Subject – Math (Standard Level) Topic : Algebra

1.	(a)	attempt to substitute into sum formula for AP (accept term formula) $20 \left[2(7) + 10 \right] \left(-20 \left(7 + 10 \right) \right)$	(M1)		
		$e.g. S_{20} = \frac{1}{2} \left\{ 2(-7) + 19d \right\}, \left(\text{or } \frac{1}{2} (-7) + u_{20} \right) \right\}$			
		setting up correct equation using sum formula	A1		
		<i>e.g.</i> $\frac{26}{2} \{2(-7) + 19d\} = 620$	A1	N2	
	(b)	correct substitution $u_{78} = -7 + 77(4)$ = 301	(A1)	N2	
		501	711	112	[5]
2.	(a)	evidence of expanding e.g. $(x-2)^4 = x^4 + 4x^3(-2) + 6x^2(-2)^2 + 4x(-2)^3 + (-2)^4$ M1	l		
		$(x-2)^4 = x^4 - 8x^3 + 24x^2 - 32x + 16$	2 N2		
	(b)	finding coefficients, 3×24 (= 72), $4 \times (-8)$ (= -32) (A1)(A1) term is $40x^3$ (A1)) N3		
					[6]
3.	(a)	evidence of dividing two terms (M1))		
		$e.g\frac{1800}{3000}, -\frac{1800}{1080}$			
		r = -0.6	N2		
	(b)	evidence of substituting into the formula for the 10 th term (M1))		
		$e.g.\ u_{10} = 3000(-0.6)^9$			
		$u_{10} = -30.2$ (accept the exact value -30.233088) A1	N2		
	(c)	evidence of substituting into the formula for the infinite sum (M1))		
		$e.g. S = \frac{3000}{1.6}$			
		<i>S</i> = 1875 A1	N2		[6]

4. 7 terms (a)

- (b) A valid approach (M1)
 - Correct term **chosen** $\binom{6}{3}(x^3)^3(-3x)^3$ A1

Calculating
$$\binom{6}{3} = 20, (-3)^3 = -27$$
 (A1)(A1)
Term is $-540x^{12}$ A1

Term is
$$-540x^{12}$$

5.	(a)	Ashley $AP = 12 + 14 + 16 +$ to 15 terms	(M1)	
		$S_{15} = \frac{15}{2} \left[2(12) + 14(2) \right]$	(M1)	
		$= 15 \times 26$ = 390 hours	(A1)	3
	(b)	Billie		
		GP 12, 12(1.1), $12(1.1)^2$	(M1)	
		(i) In week 3, $12(1.1)^2$ = 14.52 hours	(A1) (AG)	
		(ii) $S_{15} = \frac{12[(1.1)^{15} - 1]}{1.1 - 1}$	(M1)	
		= 381 hours (3 sf)	(A1)	4

[6]

A1 N1

N3

(c)
$$12 (1.1)^{n-1} > 50$$
 (M1)
 $(1.1)^{n-1} > \frac{50}{12}$ (A1)

$$(1.1)^{n-1} > \frac{12}{12}$$
 (1)

$$(n-1) \ln 1.1 > \ln \frac{50}{12}$$

$$n-1 > \frac{\ln \frac{50}{12}}{\ln 1.1}$$

$$n-1 > 14.97$$

$$n > 15.97$$

$$\Rightarrow Week 16$$
(A1)

OR

$12(1.1)^{n-1} > 50$	(M1)
By trial and error	
$12(1.1)^{14} = 45.6, 12(1.1)^{15} = 50.1$	(A1)
$\Rightarrow n-1=15$	(A1)
\Rightarrow <i>n</i> = 16 (Week 16)	(A1)
HOD 1	
$1 + \log(1) + \log(2 - 2) + 1$	

[11]

