=4$

$$
\begin{array}{lr}
\text { A1 } & N 2 \\
& {[2 \text { marks }]}
\end{array}
$$

(c) correct substitution into sum or term formula
(A1)
eg $\quad \frac{20}{2}(2 \times 4+19 \times 3), u_{20}=4+19 \times 3$
correct simplification
(A1)
eg $8+57,4+61$
$S_{20}=650$

Question-6
(a) (i) $\log _{3} 27=3$
(ii) $\quad \log _{8} \frac{1}{8}=-1$
(iii) $\log _{16} 4=\frac{1}{2}$
eg $\quad \frac{3}{2}=\log _{4} x, 3+(-1)-\frac{1}{2}=\log _{4} x$
correct working involving powers
eg $x=4^{\frac{3}{2}}, 4^{\frac{3}{2}}=4^{\log _{4} x}$
$x=8$
A1 N1 [3 marks]
(A1)
(A1)

Total [7 marks]

A1 N1

A1 N1

A1 N1
(A1)

A1 N2
[3 marks]
Total [6 marks]

Question-7
(a) valid method
eg $\quad u_{2}=S_{2}-S_{1}, 1+k+u_{2}=5+3 k$
$u_{2}=4+2 k, u_{3}=7+4 k, u_{4}=10+8 k$
A1A1A1
(b) correct AP or GP
eg finding common difference is 3 , common ratio is 2 valid approach using arithmetic and geometric formulas (M1)
eg $\quad 1+3(n-1)$ and $r^{n-1} k$
$u_{n}=3 n-2+2^{n-1} k$
A1A1
N4
Note: Award $\boldsymbol{A} \mathbf{1}$ for $3 n-2, A 1$ for $2^{n-1} k$.

Total [8 marks]

Question -8

(a) correct approach
(A1)
eg $d=u_{2}-u_{1}, 5-2$
$d=3$
(b) correct approach

eg $\quad S_{8}=\frac{8}{2}(2+23)$, listing terms, $\frac{8}{2}(2(2)+7(3))$
$S_{8}=100$

A1	$N 2$
	[2 marks]

Total [6 marks]

Question -9
(a) correct application of $\ln a^{b}=b \ln a$ (seen anywhere)
(A1)
eg $\quad \ln 4=2 \ln 2,3 \ln 2=\ln 2^{3}, 3 \log 2=\log 8$
correct working
(A1)
eg $\quad 3 \ln 2-2 \ln 2, \ln 8-\ln 4$
$\ln 2($ accept $k=2)$
(b) METHOD 1
attempt to substitute their answer into the equation
$e g \quad \ln 2=-\ln x$
correct application of a log rule
eg $\quad \ln \frac{1}{x}, \ln \frac{1}{2}=\ln x, \ln 2+\ln x=\ln 2 x(=0)$
$x=\frac{1}{2}$

METHOD 2

attempt to rearrange equation, with $3 \ln 2$ written as $\ln 2^{3}$ or $\ln 8$
(M1)
eg $\quad \ln x=\ln 4-\ln 2^{3}, \ln 8+\ln x=\ln 4, \ln 2^{3}=\ln 4-\ln x$
correct working applying $\ln a \pm \ln b$
(A1)
eg $\quad \frac{4}{8}, 8 x=4, \ln 2^{3}=\ln \frac{4}{x}$
$x=\frac{1}{2}$
(M1)
(A1)

A1 N2
A1 N2 [3 marks]

Total [6 marks]

Question -10
(a) $m=3, n=4$
(b) attempt to apply $\left(2^{a}\right)^{b}=2^{a b}$

A1A1 N2 [2 marks]
(M1)
eg $\quad 6 x+3,4(2 x-3)$
equating their powers of 2 (seen anywhere)
eg $3(2 x+1)=8 x-12$
correct working
eg $\quad 8 x-12=6 x+3,2 x=15$
$x=\frac{15}{2}(7.5)$
M1

A1

A1
N2
[4 marks]
Total [6 marks]
evidence of valid binomial expansion with binomial coefficients
(M1)
eg $\quad\binom{n}{r}(3 x)^{r}(1)^{n-r},(3 x)^{n}+n(3 x)^{n-1}+\binom{n}{2}(3 x)^{n-2}+\ldots,\binom{n}{r}(1)^{n-r}(3 x)^{r}$
attempt to identify correct term
(M1)
eg $\binom{n}{n-2},(3 x)^{2}, n-r=2$
setting correct coefficient or term equal to $135 n$ (may be seen later)
eg $\quad 9\binom{n}{2}=135 n, \frac{9 n(n-1)}{2} x^{2}=135 n x^{2}$
correct working for binomial coefficient (using ${ }_{n} \mathrm{C}_{r}$ formula)
eg $\frac{n(n-1)(n-2)(n-3) \ldots}{2 \times 1 \times(n-2)(n-3)(n-4) \ldots}, \frac{n(n-1)}{2}$
EITHER
evidence of correct working (with linear equation in n)
eg $\quad \frac{9(n-1)}{2}=135, \frac{9(n-1)}{2} x^{2}=135 x^{2}$
correct simplification

