Subject – Math(Higher Level) Topic - Statistics and Probability Year - Nov 2011 – Nov 2017 Paper -2

Question -1

(a)	$m = \frac{300}{60} = 5$ P(X = 0) = 0.00674	(A1) A1	
	or e^{-5}		
(b)	$\mathbf{E}(X) = 5 \times 2 = 10$	AI	
(c)	$P(X > 10) = 1 - P(X \le 10)$	(M1)	
	= 0.417	AI	[5 marks]
Ques	tion-2		
(a)	$X \sim B(5, 0.1)$	(M1)	
	P(X = 2) = 0.0729	AI	
(b)	$P(X \ge 1) = 1 - P(X = 0)$	(M1)	
	$0.9 < 1 - \left(\frac{9}{10}\right)^n$	(M1)	
	$n > \frac{\ln 0.1}{\ln 0.9}$		
	n = 22 days	AI	[5 marks]
	CDI		

(a)
$$X \sim N(60.33, 1.95^2)$$

 $P(X < x) = 0.2 \Rightarrow x = 58.69 \text{ m}$ (M1)A1

[2 marks]

(b) z = -0.8416... (A1) $-0.8416 = \frac{56.52 - 59.39}{\sigma}$ (M1) $\sigma \approx 3.41$ A1

(c) Jan
$$X \sim N(60.33, 1.95^2)$$
; Sia $X \sim N(59.50, 3.00^2)$
(i) Jan: $P(X > 65) \approx 0.00831$ (M1)A1
Sia: $P(Y > 65) \approx 0.0334$ A1
Sia is more likely to qualify R1
Note: Only award R1 if (M1) has been awarded.
(ii) Jan: $P(X \ge 1) = 1 - P(X = 0)$ (M1)
 $= 1 - (1 - 0.00831...)^3 \approx 0.0247$ (M1)A1
Sia: $P(Y \ge 1) = 1 - P(Y = 0) = 1 - (1 - 0.0334...)^3 \approx 0.0968$ A1
Note: Accept 0.0240 and 0.0969.
hence, $P(X \ge 1$ and $Y \ge 1) = 0.0247 \times 0.0968 = 0.00239$ (M1)A1
[10 marks]

Total [15 marks]

Question -4

(b)

 $2 \times$

(a)
$$\binom{10}{6} = 210$$
 (M1)A

1)A1

[2 marks]

[3 marks]

(M1)A1

[2 marks]

Total [7 marks]

(c)
$$\frac{112}{210} \left(= \frac{8}{15} = 0.533 \right)$$

=112

Note: Accept 210 - 28 - 70 = 112

Question -5

(a) 50	A1 [1 mark]
(b) Lower quartile is 4 so at least 26 obtained a 4 Lower bound is 26	R1 A1
Minimum is 2 but the rest could be 4	R1
So upper bound is 49	A1
Note: Do not allow follow through for A marks.	
Note: If answers are incorrect award ROAO , if argument is correct but no lower/upper bound is stated award R1AO ; award ROA1 for correct without explanation or incorrect explanation.	
	[4 marks]
GALES	[4 marks] Total [5 marks]
uestion – 6	
$X \sim \operatorname{Po}(m)$ P(X=2)=P(X<2)	
$X \sim \operatorname{Po}(m)$ P(X=2)=P(X<2)	Total [5 marks]
$X \sim Po(m)$	Total [5 marks] (M1)
$X \sim Po(m)$ P(X=2) = P(X < 2) $\frac{1}{2}m^2 e^{-m} = e^{-m}(1+m)$	Total [5 marks] (M1) (A1)(A1)
$X \sim Po(m)$ P(X = 2) = P(X < 2) $\frac{1}{2}m^{2}e^{-m} = e^{-m}(1 + m)$ $m = 2.73 (1 + \sqrt{3})$	Total [5 marks] (M1) (A1)(A1) A1 A1 A1
$X \sim Po(m)$ P(X = 2) = P(X < 2) $\frac{1}{2}m^{2}e^{-m} = e^{-m}(1 + m)$ $m = 2.73 (1 + \sqrt{3})$ in four hours the expected value is 10.9 $(4 + 4\sqrt{3})$	Total [5 marks] (M1) (A1)(A1) A1

Question -7

(a) (i)
$$X \sim Po(11)$$
 (M1)
P(X \le 11) = 0.579 (M1)A1

(ii)
$$P(X > 8 | X < 12) =$$
 (M1)

$$= \frac{P(8 < X < 12)}{P(X < 12)} \left(\text{or } \frac{P(X \le 11) - P(X \le 8)}{P(X \le 11)} \text{ or } \frac{0.3472...}{0.5792...} \right)$$

$$= 0.600$$
A1
N

[6 marks]

(b)	(i)	$Y \sim Po(m)$		
		P(Y > 3) = 0.24	(M1)	
		$P(Y \le 3) = 0.76$	(M1)	
		$e^{-m}\left(1+m+\frac{1}{2}m^2+\frac{1}{6}m^3\right)=0.76$	(A1)	
	Not	te: At most two of the above lines can be implied.		
	•	Attempt to solve equation with GDC $m = 2.49$	(M1) A1	
	(ii)	A~Po(4.98)		
		$P(A > 5) = 1 - P(A \le 5) = 0.380$	M1A1	
		<i>W</i> ~B(4, 0.380)	(M1)	
		$P(W \ge 2) = 1 - P(W \le 1) = 0.490$	M1A1	
				[10 marks]
(c)	P(A	(<25) = 0.8, P(A<18) = 0.4		
	$\frac{25}{\sigma}$	$\frac{\mu}{2} = 0.8416$	(M1)(A1)	
	$\frac{18}{\sigma}$	$\frac{\mu}{2} = -0.2533$ (or -0.2534 from tables)	(M1)(A1)	
	solvi	ng these equations	(M1)	

 $\mu = 19.6$ Note: Accept just 19.6, 19 or 20; award A0 to any other final answer.

