Subject : Math (Standard Level) Topic: Functions and Equations

1.	(a)	attempt to form composition (in any order) $(f \circ g)(x) = (x-1)^2 + 4 (x^2 - 2x + 5)$	(M1) A1	N2
	(b)	METHOD 1		
		vertex of $f \circ g$ at $(1, 4)$	(A1)	
		evidence of appropriate approach	(M1)	
		<i>e.g.</i> adding $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ to the coordinates of the vertex of $f \circ g$		
		vertex of <i>h</i> at (4, 3)	A1	N3
		METHOD 2		
		attempt to find $h(x)$	(M1)	
		e.g. $((x-3)-1)^2 + 4 - 1$, $h(x) = (f \circ g)(x-3) - 1$		
		$h(x) = (x-4)^2 + 3$	(A1)	
		vertex of h at $(4, 3)$	A1	N3
	(c)	evidence of appropriate approach e.g. $(x - 4)^2 + 3$, $(x - 3)^2 - 2(x - 3) + 5 - 1$	(M1)	
		simplifying	A1	
		e.g. $h(x) = x^2 - 8x + 16 + 3$, $x^2 - 6x + 9 - 2x + 6 + 4$ $h(x) = x^2 - 8x + 19$	AG	N0
			AU	INU
	(d)	METHOD 1		
		equating functions to find intersection point e.g. $x^2 - 8x + 19 = 2x - 6$, $y = h(x)$	(M1)	
		$x^2 - 10x + 25 = 0$	A1	
		evidence of appropriate approach to solve <i>e.g.</i> factorizing, quadratic formula	(M1)	
		appropriate working $(y_1, y_2)^2 = 0$	A1	
		e.g. $(x-5)^2 = 0$ x = 5 (p = 5)	A1	N3
		$x = 5(\psi = 5)$	AI	1NJ

METHOD 2

attempt to find $h'(x)$ h'(x) = 2x - 8	(M1) A1		
recognizing that the gradient of the tangent is the derivative <i>e.g.</i> gradient at $p = 2$	(M1)		
$2x - 8 = 2 \ (2x = 10)$	A1		
x = 5	A1	N3	[12]
			[12]

2.	(a)	Evidence of attempting to form composition	(M1)		
		Correct substitution $(h \circ g)(x) = \frac{5(3x-2)}{(3x-2)-4}$	A1		
		$=\frac{5(3x-2)}{(3x-6)} \left(=\frac{15x-10}{3x-6}\right) \left(=\frac{5(3x-2)}{3(x-2)}\right)$	A1	N2	
	(b)	Evidence of using numerator $= 0$	(M1)		
		$eg \ 15x - 10 = 0 \ (3x - 2 = 0)$			
		$x = \frac{2}{3}$ (=0.667)	A2	N3	
		3			[6]
3.	(a)	For attempting to complete the square or expanding $y = 2(x - c)^2 + d$, or for showing the vertex is at (3, 5)	M1		
		$y = 2(x-3)^2 + 5$ (accept $c = 3, d = 5$)	A1A1	N2	
	(1-)	(i) $L = 2$	A 1	N1	
	(b)	(i) $k=2$	A1	N1	
		(ii) $p = 3$	A1	N1	
		(iii) $q = 5$	A1	N1	[6]

[6]

4. (a)
$$p = -\frac{1}{2}, q = 2$$
 (A1)(A1) (C2)

or vice versa

(b) By symmetry *C* is midway between *p*, *q* (M1) *Note: This* (M1) may be gained by implication.

$$\Rightarrow x \text{-coordinate is } \frac{-\frac{1}{2}+2}{2} = \frac{3}{4}$$
(A1) (C2)

5. Initial mass $\Rightarrow t = 0$ (A1) (a) mass = 4(A1) (C2) $1.5 = 4e^{-0.2t}$ (or $0.375 = e^{-0.2t}$) (b) (M2) $\ln 0.375 = -0.2t$ (M1) t = 4.90 hours (A1) (C4) [6] (A2) (C2) 6. (a) (i) h = -1*k* = 2 (A1) (C1) (ii) $a(1+1)^2 + 2 = 0$ a = -0.5(M1)(A1) (b) (A1) (C3) P.SMI [6] (a) $y = (x-1)^2$ 7. (A2) (C2) (b) $y = 4(x-1)^2$ (A1) (C1) $y = 4(x-1)^2 + 3$ (c) (A1) (C1)

Note: Do not penalize if these are correctly expanded.