> (A1)
eg $\quad n-1=\frac{135 \times 2}{9}, \frac{(n-1)}{2}=15$
$n=31$

OR

evidence of correct working (with quadratic equation in n)
eg $\quad 9 n^{2}-279 n=0, n^{2}-n=30 n,\left(9 n^{2}-9 n\right) x^{2}=270 n x^{2}$
evidence of solving
eg $\quad 9 n(n-31)=0,9 n^{2}=279 n$
$n=31$

A1
[7 marks]

Note: There are many approaches to this question, and the steps may be done in any order. There are 3 relationships they may need to apply at some stage, for the 3rd, 4th and 5th marks. These are
equating bases eg recognising 9 is 3^{2}
log rules: $\ln b+\ln c=\ln (b c), \ln b-\ln c=\ln \left(\frac{b}{c}\right)$,
exponent rule: $\ln b^{n}=n \ln b$.
correct substitution into u_{13} formula
eg $\quad \ln a+(13-1) \ln 3$
set up equation for u_{13} in any form (seen anywhere)
(M1)
eg $\quad \ln a+12 \ln 3=8 \ln 9$
correct application of relationships (examples below)
(A1)(A1)(A1)
$a=81 \quad$ A1
[6 marks]

Examples of application of relationships

Example 1

correct application of exponent rule for logs
eg $\quad \ln a+\ln 3^{12}=\ln 9^{8}$
correct application of addition rule for logs
eg $\quad \ln \left(a 3^{12}\right)=\ln 9^{8}$
substituting for 9 or 3 in \ln expression in equation
eg $\quad \ln \left(a 3^{12}\right)=\ln 3^{16}, \ln \left(a 9^{6}\right)=\ln 9^{8}$

Example 2

recognising $9=3^{2}$
eg $\quad \ln a+12 \ln 3=8 \ln 3^{2}, \ln a+12 \ln 9^{\frac{1}{2}}=8 \ln 9$
one correct application of exponent rule for logs relating $\ln 9$ to $\ln 3$
eg $\quad \ln a+12 \ln 3=16 \ln 3, \ln a+6 \ln 9=8 \ln 9$
another correct application of exponent rule for logs
eg $\quad \ln a=\ln 3^{4}, \ln a=\ln 9^{2}$
(a) correct approach
eg $\quad \ln 5-\ln 3$
$\ln \left(\frac{5}{3}\right)=y-x$
(b) recognizing factors of 45 (may be seen in log expansion)
eg $\ln (9 \times 5), 3 \times 3 \times 5, \log 3^{2} \times \log 5$
correct application of $\log (a b)=\log a+\log b$
eg $\ln 9+\ln 5, \ln 3+\ln 3+\ln 5, \ln 3^{2}+\ln 5$
correct working
eg $2 \ln 3+\ln 5, x+x+y$
$\ln 45=2 x+y$

(A1)

A1

 [2 marks](M1)
(A1)
(A1)

A1 N3 [4 marks]

Total [6 marks]

Question -14

METHOD 1

valid approach
eg $\quad r=\frac{6}{x-3},(x-3) \times r=6,(x-3) r^{2}=x+2$
correct equation in terms of x only
eg $\frac{6}{x-3}=\frac{x+2}{6},(x-3)(x+2)=6^{2}, 36=x^{2}-x-6$
correct working
eg $\quad x^{2}-x-42, x^{2}-x=42$
valid attempt to solve their quadratic equation
eg factorizing, formula, completing the square
evidence of correct working
eg $\quad(x-7)(x+6), \frac{1 \pm \sqrt{169}}{2}$
$x=7, x=-6$

METHOD 2 (finding r first)

valid approach
eg $\quad r=\frac{6}{x-3}, 6 r=x+2,(x-3) r^{2}=x+2$
correct equation in terms of r only
eg $\frac{6}{r}+3=6 r-2,6+3 r=6 r^{2}-2 r, 6 r^{2}-5 r-6=0$
evidence of correct working
eg $\quad(3 r+2)(2 r-3), \frac{5 \pm \sqrt{25+144}}{12}$
$r=-\frac{2}{3}, r=\frac{3}{2}$
substituting their values of r to find x
eg $\quad(x-3)\left(\frac{2}{3}\right)=6, x=6\left(\frac{3}{2}\right)-2$
$x=7, x=-6$

