Subject : Math (Standard Level)

Topic: Functions and Equations

1. (a) attempt to form composition (in any order)
$(f \circ g)(x)=(x-1)^{2}+4 \quad\left(x^{2}-2 x+5\right)$
(b) METHOD 1
vertex of $f \circ g$ at $(1,4)$
evidence of appropriate approach
e.g. adding $\binom{3}{-1}$ to the coordinates of the vertex of $f \circ g$
vertex of h at $(4,3)$

METHOD 2

attempt to find $h(x)$
e.g. $((x-3)-1)^{2}+4-1, h(x)=(f \circ g)(x-3)-1$
$h(x)=(x-4)^{2}+3$
vertex of h at $(4,3)$
A1 N3
(c) evidence of appropriate approach
e.g. $(x-4)^{2}+3,(x-3)^{2}-2(x-3)+5-1$
simplifying
e.g. $h(x)=x^{2}-8 x+16+3, x^{2}-6 x+9-2 x+6+4$
$h(x)=x^{2}-8 x+19$
AG N0
(d) METHOD 1
equating functions to find intersection point
e.g. $x^{2}-8 x+19=2 x-6, y=h(x)$
$x^{2}-10 x+25=0$
evidence of appropriate approach to solve
e.g. factorizing, quadratic formula
appropriate working
e.g. $(x-5)^{2}=0$
$x=5(p=5)$

METHOD 2

attempt to find $h^{\prime}(x)$
(M1)
A1
$h^{\prime}(x)=2 x-8$
$e . g$. gradient at $p=2$
$2 x-8=2(2 x=10)$
A1
$x=5$
A1 N3
2. (a) Evidence of attempting to form composition

Correct substitution $(h \circ g)(x)=\frac{5(3 x-2)}{(3 x-2)-4}$
$=\frac{5(3 x-2)}{(3 x-6)} \quad\left(=\frac{15 x-10}{3 x-6}\right)\left(=\frac{5(3 x-2)}{3(x-2)}\right)$
A1 N2
(b) Evidence of using numerator $=0$
eg $15 x-10=0(3 x-2=0)$ $x=\frac{2}{3} \quad(=0.667)$

A2 N3
3. (a) For attempting to complete the square or expanding $y=2(x-c)^{2}+d$, or for showing the vertex is at $(3,5)$
$y=2(x-3)^{2}+5 \quad($ accept $c=3, d=5)$
A1A1 N2
(b) (i) $\quad k=2$

A1 N1
(ii) $p=3$

A1 N1
(iii) $q=5$
4. (a) $p=-\frac{1}{2}, q=2$
or vice versa
(b) By symmetry C is midway between p, q

Note: This (M1) may be gained by implication.
$\Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
(A1) (C2)
5. (a) Initial mass $\Rightarrow t=0$

$$
\begin{equation*}
\operatorname{mass}=4 \tag{A1}
\end{equation*}
$$

(A1) (C2)
(b) $\quad 1.5=4 \mathrm{e}^{-0.2 t} \quad\left(\right.$ or $\left.0.375=\mathrm{e}^{-0.2 t}\right)$ $\ln 0.375=-0.2 t$ $t=4.90$ hours
(A1) (C4)
6.
(a) (i) $h=-1$
(ii) $k=2$
(A2) (C2)
(A1) (C1)
(b) $\mathrm{a}(1+1)^{2}+2=0$
(A1) (C3)
7. (a) $y=(x-1)^{2}$
(b) $y=4(x-1)^{2}$
(A2) (C2)
(A1) (C1)
(c) $y=4(x-1)^{2}+3$
(A1) (C1)
Note: Do not penalize if these are correctly expanded.
8. (a) $a=3, b=4$
(A1)

$$
f(x)=(x-3)^{2}+4
$$

A1 (C2)
(b) $y=(x-3)^{2}+4$

METHOD 1

$$
\begin{align*}
& x=(y-3)^{2}+4 \\
& x-4=(y-3)^{2} \tag{M1}\\
& \sqrt{x-4}=y-3 \tag{A1}\\
& y=\sqrt{x-4}+3
\end{align*}
$$