[4]

8. (a)
$$a = 3, b = 4$$
 (A1)
 $f(x) = (x - 3)^2 + 4$ A1 (C2)

	(b) $y = (x-3)^2 + 4$		
	METHOD 1		
	$x = (y - 3)^2 + 4$	(M1)	
	$x - (y - 3)^{2}$ $x - 4 = (y - 3)^{2}$		
	$\frac{1}{\sqrt{x-4}} = y-3$	(M1)	
	$y = \sqrt{x - 4} + 3$	(A1) 3	
	•	(11) 5	
	METHOD 2		
	$y - 4 = (x - 3)^2$	(M1)	
	$\sqrt{y-4} = x-3$	(M1)	
	$\sqrt{y-4} + 3 = x$		
	$y = \sqrt{x - 4} + 3$		
	$\Rightarrow f^{-1}(x) = \sqrt{x-4} + 3$	(A1) 3	
	(c) $x \ge 4$	(A1)(C1)	[6]
9.	y = (x + 2)(x - 3) = $x^2 - x - 6$ Therefore, $0 = 4 - 2p + q$ OR	(M1) (A1) (A1)(A1)(C2)(C2)	
	$y = x^2 - x - 6$	(C3)	
	OR		
	$ \begin{array}{c} 0 = 4 - 2p + q \\ 0 = 9 + 3p + q \\ p = -1, q = -6 \end{array} $	(A1) (A1) (A1)(A1)(C2)(C2)	[4]

10.	(a)	At $t = 2$, $N = 10e^{0.4(2)}$	(M1)
		N = 22.3 (3 sf) Number of leopards = 22	(A1)

	(b) If $N = 100$, then solve $100 = 100e^{0.4t}$ $10 = e04^{t}$ $\ln 10 = 0.4t$ $t = \frac{\ln 10}{0.4} \sim 5.76$ years (3 sf) (A1)	[4]
11.	Discriminant $\Delta = b^2 - 4ac \ (= (-2k)^2 - 4)$ (A1) $\Delta > 0$ (M2) <i>Note:</i> Award (M1)(M0) for $\Delta \ge 0$.	
	$(2k)^2 - 4 > 0 \Longrightarrow 4k^2 - 4 > 0$	
	EITHER $4k^2 > 4 (k^2 > 1)$ (A1) OR	
	$4(k-1)(k+1) > 0 \tag{A1}$	
	OR (2k-2)(2k+2) > 0 (A1)	
	THEN $k < -1 \text{ or } k > 1$ (A1)(A1) Note: Award (A1) for $-1 < k < 1$.	(C6) [6]
12.	$4x^2 + 4kx + 9 = 0$	
	Only one solution $\Rightarrow b^2 - 4ac = 0$ (M1) $16k^2 - 4(4)(9) = 0$ (A1)	
	$k^{2} = 9$ $k = \pm 3$ (A1) But given $k > 0, k = 3$ (A1)	(C4)
	OR	
	One solution $\Rightarrow (4x^2 + 4kx + 9)$ is a perfect square (M1) $4x^2 + 4kx + 9 = (2x \pm 3)^2$ by inspection (A2) given $k > 0, k = 3$ (A1)	(C4) [4]

13.	(a)	$f(x) = x^2 - 6x + 14$	
		$f(x) = x^2 - 6x + 9 - 9 + 14$	(M1)
		$f(x) = (x-3)^2 + 5$	(M1)

[4]

14.	(a)	(i) $p = 2$	(A2)	(C2)		
		(ii) $10 = \frac{q}{3-2}$ (or equivalent)	(M1)			
		$\begin{array}{l} 3-2\\ q=10 \end{array}$	(A1)	(C2)		
	(b)	Reflection, in x-axis	(A1)(A1)	(C2)		[6]
15.	(a)	$2x^{2} - 8x + 5 = 2(x^{2} - 4x + 4) + 5 - 8$ = 2(x - 2) ² - 3 => a = 2, p = 2, q = -3 (A1)	(M1))(A1)(A1)	(C4)		
	(b)	Minimum value of $2(x - 2)^2 = 0$ (or minimum value occurs when $x \Rightarrow$ Minimum value of $f(x) = -3$ OR Minimum value occurs at $(2, -3)$	= 2) (Ml) (A1) (M1)(A1)			[6]
16.	(a)	For a reasonable attempt to complete the square, (or expanding) e.g. $3x^2 - 12x + 11 = 3(x^2 - 4x + 4) + 11 - 12$ $f(x) = 3(x - 2)^2 - 1$ (accept $h = 2, k = 1$)		(M1) .1A1	N3	
	(b)	METHOD 1 Vertex shifted to $(2 + 3, -1 + 5) = (5, 4)$ so the new function is $3(x - 5)^2 + 4$ (accept $p = 5, q = 4$) METHOD 2 $g(x) = 3((x - 3) - h)^2 + k + 5 = 3((x - 3) - 2)^2 - 1 + 5$ $= 3(x - 5)^2 + 4$ (accept $p = 5, q = 4$)		M1 (1A1) M1 (1A1)	N2 N2	[6]

17. One solution \Rightarrow discriminant = 0

$$3^2 - 4k = 0$$

$$9 = 4k$$

$$k = \frac{9}{4} \left(= 2\frac{1}{4}, 2.25 \right)$$
(A2) (C6)

(M2) (A2)

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.