Question -15
(a) evidence of dividing terms (in any order)
eg $\frac{u_{2}}{u_{1}}, \frac{2 \log _{2} x}{\log _{2} x}$

$$
r=\frac{1}{2}
$$

A1 [2 marks]
(b) correct substitution
eg $\frac{2 \log _{2} x}{1-\frac{1}{2}}$
correct working
eg $\frac{2 \log _{2} x}{\frac{1}{2}}$
$S_{\infty}=4 \log _{2} x$
AG
A1

AG NO [2 marks]
(c) evidence of subtracting two terms (in any order)
eg $u_{3}-u_{2}, \log _{2} x-\log _{2} \frac{x}{2}$
correct application of the properties of logs
(M1)
eg $\log _{2}\left(\frac{\frac{x}{2}}{x}\right), \log _{2}\left(\frac{x}{2} \times \frac{1}{x}\right),\left(\log _{2} x-\log _{2} 2\right)-\log _{2} x$
correct working
(A1)
eg $\log _{2} \frac{1}{2},-\log _{2} 2$
$d=-1$
A1
[4 marks]
(d) correct substitution into the formula for the sum of an arithmetic sequence
(A1)
eg $\frac{12}{2}\left(2 \log _{2} x+(12-1)(-1)\right)$
correct working
eg $\quad 6\left(2 \log _{2} x-11\right), \frac{12}{2}\left(2 \log _{2} x-11\right)$
$12 \log _{2} x-66$
(e) correct equation
eg $\quad 12 \log _{2} x-66=2 \log _{2} x$
correct working
eg $\quad 10 \log _{2} x=66, \log _{2} x=6.6,2^{66}=x^{10}, \log _{2}\left(\frac{x^{12}}{x^{2}}\right)=66$
$x=2^{6.6}\left(\right.$ accept $\left.p=\frac{66}{10}\right)$

A1 N2
[3 marks]
[Total 13 marks]

Question -16

(a) correct use $\log x^{n}=n \log x$

A1
eg $\quad 16 \ln x$
valid approach to find r
(M1)
eg $\frac{u_{n+1}}{u_{n}}, \frac{\ln x^{8}}{\ln x^{16}}, \frac{4 \ln x}{8 \ln x}, \ln x^{4}=\ln x^{16} \times r^{2}$
$r=\frac{1}{2}$
A1
[3 marks]
(b) recognizing a sum (finite or infinite)
eg $\quad 2^{4} \ln x+2^{3} \ln x, \frac{a}{1-r}, S_{\infty}, 16 \ln x+\ldots$
valid approach (seen anywhere)
eg recognizing GP is the same as part (a), using their r value from part (a), $r=\frac{1}{2}$
correct substitution into infinite sum (only if $|r|$ is a constant and less than 1)
A1
eg $\frac{2^{4} \ln x}{1-\frac{1}{2}}, \frac{\ln x^{16}}{\frac{1}{2}}, 32 \ln x$
correct working
(A1)
eg $\quad \ln x=2$
$x=\mathrm{e}^{2}$

Question -17
(a) attempt to subtract terms
(M1)
eg $d=u_{2}-u_{1}, 7-3$

$$
d=4
$$

$$
\begin{array}{lr}
\text { A1 } & \text { N2 } \\
{[2 \text { marks] }}
\end{array}
$$

(b) correct approach
eg $\quad u_{10}=3+9(4)$
$u_{10}=39$
(c) correct substitution into sum
eg $S_{10}=5(3+39), S_{10}=\frac{10}{2}(2 \times 3+9 \times 4)$
$S_{10}=210$

A1 N2 [2 marks]

[Total 6 marks]

A1 N1

A1 N1 [2 marks]
(b) correct approach

$$
\text { eg } \quad p \times q, 5 \times 6
$$

$$
k=30
$$

(A1)

A1 N2 [2 marks]
(c) correct approach
eg rows $=n+1$, columns $=n$
$A(n)=n(n+1)\left(=n^{2}+n\right)\left(\mathrm{cm}^{2}\right)$
(A1)

A1 N2 [2 marks]
[Total 6 marks]

Question -19
correct application of $\log a+\log b=\log a b$
(A1)
eg $\quad \log _{2}(2 \sin x \cos x), \log 2+\log (\sin x)+\log (\cos x)$
correct equation without logs
A1
eg $\quad 2 \sin x \cos x=2^{-1}, \sin x \cos x=\frac{1}{4}, \sin 2 x=\frac{1}{2}$
recognizing double-angle identity (seen anywhere)
A1
eg $\quad \log (\sin 2 x), 2 \sin x \cos x=\sin 2 x, \sin 2 x=\frac{1}{2}$
evaluating $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \quad\left(30^{\circ}\right)$
correct working
eg $\quad x=\frac{\pi}{12}+2 \pi, 2 x=\frac{25 \pi}{6}, \frac{29 \pi}{6}, 750^{\circ}, 870^{\circ}, x=\frac{\pi}{12}$ and $x=\frac{5 \pi}{12}$, one correct final answer
$x=\frac{25 \pi}{12}, \frac{29 \pi}{12}$ (do not accept additional values)
A2 No [7 marks]
(M1)