4

6. **METHOD 1**

$$\log_{9} 81 + \log_{9} \left(\frac{1}{9}\right) + \log_{9} 3 = 2 - 1 + \frac{1}{2}$$
(M1)

$$\Rightarrow \frac{3}{2} = \log_{9} x$$
(A1)

$$\Rightarrow x = 9^{\frac{3}{2}}$$
(M1)

$$\Rightarrow x = 27$$
(M1)
(A1)
(A1)
(A1)
(A1)
(A1)
(A1)

ETHOD 2

$$\log 81 + \log_9 \left(\frac{1}{9}\right) + \log_9 3 = \log_9 \left[81 \left(\frac{1}{9}\right)^3\right]$$

$$= \log_9 27$$

$$\Rightarrow x = 27$$
(A1)
(A1)
(C4)

[4]

7. (a) **METHOD 1**

recognizing that f(8) = 1 (M1) e.g. $1 = k \log_2 8$

recognizing that $\log_2 8 = 3$ (A1) e.g. 1 = 3k

$$k = \frac{1}{3}$$
 A1 N2

METHOD 2

(b)

attempt to find the inverse of $f(x) = k \log_2 x$ (M1) *e.g.* $x = k \log_2 y, y = 2^{\frac{x}{k}}$ substituting 1 and 8 (M1) *e.g.* $1 = k \log_2 8$, $2^{\frac{1}{k}} = 8$ $k = \frac{1}{\log_2 8}$ $\left(k=\frac{1}{3}\right)$ A1 N2 **METHOD 1** recognizing that $f(x) = \frac{2}{3}$ (M1) *e.g.* $\frac{2}{3} = \frac{1}{3}\log_2 x$ $\log_2 x = 2$ (A1) BA $f^{-1}\left(\frac{2}{3}\right) = 4 \text{ (accept } x = 4\text{)}$ A2 N3 **METHOD 2** attempt to find inverse of $f(x) = \frac{1}{3} \log_2 x$ (M1) *e.g.* interchanging x and y, substituting $k = \frac{1}{3}$ into $y = 2^{\frac{x}{k}}$ correct inverse (A1) $e.g. f^{-1}(x) = 2^{3x}, 2^{3x}$ $f^{-1}\left(\frac{2}{3}\right) = 4$ A2 N3

[7]

8. (a) 5

(b) METHOD 1

$$\log_{2}\left(\frac{32^{x}}{8^{y}}\right) = \log_{2} 32^{x} - \log_{2} 8^{y}$$
(A1)
= $x \log_{2} 32 - y \log_{2} 8$ (A1)

$$\log_2 8 = 3 \tag{A1}$$

$$p = 5, q = -3$$
 (accept $5x - 3y$) A1 N3

METHOD 2

$\frac{32^x}{2} = \frac{(2^5)^x}{2}$	(A1)
$8^{y} (2^{3})^{y}$	(11)
2 5x	

$$=\frac{2^{3x}}{2^{3y}}$$
(A1)

$$=2^{5x-3y}$$
(A1)

$$\log_2 (2^{5x-3y}) = 5x - 3y$$

 $p = 5, q = -3 (\text{accept } 5x - 3y)$ A1 N3

9.
$$\log_{27} (x(x-0.4)) = 1$$

 $x^2 - 0.4x = 27$
 $x = 5.4$ or $x = -5$
 $x = 5.4$
Note: Award (C5) for giving both roots.
(M1)(A1)
(M1)
(G2)
(A1) (C6)

(b)
$$(3x^2)^3 \left(-\frac{1}{x}\right)^6$$
 [for correct exponents] (M1)(A1)
 $\begin{pmatrix} 9\\6 \end{pmatrix} 3^3 x^6 \frac{1}{x^6} \left(\text{or } 84 \times 3^3 x^6 \frac{1}{x^6} \right)$ (A1)
constant = 2268 (A1) (C4) [6]

[5]

[6]

11.
$$\binom{10}{3} 2^7 (ax)^3 \left(\operatorname{accept} \begin{pmatrix} 10\\7 \end{pmatrix} \right)$$
 (A1)(A1)(A1)
 $\binom{10}{3} = 120$ (A1)

$$120 \times 2^7 a^3 = 414\ 720 \tag{M1}$$

$$a^3 = 27$$

$$a = 3$$
 (A1) (C6)

Note: Award
$$(A1)(A1)(A0)$$
 for $\binom{10}{3}2^7 ax^3$. If this leads to the answer $a = 27$, do not award the final (A1).

