Subject - Math (Standard Level)

Topic : Algebra

1. (a) attempt to substitute into sum formula for AP (accept term formula)
(M1)
e.g. $S_{20}=\frac{20}{2}\{2(-7)+19 d\}$, or $\left.\frac{20}{2}\left(-7+u_{20}\right)\right)$
setting up correct equation using sum formula
e.g. $\frac{20}{2}\{2(-7)+19 d\}=620$ A1 N2
2. (a) evidence of expanding M1
e.g. $(x-2)^{4}=x^{4}+4 x^{3}(-2)+6 x^{2}(-2)^{2}+4 x(-2)^{3}+(-2)^{4}$
$(x-2)^{4}=x^{4}-8 x^{3}+24 x^{2}-32 x+16$
A2
N2
(b) finding coefficients, $3 \times 24(=72), 4 \times(-8)(=-32)$ term is $40 x^{3}$
3. (a) evidence of dividing two terms
e.g. $-\frac{1800}{3000},-\frac{1800}{1080}$
$r=-0.6$
A1 N2
(b) evidence of substituting into the formula for the $10^{\text {th }}$ term
e.g. $u_{10}=3000(-0.6)^{9}$
$u_{10}=-30.2$ (accept the exact value -30.233088$)$
A1 N2
(c) evidence of substituting into the formula for the infinite sum
e.g. $S=\frac{3000}{1.6}$
$S=1875$
A1 N2
4. (a) 7 terms
(b) A valid approach

Correct term chosen $\binom{6}{3}\left(x^{3}\right)^{3}(-3 x)^{3}$
Calculating $\binom{6}{3}=20,(-3)^{3}=-27$
(A1)(A1)

Term is $-540 x^{12}$
A1 N3
[6]
5. (a) Ashley

$$
\begin{align*}
& \text { AP } \quad 12+14+16+\ldots \text { to } 15 \text { terms } \tag{M1}\\
& S_{15}=\frac{15}{2}[2(12)+14(2)] \tag{M1}\\
& =15 \times 26 \\
& =390 \text { hours }
\end{align*}
$$

$$
\text { (A1) } 3
$$

(b) Billie

$$
\begin{equation*}
\text { GP } \quad 12,12(1.1), 12(1.1)^{2} \ldots \tag{M1}
\end{equation*}
$$

(i) In week $3,12(1.1)^{2}$ $=14.52$ hours
(ii) $\quad S_{15}=\frac{12\left[(1.1)^{15}-1\right]}{1.1-1}$

$$
\begin{equation*}
=381 \text { hours }(3 \mathrm{sf}) \tag{M1}
\end{equation*}
$$

(A1) 4

$$
\text { (c) } \quad \begin{aligned}
12(1.1)^{n-1} & >50 \\
(1.1)^{n-1} & >\frac{50}{12}
\end{aligned}
$$

(M1)
(A1)
$(n-1) \ln 1.1>\ln \frac{50}{12}$
$n-1>\frac{\ln \frac{50}{12}}{\ln 1.1}$
$n-1>14.97$
$n>15.97$
\Rightarrow Week 16
OR
$12(1.1)^{n-1}>50$
By trial and error
$12(1.1)^{14}=45.6,12(1.1)^{15}=50.1$
$\Rightarrow n-1=15$
$\Rightarrow n=16$ (Week 16)
(A1) 4
[11]

6. METHOD 1

$\log _{9} 81+\log _{9}\left(\frac{1}{9}\right)+\log _{9} 3=2-1+\frac{1}{2}$
$\Rightarrow \frac{3}{2}=\log _{9} x$
$\Rightarrow x=9^{\frac{3}{2}}$
$\Rightarrow x=27$
(A1)
(M1)
(A1) (C4)

METHOD 2

$\log 81+\log _{9}\left(\frac{1}{9}\right)+\log _{9} 3=\log _{9}\left[81\left(\frac{1}{9}\right) 3\right]$
$=\log _{9} 27$
$\Rightarrow x=27$
(A1) (C4)
7. (a) METHOD 1
recognizing that $f(8)=1$
e.g. $1=k \log _{2} 8$
recognizing that $\log _{2} 8=3$
e.g. $1=3 k$
$k=\frac{1}{3}$