A1 N2 [2 marks]
(A1)

A1 N2
[2 marks]
(A1)
eg $\quad S_{10}=\frac{10}{2}(8-19), 5(2(8)+(10-1)(-3))$ $S_{10}=-55$

A1
[2 marks]

Question -21
(a) infinite sum of segments is 2 (seen anywhere)
(A1)
eg $p+p^{2}+p^{3}+\ldots=2, \frac{u_{1}}{1-r}=2$
recognizing GP
(M1)
eg ratio is $p, \frac{u_{1}}{1-r}, u_{n}=u_{1} \times r^{n-1}, \frac{u_{1}\left(r^{n}-1\right)}{r-1}$
correct substitution into S_{∞} formula (may be seen in equation)
eg $\frac{p}{1-p}$
correct equation
eg $\frac{p}{1-p}=2, p=2-2 p$
correct working leading to answer
(b) recognizing infinite geometric series with squares
eg $k^{2}+k^{4}+k^{6}+\ldots, \frac{k^{2}}{1-k^{2}}$
correct substitution into $S_{\infty}=\frac{9}{16}$ (must substitute into formula)
eg $\frac{k^{2}}{1-k^{2}}=\frac{9}{16}$
correct working
eg $\quad 16 k^{2}=9-9 k^{2}, 25 k^{2}=9, k^{2}=\frac{9}{25}$
$k=\frac{3}{5}$ (seen anywhere)
valid approach with segments and CD (may be seen earlier)
eg $\quad r=k, S_{\infty}=b$
correct expression for b in terms of k (may be seen earlier)
eg $\quad b=\frac{k}{1-k}, b=\sum_{n=1}^{\infty} k^{n}, b=k+k^{2}+k^{3}+\ldots$
substituting their value of k into their formula for b
$\operatorname{eg} \frac{\frac{3}{5}}{1-\frac{3}{5}}, \frac{\left(\frac{3}{5}\right)}{\left(\frac{2}{5}\right)}$
$b=\frac{3}{2}$

A1
N3
[9 marks]

Total [14 marks]

Question-22

METHOD 1 - using discriminant

correct equation without logs
eg $\quad 6 x-3 x^{2}=k^{2}$
valid approach
(M1)
eg $\quad-3 x^{2}+6 x-k^{2}=0,3 x^{2}-6 x+k^{2}=0$
recognizing discriminant must be zero (seen anywhere)
M1
eg $\Delta=0$
correct discriminant
eg $\quad 6^{2}-4(-3)\left(-k^{2}\right), 36-12 k^{2}=0$
correct working
eg $\quad 12 k^{2}=36, k^{2}=3$
$k=\sqrt{3}$
A2
N2

METHOD 2 - completing the square

correct equation without logs
(A1)
eg $\quad 6 x-3 x^{2}=k^{2}$
valid approach to complete the square
eg $3\left(x^{2}-2 x+1\right)=-k^{2}+3, x^{2}-2 x+1-1+\frac{k^{2}}{3}=0$
correct working
eg $\quad 3(x-1)^{2}=-k^{2}+3,(x-1)^{2}-1+\frac{k^{2}}{3}=0$
recognizing conditions for one solution
eg $\quad(x-1)^{2}=0,-1+\frac{k^{2}}{3}=0$
correct working
eg $\quad \frac{k^{2}}{3}=1, k^{2}=3$
$k=\sqrt{3}$

Question - 23
(a) (i) valid approach
eg $\frac{u_{2}}{u_{1}}, \frac{u_{1}}{u_{2}}$
$r=\frac{12 \sin ^{2} \theta}{18}\left(=\frac{2 \sin ^{2} \theta}{3}\right)$
(ii) recognizing that $\sin \theta$ is bounded
eg $0 \leq \sin ^{2} \theta \leq 1,-1 \leq \sin \theta \leq 1,-1<\sin \theta<1$
$0<r \leq \frac{2}{3}$
Note: If working shown, award M1A1 for correct values with incorrect inequality sign(s).
If no working shown, award $\mathbf{N} 1$ for correct values with incorrect inequality sign(s).