14. (a)
$$\frac{1}{5}$$
 (0.2) A1 N1

(b) (i)
$$u_{10} = 25 \left(\frac{1}{5}\right)^9$$
 (M1)

$$= 0.0000128 \left(\left(\frac{1}{5}\right)^7, 1.28 \times 10^{-5}, \frac{1}{78125} \right)$$
 A1 N2

(ii)
$$u_n = 25 \left(\frac{1}{5}\right)^{n-1}$$
 A1 N1

(c) For attempting to use infinite sum formula for a GP
$$\left(\frac{25}{1-\left(\frac{1}{5}\right)}\right)$$
 (M1)

$$S = \frac{125}{4} = 31.25 \ (=31.3 \text{ to } 3s f)$$
A1 N2

15. evidence of using binomial expansion (M1)
e.g. selecting correct term,
$$a^8b^0 + {\binom{8}{1}}a^7b + {\binom{8}{2}}a^6b^2 + ...$$

evidence of calculating the factors, in any order A1A1A1
e.g. 56, $\frac{2^3}{3^3}$, -3^5 , ${\binom{8}{5}}(\frac{2}{3}x)^3(-3)^5$
 $-4032x^3$ (accept = $-4030x^3$ to 3 s.f.) A1 N2

16. (a)
$$\log_3 x - \log_3 (x-5) = \log_3 \left(\frac{x}{x-5}\right)$$
 (A1)

$$A = \frac{x}{x-5} \tag{A1} \tag{C2}$$

Note: If candidates have an incorrect or no answer to part (a) award (A1)(A0)if $\log \begin{pmatrix} x \\ -x \end{pmatrix}$ access in part (b)

if
$$\log\left(\frac{x}{x-5}\right)$$
 seen in part (b).

7

[6]

[5]

(b) **EITHER**

$$\log_{3}\left(\frac{x}{x-5}\right) = 1$$

$$\frac{x}{x-5} = 3^{1} (=3)$$

$$x = 3x - 15$$

$$-2x = -15$$

$$x = \frac{15}{2}$$
(A1) (C4)

OR

18.

$$\frac{\log_{10}\left(\frac{x}{x-5}\right)}{\log_{10}3} = 1$$
(M1)(A1)
$$\log_{10}\left(\frac{x}{x-5}\right) = \log_{10}3$$
(A1)
(A1)
(A1)
(A2)

(A1) d = 317. (a) evidence of substitution into $u_n = a + (n - 1) d$ (M1) *e.g.* $u_{101} = 2 + 100 \times 3$ $u_{101} = 302$ A1 N3 correct approach e.g. $152 = 2 + (n-1) \times 3$ (M1) (b) correct simplification (A1) *e.g.* $150 = (n-1) \times 3$, 50 = n-1, 152 = -1 + 3n*n* = 51 A1 N2

[6]

[6]

(a)
$$u_1 = S_1 = 7$$
 (A1) (C1)
(b) $u_2 = S_2 - u_1 = 18 - 7$
= 11 (A1)

$$d = 11 - 7$$
 (M1)
= 4 (A1) (C3)

(c) $u_4 = u_1 + (n-1)d = 7 + 3(4)$ (M1) $u_4 = 19$ (A1) (C2)