METHOD 2

attempt to find the inverse of $f(x)=k \log _{2} x$
e.g. $x=k \log _{2} y, y=2^{\frac{x}{k}}$
substituting 1 and 8
e.g. $1=k \log _{2} 8,2^{\frac{1}{k}}=8$
$k=\frac{1}{\log _{2} 8} \quad\left(k=\frac{1}{3}\right)$
(b) METHOD 1
recognizing that $f(x)=\frac{2}{3}$
e.g. $\frac{2}{3}=\frac{1}{3} \log _{2} x$
$\log _{2} x=2$
$f^{-1}\left(\frac{2}{3}\right)=4(\operatorname{accept} x=4)$

METHOD 2

attempt to find inverse of $f(x)=\frac{1}{3} \log _{2} x$
e.g. interchanging x and y, substituting $k=\frac{1}{3}$ into $y=2^{\frac{x}{k}}$
correct inverse
e.g. $f^{-1}(x)=2^{3 x}, 2^{3 x}$
$f^{-1}\left(\frac{2}{3}\right)=4$
8. (a) 5
(b) METHOD 1
$\log _{2}\left(\frac{32^{x}}{8^{y}}\right)=\log _{2} 32^{x}-\log _{2} 8^{y}$
$=x \log _{2} 32-y \log _{2} 8$
$\log _{2} 8=3$
$p=5, q=-3($ accept $5 x-3 y)$

METHOD 2

$$
\begin{align*}
& \frac{32^{x}}{8^{y}}=\frac{\left(2^{5}\right)^{x}}{\left(2^{3}\right)^{y}} \tag{A1}\\
& =\frac{2^{5 x}}{2^{3 y}} \\
& =2^{5 x-3 y} \\
& \log _{2}\left(2^{5 x-3 y}\right)=5 x-3 y \\
& p=5, q=-3(\operatorname{accept} 5 x-3 y)
\end{align*}
$$

9. $\quad \log _{27}(x(x-0.4))=1$

$$
\begin{aligned}
& x^{2}-0.4 x=27 \\
& x=5.4 \text { or } x=-5 \\
& x=5.4
\end{aligned}
$$

11. $\binom{10}{3} 2^{7}(a x)^{3} \quad\left(\operatorname{accept}\binom{10}{7}\right)$
$\binom{10}{3}=120$
$120 \times 2^{7} a^{3}=414720$
(A1)(A1)(A1)
$a^{3}=27$
$a=3$
(A1) (C6)
Note: Award (A1)(A1)(A0) for $\binom{10}{3} 2^{7}$ ax x^{3}. If this leads to the answer $a=27$, do not award the final (A1).
12. Selecting one term (may be implied)

$$
\begin{align*}
& \left(\frac{7}{2}\right) 5^{2}\left(2 x^{2}\right)^{5} \tag{M1}\\
& =16800 x^{10} \tag{A1}
\end{align*}
$$

Note: Award C5 for 16800.
(A1)(A1) (C6)
13. For using $u_{3}=u_{1} r^{2}=8$

$$
\begin{aligned}
8 & =18 r^{2} \\
r^{2} & =\frac{8}{18}\left(=\frac{4}{9}\right) \\
r & = \pm \frac{2}{3} \\
S_{\infty} & =\frac{u_{1}}{1-r} \\
S_{\infty} & =54, \frac{54}{5}(=10.8)
\end{aligned}
$$

14. (a) $\frac{1}{5}(0.2)$
(b) (i) $\quad u_{10}=25\left(\frac{1}{5}\right)^{9}$

$$
\begin{equation*}
=0.0000128\left(\left(\frac{1}{5}\right)^{7}, 1.28 \times 10^{-5}, \frac{1}{78125}\right) \tag{M1}
\end{equation*}
$$