A2
[7 marks]
(b) correct substitution into formula for infinite sum
eg $\frac{18}{1-\frac{2 \sin ^{2} \theta}{3}}$
evidence of choosing an appropriate rule for $\cos 2 \theta$ (seen anywhere)
eg $\cos 2 \theta=1-2 \sin ^{2} \theta$
correct substitution of identity/working (seen anywhere)
(A1)
eg $\frac{18}{1-\frac{2}{3}\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{54}{3-2\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{18}{\frac{3-2 \sin ^{2} \theta}{3}}$
correct working that clearly leads to the given answer
eg $\frac{18 \times 3}{2+\left(1-2 \sin ^{2} \theta\right)}, \frac{54}{3-(1-\cos 2 \theta)}$
$\frac{54}{2+\cos (2 \theta)}$
(c) METHOD 1 (using differentiation)
recognizing $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}=0$ (seen anywhere)
finding any correct expression for $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}$
eg $\frac{0-54 \times(-2 \sin 2 \theta)}{(2+\cos 2 \theta)^{2}},-54(2+\cos 2 \theta)^{-2}(-2 \sin 2 \theta)$
correct working
eg $\quad \sin 2 \theta=0$
any correct value for $\sin ^{-1}(0)$ (seen anywhere)
eg $\quad 0, \pi, \ldots$, sketch of sine curve with x-intercept(s) marked both correct values for 2θ (ignore additional values)
$2 \theta=\pi, 3 \pi$ (accept values in degrees)
both correct answers $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$

Note: Award $\boldsymbol{A} \boldsymbol{0}$ if either or both correct answers are given in degrees. Award $\boldsymbol{A} \boldsymbol{O}$ if additional values are given.

Question -24

METHOD 1

evidence of discriminant
eg $\quad b^{2}-4 a c, \Delta$
correct substitution into discriminant (A1)
eg $\quad q^{2}-4 p(-4 p)$
correct discriminant A1
eg $\quad q^{2}+16 p^{2}$
$16 p^{2}>0$ (accept $p^{2}>0$) A1
$q^{2} \geq 0$ (do not accept $q^{2}>0$) A1
$q^{2}+16 p^{2}>0 \quad$ A1
f has 2 roots A1
METHOD 2
y-intercept $=-4 p$ (seen anywhere)
if p is positive, then the y-intercept will be negative A1
an upward-opening parabola with a negative y-intercept
R1
eg sketch that must indicate $p>0$.
if p is negative, then the y-intercept will be positive
a downward-opening parabola with a positive y-intercept R1 eg sketch that must indicate $p<0$.
f has 2 roots
A2
No
[7 marks]

Question -25
(a) valid approach involving addition or subtraction

M1
eg $\quad u_{2}=\log _{c} p+d, u_{1}-u_{2}$
correct application of log law
eg $\quad \log _{c}(p q)=\log _{c} p+\log _{c} q, \log _{c}\left(\frac{p q}{p}\right)$
$d=\log _{c} q$
AG
A1
[2 marks]
(b) METHOD 1 (finding u_{1} and d)
recognizing $\Sigma=S_{20}$ (seen anywhere)
attempt to find u_{1} or d using $\log _{c} c^{k}=k$
-
(M1)
eg $2 \log _{c} c, 3 \log _{c} c$, correct value of u_{1} or d
$u_{1}=2, d=3$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$
METHOD 2 (expressing S in terms of c)
recognizing $\Sigma=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $\quad 10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
$\log _{c} c^{2}=2, \log _{c} c^{3}=3 \quad$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$

METHOD 3 (expressing S in terms of c)
recognizing $\Sigma=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $\quad 10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
correct application of log law
(A1)
eg $\quad 2 \log _{c} c^{2}=\log _{c} c^{4}, 19 \log _{c} c^{3}=\log _{c} c^{57}, 10\left(\log _{c}\left(c^{2}\right)^{2}+\log _{c}\left(c^{3}\right)^{19}\right)$,
$10\left(\log _{c} c^{4}+\log _{c} c^{57}\right), 10\left(\log _{c} c^{61}\right)$
correct application of definition of log
eg $\quad \log _{c} c^{61}=61, \log _{c} c^{4}=4, \log _{c} c^{57}=57$
correct working
eg $\quad S_{20}=\frac{20}{2}(4+57), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$
A1
[6 marks]
[Total: 8 marks]
Question 26
(a) (i) valid approach
eg $\frac{u_{2}}{u_{1}}, \frac{u_{1}}{u_{2}}$

$$
r=\frac{12 \sin ^{2} \theta}{18}\left(=\frac{2 \sin ^{2} \theta}{3}\right)
$$

(ii) recognizing that $\sin \theta$ is bounded
eg $0 \leq \sin ^{2} \theta \leq 1,-1 \leq \sin \theta \leq 1,-1<\sin \theta<1$
$0<r \leq \frac{2}{3}$
(M1)

A1
N2
(M1)