18.	(a)	(i) $m = 3$	A2	N2	
		(ii) $p = 2$	A2	N2	
	(b)	Appropriate substitution $eg \ 0 = d(1-3)^2 + 2, \ 0 = d(5-3)^2 + 2, \ 2 = d(3-1)(3-5)$	M1		
		$d = -\frac{1}{2}$	A1	N1	
					[6]
19.	(a)	(i) $x = 10$	(A1)	(N1)	
		(ii) $y = 8$	(A1)	(N1)	
	(b)	(i) 6.4 (or $(0, 6.4)$)		(N1)	
		(ii) 8 (or (8, 0))	(A1)	(N1)	
		EDAV			

[6]

20.	(a)	For a reasonable attempt to complete the square, (or expanding)		
		$3x^2 - 12x + 11 = 3(x^2 - 4x + 4) + 11 - 12$		
		$= 3(x-2)^2 - 1$ (Accept $h = 2, k = 1$)	A1A1	2

(b) METHOD 1

	(b)	METHOD 1			
		Vertex shifted to $(2 + 3, -1 + 5) = (5, 4)$	M1		
		so the new function is $3(x-5)^2 + 4$ (Accept $p = 5, q = 4$)	A1A1	2	
		METHOD 2			
		$g(x) = 3((x-3) - h)^{2} + k + 5 = 3((x-3)-2)^{2} - 1 + 5$	M1		
		$= 3(x-5)^{2} + 4$ (Accept $p = 5, q = 4$)	A1A1	2	
					[6]
21.	(a)	evidence of obtaining the vertex	(M1)		
		<i>e.g.</i> a graph, $x = -\frac{b}{2a}$, completing the square			
		$f(x) = 2(x+1)^2 - 8$	A2	N3	
	(b)	x = -1 (equation must be seen)	A1	N1	
	(0)	x i (equation must be seen)		111	
	(a)	f(x) = 2(x - 1)(x + 3)	A1A1	N2	
	(\mathbf{c})	f(x) - 2(x - 1)(x + 5)	AIAI	112	[6]
22	10.0	$00e^{-0.3t} = 1500$	(1 1)		
22.		aking logarithms	(A1) (M1)		
		$0.3t \ln e = \ln 0.15$	(A1)		
	lı	10.15	(A 1)		
	<i>l</i> = -	$\frac{10.15}{-0.3}$	(A1)		
	= 6	32	(A1)		
	7 (ye	ears)	(A1)	(C6)	
		Note: Candidates may use a graphical method.			
		Award $(A1)$ for setting up the correct			
		equation, (M1)(A1) for a sketch, (A1) for showing the point of intersection,			
		(A1) for 6.32, and (A1) for 7.			
					[6]
23.	(a)	Vertex is (4, 8)	A1A1	N2	
	(h)	Substituting $-10 = a(7-4)^2 + 8$	M1		

(b) Substituting $-10 = a(7-4)^2 + 8$ M1 a = -2 A1 N1

9

	(c)	For <i>y</i> -intercept, $x = 0$ y = -24	(A1) A1	N2		[6]
24.	(a)	in any order translated 1 unit to the right stretched vertically by factor 2		A1 A1	N1 N1	
	(b)	METHOD 1				
		Finding coordinates of image on g	(A1))(A1)		
		<i>e.g.</i> $-1 + 1 = 0, 1 \times 2 = 2, (-1, 1) \rightarrow (-1 + 1, 2 \times 1), (0, 2)$ P is (3, 0)	I	A1A1	N4	
		METHOD 2				
		$h(x) = 2(x-4)^2 - 2$	(A1))(A1)		
		P is (3, 0)	I	A1A1	N4	[6]
25.	(a)					
		6 L	A1A1A1	N3		
		<i>Note:</i> Award A1 for approximately correct (reflected A1 for right end point in circle, A1 for through				

(b) $0 \le y \le 3.5$

A1 N1

(c)	interchanging x and y (seen anywhere) e.g. $x = e^{0.5y}$	M1		
	evidence of changing to log form e.g. $\ln x = 0.5y$, $\ln x = \ln e^{0.5y}$ (any base), $\ln x = 0.5y$ ln e (any base)			
	$f^{-1}(x) = 2 \ln x$	A1	N1	

27. (a) attempt to form composite e.g. g(7-2x), 7-2x+3 $(g \circ f)(x) = 10-2x$ (M1) A1 N2 2