METHOD 2

$y-4=(x-3)^{2}$
$\sqrt{y-4}=x-3$
$\sqrt{y-4}+3=x$
$y=\sqrt{x-4}+3$
$\Rightarrow f^{-1}(x)=\sqrt{x-4}+3$
(A1) 3
(c) $x \geq 4$
(A1)(C1)
9. $y=(x+2)(x-3)$

$$
=x^{2}-x-6
$$

Therefore, $0=4-2 p+q$

OR

$y=x^{2}-x-6$
(M1)
(A1)
$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 2)$
(C3)
OR

$$
\begin{aligned}
& 0=4-2 p+q \\
& 0=9+3 p+q \\
& p=-1, q=-6
\end{aligned}
$$

10. (a) At $t=2, N=10 \mathrm{e}^{0.4(2)}$
$N=22.3$ (3 sf)
Number of leopards $=22$
(b) If $N=100$, then solve $100=100 \mathrm{e}^{0.4 t}$
$10=\mathrm{e} 04^{t}$
$\ln 10=0.4 t$
$t=\frac{\ln 10}{0.4} \sim 5.76$ years (3 sf)
(A1)
11. Discriminant $\Delta=b^{2}-4 a c\left(=(-2 k)^{2}-4\right)$ $\Delta>0$

Note: Award (M1)(M0) for $\Delta \geq 0$.
$(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0$

EITHER

$$
\begin{equation*}
4 k^{2}>4\left(k^{2}>1\right) \tag{A1}
\end{equation*}
$$

OR

$4(k-1)(k+1)>0$
OR

$$
\begin{equation*}
(2 k-2)(2 k+2)>0 \tag{A1}
\end{equation*}
$$

THEN

$k<-1$ or $k>1$

$$
\text { Note: Award (A1) for }-1<k<1
$$

12. $4 x^{2}+4 k x+9=0$

Only one solution $\Rightarrow b^{2}-4 a c=0$
$16 k^{2}-4(4)(9)=0$
$k^{2}=9$
$k= \pm 3$
But given $k>0, k=3$
OR
One solution $\Rightarrow\left(4 x^{2}+4 k x+9\right)$ is a perfect square
$4 x^{2}+4 k x+9=(2 x \pm 3)^{2}$ by inspection
given $k>0, k=3$
(A1) (C4)
13. (a) $f(x)=x^{2}-6 x+14$
$f(x)=x^{2}-6 x+9-9+14$
$f(x)=(x-3)^{2}+5$
(b) Vertex is $(3,5)$
(A1)(A1)
14. (a) (i) $p=2$
(A2) (C2)
(ii) $10=\frac{q}{3-2}$ (or equivalent)
(M1)

$$
\begin{equation*}
q=10 \tag{A1}
\end{equation*}
$$

(b) Reflection, in x-axis
(A1)(A1) (C2)
15. (a) $2 x^{2}-8 x+5=2\left(x^{2}-4 x+4\right)+5-8$
(M1)
(A1)(A1)(A1)
$\Rightarrow a=2, p=2, q=-3$
(b) Minimum value of $2(x-2)^{2}=0$ (or minimum value occurs when $x=2$) (Ml) \Rightarrow Minimum value of $f(x)=-3$
OR
(M1)(A1) (C2)

[6]

16. (a) For a reasonable attempt to complete the square, (or expanding)
e.g. $3 x^{2}-12 x+11=3\left(x^{2}-4 x+4\right)+11-12$

$$
f(x)=3(x-2)^{2}-1(\text { accept } h=2, k=1)
$$

(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4) \quad$ M1
so the new function is $3(x-5)^{2}+4($ accept $p=5, q=4) \quad$ A1A1 N2

METHOD 2

$\begin{array}{lrl}g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5 \\ =3(x-5)^{2}+4(\operatorname{accept} p=5, q=4) & \text { M1 } \\ \text { A1A1 } 2\end{array}$
17. One solution \Rightarrow discriminant $=0$

$$
\begin{align*}
3^{2}-4 k & =0 \tag{M2}\\
9 & =4 k \tag{A2}\\
k & =\frac{9}{4}\left(=2 \frac{1}{4}, 2.25\right) \tag{A2}
\end{align*}
$$