A2
N3
(b) correct substitution into formula for infinite sum
eg $\frac{18}{1-\frac{2 \sin ^{2} \theta}{3}}$
evidence of choosing an appropriate rule for $\cos 2 \theta$ (seen anywhere)
eg $\cos 2 \theta=1-2 \sin ^{2} \theta$
correct substitution of identity/working (seen anywhere)
(A1)
eg $\frac{18}{1-\frac{2}{3}\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{54}{3-2\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{18}{\frac{3-2 \sin ^{2} \theta}{3}}$
correct working that clearly leads to the given answer
eg $\frac{18 \times 3}{2+\left(1-2 \sin ^{2} \theta\right)}, \frac{54}{3-(1-\cos 2 \theta)}$
$\frac{54}{2+\cos (2 \theta)}$
(c) METHOD 1 (using differentiation)
recognizing $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}=0$ (seen anywhere)
finding any correct expression for $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}$
eg $\frac{0-54 \times(-2 \sin 2 \theta)}{(2+\cos 2 \theta)^{2}},-54(2+\cos 2 \theta)^{-2}(-2 \sin 2 \theta)$
correct working
eg $\sin 2 \theta=0$
any correct value for $\sin ^{-1}(0)$ (seen anywhere)
eg $\quad 0, \pi, \ldots$, sketch of sine curve with x-intercept(s) marked
both correct values for 2θ (ignore additional values)
$2 \theta=\pi, 3 \pi$ (accept values in degrees)
both correct answers $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$

Question 27

(a) METHOD 1 (using symmetry to find p)
(i) valid approach
(M1)

$p=1$
A1

Note: Award no marks if they work backwards by substituting $a=2$ into $-\frac{b}{2 a}$ to find p. Do not accept $p=\frac{2}{a}$.
(ii) valid approach

M1
eg $-\frac{b}{2 a}, \frac{4}{2 a}$ (might be seen in (i)), $f^{\prime}(1)=0$
correct equation
A1
eg $\frac{4}{2 a}=1,2 a(1)-4=0$
$a=2$
METHOD 2 (calculating a first)
(i) \& (ii) valid approach to calculate a

M1
eg $\quad a+4-c=a\left(3^{2}\right)-4(3)-c, f(-1)=f(3)$
correct working
A1
eg $\quad 8 a=16$

$$
a=2 \quad A G
$$

valid approach to find p
NO
(M1)
eg $\quad-\frac{b}{2 a}, \frac{4}{2(2)}$
$p=1$
A1
N2
[4 marks]
(b) valid approach
eg $\quad f(-1)=5, f(3)=5$
correct working
eg $\quad 2+4-c=5,18-12-c=5$
$c=1$
A1
[3 marks]
Total [7 marks]

Question 28
(a) valid approach
eg $\quad f(x)=0, x^{2}-4 x-5=0$
valid attempt to solve quadratic equation
(M1)
eg factorizing, formula, completing the square
evidence of correct working
eg $\quad(x-5)(x+1), x=\frac{4 \pm \sqrt{16-4(-5)}}{2}$
$x=-1, x=5 \quad(\operatorname{accept}(-1,0),(5,0))$
A1A1
[5 marks]
(A1)

A1 N2 [2 marks]
(c) (i) $\quad h=2$
(ii) METHOD 1
valid approach
eg $\quad f(2)$
correct substitution
eg $\quad(2)^{2}-4(2)-5$
$k=-9$

METHOD 2

valid attempt to complete the square
eg $\quad x^{2}-4 x+4$
correct working
eg $\left(x^{2}-4 x+4\right)-4-5,(x-2)^{2}-9$
$k=-9$

A1 N1
(M1)
(A1)

A1 N2

eg $\frac{-(-4)}{2(1)}, \frac{-1+5}{2}$
$x=2$ (must be an equation with $x=$)

N2 [4 marks]
(d) METHOD 1 (working with vertex)
vertex of f is at $(2,-9)$
correct horizontal reflection
eg $\quad x=-2,(-2,-9)$
valid approach for translation of their x or y value

> (M1)
eg $\quad x-3, y+6,\binom{-2}{-9}+\binom{-3}{6}$, one correct coordinate for vertex
vertex of g is $(-5,-3)$ (accept $x=-5, y=-3) \quad$ A1A1

METHOD 2 (working with function)
correct approach for horizontal reflection
eg $\quad f(-x)$
correct horizontal reflection
eg $\quad(-x)^{2}-4(-x)-5, x^{2}+4 x-5,(-x-2)^{2}-9$
valid approach for translation of their x or y value
eg $\quad(x+3)^{2}+4(x+3)-5+6, x^{2}+10 x+22,(x+5)^{2}-3$, one correct
coordinate for vertex
vertex of g is $(-5,-3)$ (accept $x=-5, y=-3$)

A1A1 N1N1
[5 marks]
Total [16 marks]