A1 N2

(ii) $\quad u_{n}=25\left(\frac{1}{5}\right)^{n-1}$

A1 N1
(c) For attempting to use infinite sum formula for a GP $\left(\frac{25}{1-\left(\frac{1}{5}\right)}\right)$

$$
S=\frac{125}{4}=31.25(=31.3 \text { to } 3 s f)
$$

15. evidence of using binomial expansion
e.g. selecting correct term, $a^{8} b^{0}+\binom{8}{1} a^{7} b+\binom{8}{2} a^{6} b^{2}+\ldots$ evidence of calculating the factors, in any order
e.g. $56, \frac{2^{3}}{3^{3}},-3^{5},\binom{8}{5}\left(\frac{2}{3} x\right)^{3}(-3)^{5}$
$-4032 x^{3}\left(\right.$ accept $=-4030 x^{3}$ to 3 s.f. $)$
A1 N2
[5]
16. (a) $\log _{3} x-\log _{3}(x-5)=\log _{3}\left(\frac{x}{x-5}\right)$

$$
\begin{equation*}
A=\frac{x}{x-5} \tag{A1}
\end{equation*}
$$

Note: If candidates have an incorrect or no answer to part (a) award (A1)(A0)
if $\log \left(\frac{x}{x-5}\right)$ seen in part (b).
(b) EITHER

$$
\begin{aligned}
\log _{3}\left(\frac{x}{x-5}\right) & =1 \\
\frac{x}{x-5} & =3^{1}(=3) \\
x & =3 x-15 \\
-2 x & =-15 \\
x & =\frac{15}{2}
\end{aligned}
$$

$(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)$
(A1) (C4)

OR
$\frac{\log _{10}\left(\frac{x}{x-5}\right)}{\log _{10} 3}=1$
$\log _{10}\left(\frac{x}{x-5}\right)=\log _{10} 3$
$x=7.5$
(A1) (C4)
(A1)
(M1)

A1 N3
(b) correct approach
e.g. $152=2+(n-1) \times 3$
correct simplification
e.g. $150=(n-1) \times 3,50=n-1,152=-1+3 n$ $n=51$
evidence of substitution into $u_{n}=a+(n-1) d$ e.g. $u_{101}=2+100 \times 3$
$u_{101}=302$
17. (a) $d=3$

$$
10
$$

$$
2
$$

(A1)
A1 N2
18. (a) $u_{1}=S_{1}=7$
(A1) (C1)
(b) $u_{2}=S_{2}-u_{1}=18-7$

$$
\begin{equation*}
=11 \tag{A1}
\end{equation*}
$$

$d=11-7$

$$
\begin{equation*}
=4 \tag{M1}
\end{equation*}
$$

(c) $\quad u_{4}=u_{1}+(n-1) d=7+3(4)$
(A1) (C2)
19. METHOD 1
$9=3^{2}, 27=3^{3}$
(A1)(A1)
expressing as a power of $3,\left(3^{2}\right)^{2 x}=\left(3^{3}\right)^{1-x}$

$$
\begin{align*}
3^{4 x} & =3^{3-3 x} \tag{A1}\\
4 x & =3-3 x \tag{A1}\\
7 x & =3 \\
\Rightarrow x & =\frac{3}{7} \tag{A1}
\end{align*}
$$

METHOD 2

$2 x \log 9=(1-x) \log 27$
(M1)(A1)(A1)

$$
\begin{align*}
& \frac{2 x}{1-x}=\frac{\log 27}{\log 9}\left(=\frac{3}{2}\right) \tag{A1}\\
& 4 x=3-3 x \tag{A1}\\
& 7 x=3 \\
& \Rightarrow x=\frac{3}{7}
\end{align*}
$$