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.
18. (a) (i) $m=3$

A2 N2
(ii) $p=2$

A2 N 2
(b) Appropriate substitution M1
$e g 0=d(1-3)^{2}+2,0=d(5-3)^{2}+2,2=d(3-1)(3-5)$ $d=-\frac{1}{2}$

A1 N1
19. (a)
(i) $x=10$
(ii) $y=8$
(A1) (N1)
(A1) (N1)
(b) (i) $6.4($ or $(0,6.4))$
(A1) (N1)
(ii) $8($ or $(8,0))$
(A1) (N1)
(c)

(d) There is a vertical translation of 8 units.
(accept translation of $\binom{0}{8}$)
(A2) (N2)
20. (a) For a reasonable attempt to complete the square, (or expanding)
$3 x^{2}-12 x+11=3\left(x^{2}-4 x+4\right)+11-12$ $=3(x-2)^{2}-1 \quad($ Accept $h=2, k=1)$

A1A1 2
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4)$
so the new function is $3(x-5)^{2}+4$ (Accept $\left.p=5, q=4\right)$
A1A1
2

METHOD 2

$\begin{array}{lrl}g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5 & \text { M1 } \\ =3(x-5)^{2}+4(\text { Accept } p=5, q=4) & \text { A1A1 } & 2\end{array}$
21. (a) evidence of obtaining the vertex
e.g. a graph, $x=-\frac{b}{2 a}$, completing the square
$f(x)=2(x+1)^{2}-8$
A2 N3
(b) $\quad x=-1$ (equation must be seen)

A1 N1
(c) $\quad f(x)=2(x-1)(x+3)$
22. $10000 \mathrm{e}^{-0.3 \mathrm{t}}=1500$

For taking logarithms
$-0.3 t \ln \mathrm{e}=\ln 0.15$
$t=\frac{\ln 0.15}{-0.3}$
$=6.32$
7 (years)
Note: Candidates may use a graphical method. Award (A1) for setting up the correct equation, (M1)(A1) for a sketch, (A1) for showing the point of intersection, (A1) for 6.32, and (A1) for 7 .
23. (a) Vertex is $(4,8)$
(b) Substituting $-10=a(7-4)^{2}+8$

M1
A1 N1
(c) For y-intercept, $x=0$
$y=-24$
(A1)
A1 N 2
[6]
24. (a) in any order
translated 1 unit to the right
stretched vertically by factor 2
A1 N1
A1 N1
(b) METHOD 1

Finding coordinates of image on g
e.g. $-1+1=0,1 \times 2=2,(-1,1) \rightarrow(-1+1,2 \times 1),(0,2)$

P is $(3,0)$
(A1)(A1)
A1A1 N4

METHOD 2

$h(x)=2(x-4)^{2}-2$
P is $(3,0)$
(A1)(A1)
A1A1 N4
25. (a)

Note: Award Al for approximately correct (reflected) shape, A1 for right end point in circle, Al for through (1, 0).
(b) $0 \leq y \leq 3.5$

A1 N1
(c) interchanging x and y (seen anywhere)
e.g. $x=\mathrm{e}^{0.5 y}$
evidence of changing to \log form
e.g. $\ln x=0.5 y, \ln x=\ln \mathrm{e}^{0.5 y}$ (any base), $\ln x=0.5 y \ln \mathrm{e}$ (any base)
$f^{-1}(x)=2 \ln x$
A1 N1
26. (a)

Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex and all intercepts approximately correct.
(b) (i) $g(-3)=f(0)$

$$
f(0)=-1.5
$$

(A1)

A1 N2

A1A1 N2
27. (a) attempt to form composite
e.g. $g(7-2 x), 7-2 x+3$
$(g \circ f)(x)=10-2 x$
(b) $\quad g^{-1}(x)=x-3$
(c) METHOD 1
valid approach
e.g. $g^{-1}(5), 2, f(5)$
$f(2)=3$
A1 N2 2