Question 29
(a) correct approach
(A1)
eg $3 \log _{2} a$
$\log _{2} a^{3}=3 b$
A1 N2 [2 marks]
(b) correct working
eg $\log _{2} 8+\log _{2} a, \log _{2} 8=3$
$\log _{2} 8 a=3+b$
(A1)

$$
\begin{array}{lr}
\text { A1 } & N 2 \\
& {[2 \text { marks] }}
\end{array}
$$

(c) correct working
eg $\frac{\log _{2} a}{\log _{2} 8}, \frac{1}{3} \log _{2} a, b \log _{8} 2$
$\log _{8} a=\frac{b}{3}$

Question 30
(a) correct working
eg $\quad-5+(8-1)(3)$
$u_{8}=16$

(b) correct substitution into u_{n} formula
eg $\quad-5+3(n-1), 3 n-8$
correct equation
eg $\quad-5+3(n-1)=67,3 n-8=67,3(n-1)=72$
correct working
eg $3 n=75, n-1=24$
$n=25$

A1
N2

[2 marks]

Total [6 marks]

(A1)

A1 N2
[2 marks]
(A1)
(A1)

A1	N 2
[2 marks]	

(A1)
(A1)

A1
$[4$ marks]
Total [6 marks]

Question 31
correct application of change of base (accept any base)
eg $\frac{\log _{4}(13-4 x)}{\log _{4} 16}, \frac{\log _{16}(2-x)}{\log _{16} 4}, \frac{\log _{2}(2-x)}{\log _{2} 4}, \frac{\log (13-4 x)}{\log 16}$
correct numerical value
eg $\quad \log _{4} 16=2, \log _{16} 4=\frac{1}{2}$
correct application of $r \log _{c} a=\log _{c} a^{r}$
eg $\quad \log _{4}(2-x)^{2}$
correct equation without logs
A1
eg $\quad(2-x)^{2}=13-4 x,(2-x)^{4}=(13-4 x)^{2}, 4-4 x+x^{2}=13-4 x$
correct working
eg $\quad x^{2}=9$

$$
x=-3
$$

Question 32
(a) correct working
eg $\quad \sin \left(\frac{\pi}{4} x\right)=1, \sqrt{x}\left(1-\sin \left(\frac{\pi}{4} x\right)\right)=0$
$\sin \left(\frac{\pi}{2}\right)=1$ (seen anywhere)
correct working (ignore additional values)
eg $\quad \frac{\pi}{4} x=\frac{\pi}{2}, \frac{\pi}{4} x=\frac{\pi}{2}+2 \pi$
$x=2,10$
A1A1 $\begin{array}{r}\text { N1N1 } \\ \text { [5 marks] }\end{array}$
(b) correct working
eg $d=10-2, a+b=2, a+2 b=10$
valid approach
eg $\quad 2+(n-1) 8, a+2(2-a)=10, b=$ common difference

$$
a=-6, b=8(\text { accept }-6+8 n)
$$

(M1)
(A1)

A1A1
N2N2
[4 marks]
(c) valid approach
(M1)
eg first intersection at $x=0, n=20$
correct working
A1
eg $\quad-6+8 \times 20,2+(20-1) \times 8, u_{20}=154$
$\mathrm{P}(154, \sqrt{154})$ (accept $x=154$ and $y=\sqrt{154}$)
A1A1
N3
[4 marks]
Question 33
(a) valid approach
(M1)
eg $\quad f(x)=0,9-x^{2}=0$, one correct solution
$x=-3,3(\operatorname{accept}(3,0),(-3,0))$
$\begin{array}{ll}\text { A1 } & \mathrm{N} 2 \\ {[2 \text { marks] }}\end{array}$
(b) valid approach
eg height $=f(b)$, base $=2(\mathrm{OP})$ or $2 b, 2 b\left(9-x^{2}\right), 2 b \times f(b)$
correct working that clearly leads to given answer
A1
eg $\quad 2 b\left(9-b^{2}\right)$
Note: Do not accept sloppy notation eg $2 b \times 9-b^{2}$.
area $=18 b-2 b^{3}$
AG
NO [2 marks]
(c) setting derivative $=0$ (seen anywhere)
eg $\quad A^{\prime}=0,\left[18 b-2 b^{3}\right]^{\prime}=0$
correct derivative (must be in terms of b only) (seen anywhere)
eg $\quad 18-6 b^{2}, 2 b(-2 b)+\left(9-b^{2}\right) \times 2$
correct working
eg $\quad 6 b^{2}=18, b= \pm \sqrt{3}$
$b=\sqrt{3}$