[6] 8

19. METHOD 1

$9=3^2, 27=3^3$	(A1)(A1)
expressing as a power of 3, $(3^2)^{2x} = (3^3)^{1-x}$	(M1)
$3^{4x} = 3^{3-3x}$	(A1)
4x = 3 - 3x	(A1)
7x = 3	
$\Rightarrow x = \frac{3}{7}$	(A1) (C6)

METHOD 2

$2x\log 9 = (1-x)\log 27$	(M1)(A1)(A1)
$\frac{2x}{1-x} = \frac{\log 27}{\log 9} \left(=\frac{3}{2}\right)$	(A1)
4x = 3 - 3x $7x = 3$	(A1)
$\Rightarrow x = \frac{3}{7}$	(A1) (C6)
Notes: Candidates may use a	graphical method

Award (M1)(A1)(A1) for a sketch, (A1) for showing the point of

intersection, (A1) for 0.4285..., and (A1) for $\frac{3}{7}$.

[6]

20. (a) interchanging x and y (seen anywhere) (M1) e.g. $x = \log \sqrt{y}$ (accept any base) evidence of correct manipulation A1 e.g. $3^x = \sqrt{y}, 3^y = x^{\frac{1}{2}}, x = \frac{1}{2} \log_3 y, 2y = \log_3 x$

$$f^{-1}(x) = 3^{2x} AG NO$$

(b)
$$y > 0, f^{-1}(x) > 0$$

A1 N1

(c) METHOD 1

finding $g(2) = \log_3 2$ (seen anywhere)	A1
attempt to substitute	(M1)
<i>e.g.</i> $(f^{-1} \circ g)(2) = 3^{\log_3 2}$	
evidence of using log or index rule	(A1)
$e.g. (f^{-1} \circ g)(2) = 3^{\log_3 4}, 3^{\log_3 2^2}$	

$$(f^{-1} \circ g)(2) = 4$$
 A1 N1

METHOD 2

		attempt to form composite (in any order) e.g. $(f^{-1} \circ g)(x) = 3^{2\log_3 x}$	(M1)		
		evidence of using log or index rule $e.g.(f^{-1} \circ g)(x) = 3^{\log_3 x^2}, 3^{\log_3 x^2}$	(A1)		
		$(f^{-1} \circ g)(x) = x^2$	A1		
		$(f^{-1} \circ g)(2) = 4$	A1	N1	
					[7]
21.	(a)	(i) attempt to set up equations $-37 = u_1 + 20d$ and $-3 = u_1 + 3d$ 34 = 17d	(M1) A1		
		d = -2	A1	N2	
		(ii) $-3 = u_1 - 6 \Rightarrow u_1 = 3$	A1	N1	
	(b)	$u_{10} = 3 + 9 \times -2 = -15$	(A1)		
		$S_{10} = \frac{10}{2} \left(3 + (-15)\right)$	M1		
		= -60	A1	N2	[7]

A1 for sketch asymptotic to the y-axis.

A1

N1

1

[6]

(d) $f^{-1}(0) = 0.5$

(e)

Note: Award A1 for sketch approximately through $(0 \pm 0.1, 0.5 \pm 0.1)$, A1 for approximately correct shape of the graph reflected over y = x, A1 for sketch asymptotic to x-axis, A1 for point $(2 \pm 0.1, 4.5 \pm 0.1)$ clearly marked **and** on curve.

[16]