(A1) (C6)
Notes: Candidates may use a graphical method.
Award (M1)(A1)(A1) for a sketch, (A1) for showing the point of intersection, (A1) for $0.4285 \ldots$, and (A1) for $\frac{3}{7}$.
20. (a) interchanging x and y (seen anywhere)
e.g. $x=\log \sqrt{y}$ (accept any base)
evidence of correct manipulation
e.g. $3^{x}=\sqrt{y}, 3^{y}=x^{\frac{1}{2}}, x=\frac{1}{2} \log _{3} y, 2 y=\log _{3} x$
$f^{-1}(x)=3^{2 x}$
(b) $y>0, f^{-1}(x)>0$
(c) METHOD 1
finding $g(2)=\log _{3} 2$ (seen anywhere)
attempt to substitute
e.g. $\left(f^{-1} \circ g\right)(2)=3^{\log _{3} 2}$
evidence of using log or index rule
e.g. $\left(f^{-1} \circ g\right)(2)=3^{\log _{3} 4}, 3^{\log _{3} 2^{2}}$
$\left(f^{-1} \circ g\right)(2)=4$
A1 N1

METHOD 2

attempt to form composite (in any order)
e.g. $\left(f^{-1} \circ g\right)(x)=3^{2 \log _{3} x}$
evidence of using log or index rule
e.g. $\left(f^{-1} \circ g\right)(x)=3^{\log _{3} x^{2}}, 3^{\log _{3} x^{2}}$
$\left(f^{-1} \circ g\right)(x)=x^{2}$
$\left(f^{-1} \circ g\right)(2)=4$

A1
A1 N1
22. (a) combining 2 terms
e.g. $\log _{3} 8 x-\log _{3} 4, \log _{3} \frac{1}{2} x+\log _{3} 4$
expression which clearly leads to answer given
e.g. $\log _{3} \frac{8 x}{3}, \log _{3} \frac{4 x}{2}$
$f(x)=\log _{3} 2 x$
AG N0 2
(b) attempt to substitute either value into f
e.g. $\log _{3} 1, \log _{3} 9$
$f(0.5)=0, f(4.5)=2$
A1A1 N3 3
(c) (i) $\quad a=2, b=3$

A1A1
N1N1
(ii)

A1A1A1 N3
Note: Award Al for sketch approximately through (0.5 $\pm 0.1,0 \pm 0.1$)

Al for approximately correct shape,
Al for sketch asymptotic to the y-axis.
(iii) $x=0$ (must be an equation)
(d) $f^{-1}(0)=0.5$
(e)

A1A1A1A1 N4 4
Note: Award Al for sketch approximately through (0 ± 0.1, $0.5 \pm 0.1)$,
Al for approximately correct shape of the graph reflected over $y=x$,
A1 for sketch asymptotic to x-axis, Al for point $(2 \pm 0.1,4.5 \pm 0.1)$ clearly marked and on curve.
23. (a) Recognizing an AP
(M1)
$u_{1}=15 \quad d=2 \quad n=20$
substituting into $u_{20}=15+(20-1) \times 2$
(A1)
$=53$ (that is, 53 seats in the 20th row)
(b) Substituting into $S_{20}=\frac{20}{2}(2(15)+(20-1) 2)$ (or into $\left.\frac{20}{2}(15+53)\right)$ $=680($ that is, 680 seats in total)
24. (a) (i) $r=-2$

A1 N1
(ii) $u_{15}=-3(-2)^{14}$

$$
=-49152(\text { accept }-49200)
$$

(b) (i) $2,6,18$
(ii) $r=3$

A1 N1
(c) Setting up equation (or a sketch)

$$
\begin{align*}
& \frac{x+1}{x-3}=\frac{2 x+8}{x+1} \text { (or correct sketch with relevant information) } \\
& x^{2}+2 x+1=2 x^{2}+2 x-24 \tag{A1}\\
& x^{2}=25 \\
& x=5 \text { or } x=-5 \\
& x=-5
\end{align*}
$$

A1 N2
Notes: If "trial and error" is used, work must be documented with several trials shown. A ward full marks for a correct answer with this approach.
If the work is not documented, award N2 for a correct answer.
(d) (i) $r=\frac{1}{2}$
(ii) For attempting to use infinite sum formula for a GP

$$
S=\frac{-8}{1-\frac{1}{2}}
$$

$$
S=-16
$$

Note: Award M0A0 if candidates use a value of r where $r>1$, or $r<-1$.