METHOD 2

attempt to form composite of f and g^{-1}
e.g. $\left(f \circ g^{-1}\right)(x)=7-2(x-3), 13-2 x$
$\left(f \circ g^{-1}\right)(5)=3$
A1 N2 2
28. (a) attempt to apply rules of logarithms
$e . g . \ln a^{b}=b \ln a, \ln a b=\ln a+\ln b$
correct application of $\ln a^{b}=b \ln a$ (seen anywhere)
e.g. $3 \ln x=\ln x^{3}$
correct application of $\ln a b=\ln a+\ln b$ (seen anywhere)
e.g. $\ln 5 x^{3}=\ln 5+\ln x^{3}$
so $\ln 5 x^{3}=\ln 5+3 \ln x$
$g(x)=f(x)+\ln 5(\operatorname{arcept} g(x)=3 \ln x+\ln 5)$
(b) transformation with correct name, direction, and value
e.g. translation by $\binom{0}{\ln 5}$, shift up by $\ln 5$, vertical translation of $\ln 5$
29. (a) $(1,-2)$
(b) $\quad g(x)=3(x-1)^{2}-2($ accept $p=1, q=-2)$
(c) $(1,2)$

A1A1 N2 2

A1A1 N2

A1A1 N2 2
30. (a) attempt to form composite
e.g. $f(2 x-5)$
$h(x)=6 x-15$
A1 N2 2
(b) interchanging x and y
evidence of correct manipulation
e.g. $y+15-6 x, \frac{x}{6}=y-\frac{5}{2}$
$h^{-1}(x)=\frac{x+15}{6}$
A1 N3 3
[5]
31. (a) $q=-2, r=4$ or $q=4, r=-2$

A1A1 N2
(b) $x=1$ (must be an equation)
(c) substituting $(0,-4)$ into the equation
e.g. $-4=p(0-(-2))(0-4),-4=p(-4)(2)$
correct working towards solution
A1 N1
e.g. $-4=-8 p$
$p=\frac{4}{8}\left(=\frac{1}{2}\right)$
32. (a) evidence of setting function to zero
e.g. $f(x)=0,8 x=2 x^{2}$
evidence of correct working
e.g. $0=2 x(4-x), \frac{-8 \pm \sqrt{64}}{-4}$
x-intercepts are at 4 and $0(\operatorname{accept}(4,0)$ and $(0,0)$, or $x=4, x=0)$
(b) (i) $x=2$ (must be equation)
(ii) substituting $x=2$ into $f(x)$
33. (a) interchanging x and y (seen anywhere)
e.g. $x=\log \sqrt{y}$ (accept any base)
evidence of correct manipulation
e.g. $3^{x}=\sqrt{y}, 3^{y}=x^{\frac{1}{2}}, x=\frac{1}{2} \log _{3} y, 2 y=\log _{3} x$
$f^{-1}(x)=3^{2 x}$
AG N0
(b) $\quad y>0, f^{-1}(x)>0$

A1 N1
(c) METHOD 1
finding $g(2)=\log _{3} 2$ (seen anywhere)
attempt to substitute
e.g. $\left(f^{-1} \circ g\right)(2)=3^{\log _{3} 2}$
evidence of using \log or index rule
e.g. $\left(f^{-1} \circ g\right)(2)=3^{\log _{3} 4}, 3^{\log _{3} 2^{2}}$
$\left(f^{-1} \circ g\right)(2)=4$

METHOD 2

attempt to form composite (in any order)
e.g. $\left(f^{-1} \circ g\right)(x)=3^{2 \log _{3} x}$
evidence of using log or index rule
e.g. $\left(f^{-1} \circ g\right)(x)=3^{\log _{3} x^{2}}, 3^{\log _{3} x^{2}}$
$\left(f^{-1} \circ g\right)(x)=x^{2}$
A1
$\left(f^{-1} \circ g\right)(2)=4$