- (b) $g^{-1}(x) = x 3$ A1 N1 1
- (c) METHOD 1

[7]

valid approach	(M1)
$e.g. g^{-1}(5), 2, f(5)$	
f(2) = 3	A1 N2 2

METHOD 2

attempt to form composite of f and g^{-1} (M1)e.g. $(f \circ g^{-1})(x) = 7 - 2(x - 3), 13 - 2x$ (M1) $(f \circ g^{-1})(5) = 3$ A1N2

[5]

28.	(a)	attempt to apply rules of logarithms	(M1)			
		e.g. $\ln a^b = b \ln a$, $\ln ab = \ln a + \ln b$				
		correct application of $\ln a^b = b \ln a$ (seen anywhere)	A1			
		$e.g. \ 3\ln x = \ln x^3$				
		correct application of $\ln ab = \ln a + \ln b$ (seen anywhere)	A1			
		<i>e.g.</i> $\ln 5x^3 = \ln 5 + \ln x^3$				
		so $\ln 5x^3 = \ln 5 + 3\ln x$				
		$g(x) = f(x) + \ln 5 (\operatorname{accept} g(x) = 3\ln x + \ln 5)$	A1	N1	4	
	(b)	transformation with correct name, direction, and value	A3			
		<i>e.g.</i> translation by $\begin{pmatrix} 0 \\ \ln 5 \end{pmatrix}$, shift up by ln 5, vertical translation of ln 5			3	
		MEDAB				[7]
29.	(a)	(1, -2)	A1A1	N2	2	
	(b)	$g(x) = 3(x-1)^2 - 2$ (accept $p = 1, q = -2$)	A1A1	N2	2	
	(c)	(1, 2)	A1A1	N2	2	[6]

30.	(a)	attempt to form composite	(M1)			
		e.g. f(2x-5)				
		h(x) = 6x - 15	A1	N2	2	
	(b)	interchanging x and y	(M1)			
		evidence of correct manipulation	(A1)			
		<i>e.g.</i> $y+15-6x$, $\frac{x}{6} = y - \frac{5}{2}$				
		$h^{-1}(x) = \frac{x+15}{6}$	A1	NI2	3	
		$n(x) = \frac{1}{6}$	AI	N3	3	
						[5]
		A PAN				
31.	(a)	q = -2, r = 4 or $q = 4, r = -2$		A1A1	N2	
	(b)	x = 1 (must be an equation)		A1	N1	
	(c)	substituting $(0, -4)$ into the equation		(M1)		
		e.g4 = p(0 - (-2))(0 - 4), -4 = p(-4)(2)				
		correct working towards solution		(A1)		
		e.g4 = -8p				
		$p = \frac{4}{8} \left(= \frac{1}{2} \right)$		A1	N2	
						[6]
32.	(a)	evidence of setting function to zero		(M1)		
021	(u)	$e.g. f(x) = 0, 8x = 2x^2$		(111)		
		evidence of correct working		A1		
		-				
		<i>e.g.</i> $0 = 2x(4-x), \frac{-8 \pm \sqrt{64}}{-4}$				
		x-intercepts are at 4 and 0 (accept (4, 0) and (0, 0), or $x = 4$, $x = 0$)		A1A1N	JINI	
	(b)	(i) $x = 2$ (must be equation)		A1	N1	
	(b)	(i) $x = 2$ (must be equation)		AI	1 N 1	

(ii) substituting x = 2 into f(x) (M1) y = 8 A1 N2 [7]

33.	(a)	interchanging x and y (seen anywhere)	(M1)		
		<i>e.g.</i> $x = \log \sqrt{y}$ (accept any base)			
		evidence of correct manipulation	A1		
		<i>e.g.</i> $3^{x} = \sqrt{y}, 3^{y} = x^{\frac{1}{2}}, x = \frac{1}{2} \log_{3} y, 2y = \log_{3} x$			
		$f^{-1}(x) = 3^{2x}$	AG	N0	
	(b)	$y > 0, f^{-1}(x) > 0$	A1	N1	
	(c)	METHOD 1			
		finding $g(2) = \log_3 2$ (seen anywhere)	A1		
		attempt to substitute	(M1)		
		$e.g. (f^{-1} \circ g)(2) = 3^{\log_3 2}$			
		evidence of using log or index rule	(A1)		
		$e.g. (f^{-1} \circ g)(2) = 3^{\log_3 4}, 3^{\log_3 2^2}$			
		$(f^{-1} \circ g)(2) = 4$	A1	N1	
		METHOD 2			
		attempt to form composite (in any order)	(M1)		
		<i>e.g.</i> $(f^{-1} \circ g)(x) = 3^{2 \log_3 x}$			
		evidence of using log or index rule $e.g.(f^{-1} \circ g)(x) = 3^{\log_3 x^2}, 3^{\log_3 x^2}$	(A1)		
		$(f^{-1} \circ g)(x) = x^2$	A1		
		$(f^{-1} \circ g)(2) = 4$	A1	N1	
					[7]