4

(a)	Recognizing an AP	(MI)	
	$u_1 = 15$ $d = 2$ $n = 20$ substituting into $u_{12} = 15 \pm (20, 1) \times 2$	(A1) M1	4
	= 53 (that is, 53 seats in the 20th row)	A1	
(b)	Substituting into $S_{20} = \frac{20}{2} (2(15) + (20-1)2)$ (or into $\frac{20}{2} (15 + 53)$)	M1	
	= 680 (that is, 680 seats in total)	A1	2
(a)	(i) $r = -2$	A1	N1
	(ii) $u_{15} = -3 (-2)^{14}$	(A1)	
	=-49152 (accept -49200)	A1	N2
(b)	(i) 2, 6, 18	A1	N1
	(ii) <i>r</i> = 3	A1	N1
(c)	Setting up equation (or a sketch)	M1	
	$\frac{x+1}{2} = \frac{2x+8}{1}$ (or correct sketch with relevant information)	A1	
	x-3 $x+1$		
	$x^2 + 2x + 1 = 2x^2 + 2x - 24$	(A1)	
	$x^2 = 25$		
	x = 5 or $x = -5$		
	x = -5	A1	N2
	<i>Notes:</i> If "trial and error" is used, work must be documented with several trials shown.		
	Award full marks for a correct answer with this		
	approach. If the work is not documented, award N2 for a		
	correct answer.		
(d)	(i) $r = \frac{1}{2}$	A1	N1
	(11) For attempting to use infinite sum formula for a GP	(M1)	
	$S = \frac{-8}{1 - \frac{1}{2}}$		
	S = -16	A1	N2
	<i>Note:</i> Award M0A0 if candidates use a value of r where $r > 1$, or $r < -1$.		
	 (a) (b) (c) (d) 	(a) Recognizing an AP $u_1 = 15 \ d = 2 \ n = 20$ substituting into $u_{20} = 15 + (20 - 1) \times 2$ = 53 (that is, 53 seats in the 20th row) (b) Substituting into $S_{20} = \frac{20}{2} (2(15) + (20 - 1)2)$ (or into $\frac{20}{2} (15 + 53)$) = 680 (that is, 680 seats in total) (a) (i) $r = -2$ (ii) $u_{15} = -3 (-2)^{14}$ = -49152 (accept -49200) (b) (i) 2, 6, 18 (ii) $r = 3$ (c) Setting up equation (or a sketch) $\frac{x+1}{x-3} = \frac{2x+8}{x+1}$ (or correct sketch with relevant information) $x^2 + 2x + 1 = 2x^2 + 2x - 24$ $x^2 = 25$ x = 5 or $x = -5Notes: If "trial and error" is used, work must bedocumented with several trials shown.Award full marks for a correct answer with thisapproach.If the work is not documented, award N2 for acorrect answer.(d) (i) r = \frac{1}{2}(ii) For attempting to use infinite sum formula for a GPS = \frac{-8}{1-\frac{1}{2}}S = -16Note: Award M0A0 if candidates use a value of rwhere r > 1, or r < -1.$	(a) Recognizing an AP (M1) $u_1 = 15 \ d = 2 \ n = 20$ (A1) substituting into $u_{20} = 15 + (20 - 1) \times 2$ (A1) $u_1 = 53$ (that is, 53 seats in the 20th row) A1 (b) Substituting into $S_{20} = \frac{20}{2} (2(15) + (20 - 1)2)$ (or into $\frac{20}{2} (15 + 53)$) M1 = 680 (that is, 680 seats in total) A1 (a) (i) $r = -2$ (A1 (ii) $u_{15} = -3 (-2)^{14}$ (A1) = -49152 (accept -49200) A1 (b) (i) 2, 6, 18 (A1 (ii) $r = 3$ (A1 (ii) $r = 3$ (A1 $\frac{x+1}{x-3} = \frac{2x+8}{x+1}$ (or correct sketch with relevant information) $x^2 + 2x + 1 = 2x^2 + 2x - 24$ (A1) $x^2 = 25$ x = 5 or $x = -5$ (A1) Notes: If^{α} trial and error" is used, work must be documented with several trials shown. Award full marks for a correct answer with this approach. If the work is not documented, award N2 for a correct answer. (d) (i) $r = \frac{1}{2}$ A1 (ii) For attempting to use infinite sum formula for a GP (M1) $S = \frac{-8}{1-\frac{1}{2}}$ S = -16 A1 Note: Award M0A0 if candidates use a value of r where $r > 1$, or $r < -1$.

[6]

[12]