A1
[5 marks]
(d) valid approach
eg $f=g, 9-x^{2}=(x-3)^{2}+k$
correct working
eg $\quad 9-x^{2}=x^{2}-6 x+9+k, 9-x^{2}-x^{2}+6 x-9-k=0$
$2 x^{2}-6 x+k=0$
AG
NO
[2 marks]
(e) METHOD 1 (discriminant)
recognizing to use discriminant (seen anywhere)
(M1)
eg $\quad \Delta, b^{2}-4 a c$
discriminant $=0$ (seen anywhere)
correct substitution into discriminant (do not accept only in quadratic formula)(A1) eg $\quad(-6)^{2}-4(2)(k),(6)^{2}-4(2)(k)$
correct working
eg $\quad 36-8 k=0,8 k=36$

$$
k=\frac{36}{8}\left(=\frac{9}{2}, 4.5\right)
$$

METHOD 2 (completing the square)

valid approach to complete the square
eg $2\left(x^{2}-3 x+\frac{9}{4}\right)=-k+\frac{18}{4}, x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+\frac{k}{2}=0$
correct working
eg $\quad 2\left(x-\frac{3}{2}\right)^{2}=-k+\frac{18}{4},\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{k}{2}=0$
recognizing condition for one solution
eg $\left(x-\frac{3}{2}\right)^{2}=0,-\frac{9}{4}+\frac{k}{2}=0$
correct working
eg $\quad-k=-\frac{18}{4}, \frac{k}{2}=\frac{9}{4}$
$k=\frac{18}{4} \quad\left(=\frac{9}{2}, 4.5\right)$

METHOD 3 (using vertex)

valid approach to find vertex (seen anywhere) M1
eg $\quad\left(2 x^{2}-6 x+k\right)^{\prime}=0,-\frac{b}{2 a}$
correct working
eg $\quad\left(2 x^{2}-6 x+k\right)^{\prime}=4 x-6,-\frac{(-6)}{2(2)}$
$x=\frac{6}{4}\left(=\frac{3}{2}\right)$
(A1)

> A1

correct substitution

eg $\quad 2\left(\frac{3}{2}\right)^{2}-6\left(\frac{3}{2}\right)+k=0$
$k=\frac{18}{4} \quad\left(=\frac{9}{2}, 4.5\right)$

Question 34
(a) correct substitution into $b^{2}-4 a c$
eg $(5 k)^{2}-4(2)\left(3 k^{2}+2\right),(5 k)^{2}-8\left(3 k^{2}+2\right)$
correct expansion of each term A1
eg $25 k^{2}-24 k^{2}-16,25 k^{2}-\left(24 k^{2}+16\right)$
$k^{2}-16$
AG NO
[2 marks]
(b) valid approach
eg $f^{\prime}(x)>0, f^{\prime}(x) \geq 0$
recognizing discriminant <0 or ≤ 0
eg $D<0, k^{2}-16 \leq 0, k^{2}<16$
two correct values for k /endpoints (even if inequalities are incorrect)
(A1)
eg $\quad k= \pm 4, k<-4$ and $k>4,|k|<4$
correct interval
eg $\quad-4<k<4,-4 \leq k \leq 4$

Question 35
(a) valid approach
eg $\quad 11-a=9, \frac{11!}{9!(11-9)!}$
$a=2$

A1 N2 [2 marks]

(b) valid approach for expansion using $n=11$
(M1)
eg $\quad\binom{11}{r} x^{11-r} 3^{r}, a^{11} b^{0}+\binom{11}{1} a^{10} b^{1}+\binom{11}{2} a^{9} b^{2}+\ldots$
evidence of choosing correct term
A1
eg $\binom{11}{2} 3^{2},\binom{11}{2} x^{9} 3^{2},\binom{11}{9} 3^{2}$
correct working for binomial coefficient (seen anywhere, do not accept factorials)A1
eg $\quad 55,\binom{11}{2}=55,55 \times 3^{2},(55 \times 9) x^{9}, \frac{11 \times 10}{2} \times 9$

Note: If there is clear evidence of adding instead of multiplying, award $\boldsymbol{A 1}$ for the correct working for binomial coefficient, but no other marks.
For example, $55 x^{9}+3^{2}$ would earn MOAOA1AO.
Do not award final A1 for a final answer of $495 x^{9}$, even if 495 is seen previously. If no working shown, award N1 for $495 x^{9}$.

Question 37
(a) valid approach (M1)
eg $\quad 11-5,11=5+d$
$d=6$
(b) valid approach
(M1)
eg $u_{2}-d, 5-6, u_{1}+(3-1)(6)=11$
$u_{1}=-1$

$$
\begin{array}{lr}
\text { A1 } & \mathrm{N} 2 \\
& {[2 \text { marks] }}
\end{array}
$$

(c) correct substitution into sum formula
eg $\frac{20}{2}(2(-1)+19(6)), \frac{20}{2}(-1+113)$
(A1)

$$
S_{20}=1120
$$

A1	N 2
$[2$ marks]	

Total [6 marks]