[6 marks]

Total [22 marks]

A1

Question -8

(a)
$$E(X) = np$$

 $\Rightarrow 10 = 30p$
 $\Rightarrow p = \frac{1}{3}$
A1

[1 mark]

(b)
$$P(X=10) = {\binom{30}{10}} \left(\frac{1}{3}\right)^{10} \left(\frac{2}{3}\right)^{20} = 0.153$$
 (M1)A1

(c)
$$P(X \ge 15) = 1 - P(X \le 14)$$
 (M1)
= 1 - 0.9565...= 0.0435 A1

[2 marks]

Total [5 marks]

M1(A1)

A1

Question -9

(a)
$$P(X=5) = P(X=3) + P(X=4)$$

 $\frac{e^{-m}m^5}{5!} = \frac{e^{-m}m^3}{3!} + \frac{e^{-m}m^4}{4!}$
 $m^2 - 5m - 20 = 0$
 $\Rightarrow m = \frac{5 + \sqrt{105}}{2} = (7.62)$

$$\Rightarrow m = \frac{5 + \sqrt{105}}{2} = (7.62)$$
[3 marks]
(b) $P(X > 2) = 1 - P(X \le 2)$
 $= 1 - 0.018...$
 $= 0.982$
(M1)

[2 marks]

Total [5 marks]

a)
$$P(X=5) = P(X=3) + P(X=4)$$

 $\frac{e^{-m}m^5}{5!} = \frac{e^{-m}m^3}{3!} + \frac{e^{-m}m^4}{4!}$
 $m^2 - 5m - 20 = 0$
 $\Rightarrow m = \frac{5 + \sqrt{105}}{2} = (7.62)$

(a)
$$\int_{0}^{a} \frac{1}{1+x^{4}} dx = 1$$
 M2
 $a = 1.40$ *A1*

[3 marks]

(b)
$$E(X) = \int_0^a \frac{x}{1+x^4} dx$$

$$\left(= \frac{1}{2} \arctan(a^2) \right)$$

$$= 0.548$$
M1 A1

[2 marks]

Total [5 marks]

Question 11

(a)	(i)	P(X > 225) = 0.158	(M1)(A1)
		expected number = $450 \times 0.158 = 71.4$	A1

(ii) P(X < m) = 0.7 (M1) $\Rightarrow m = 213 \text{ (grams)}$ [5 marks] $270 - \mu$ 1.40 (M1) 41

(b)	$\frac{270-\mu}{\sigma} = 1.40$	(M1)A1
	$\frac{250-\mu}{\sigma} = -1.03$	A1
	Note: These could be seen in graphical form.	
	solving simultaneously	(M1)
	$\mu = 258, \sigma = 8.19$	AIAI

[6 marks]

 $X \sim N(80, 4^2)$ A1

 P(X > 82) = 0.3085... A1

 recognition of the use of binomial distribution.
 (M1)

 $X \sim B(5, 0.3085...)$ A1

 P(X = 3) = 0.140 A1

[3 marks]

Total [14 marks]

(c)

Question 12

$$\frac{\sum_{i=1}^{15} x_i}{15} = 11.5 \Rightarrow \sum_{i=1}^{15} x_i = 172.5$$
(A1)

new mean =
$$\frac{172.5 - 22.1}{14}$$
 (M1)

$$= 10.7428... = 10.7 (3sf)$$
 A1

$$\frac{\sum_{i=1}^{15} x_i^2}{15} - 11.5^2 = 9.3 \tag{M1}$$

$$\Rightarrow \sum_{i=1}^{n} x_i^2 = 2123.25$$

new variance = $\frac{2123.25 - 22.1^2}{14} - (10.7428...)^2$ (M1) = 1.37 (3sf) AI

[6 marks]

(a)
$$P(WWW) = 0.75 \times 0.375 \times 0.1875 = 0.0527 \ (3sf) \left(\frac{3}{4} \times \frac{3}{8} \times \frac{3}{16} = \frac{27}{512}\right)$$
 (M1)A1 [2 marks]

(b)

Total [8 marks]

Quesi	.1011 14		
(a)	$2.2 \times 6 \times 60 = 792$	(M1)A1	
			[2 marks]
(b)	$V \sim Po(2.2 \times 60)$	(M1)	
	P(V > 100) = 0.998	(M1)A1	
			[3 marks]
(c)	$(0.997801)^6 = 0.987$	(M1)A1	
			[2 marks]
(d)	$A \sim N(\mu, \sigma^2)$		
	$P(A < 35) = 0.29$ and $P(A > 55) = 0.23 \Rightarrow P(A < 55) = 0.77$		
	$P\left(Z < \frac{35-\mu}{\sigma}\right) = 0.29$ and $P\left(Z < \frac{55-\mu}{\sigma}\right) = 0.77$	(M1)	
	use of inverse normal	(M1)	
	$\frac{35-\mu}{\mu} = -0.55338$ and $\frac{55-\mu}{\mu} = 0.738846$		
	0 0	(A1)	
	solving simultaneously	(M1)	
	$\mu = 43.564 \text{ and } \sigma = 15.477$ $\mu = 43.6 \text{ and } \sigma = 15.5(3 \text{ sf})$	AIA1	
	$\mu = 43.0$ and $\theta = 13.3(381)$		[6 marks]
$\langle \cdot \rangle$	0.20m 100 x m 244.82	(MI)(A))	
(e)	$0.29n = 100 \Rightarrow n = 344.82$ P(A < 50) = 0.66121	(MI)(A1) (A1)	
	expected number of visitors under $50 = 228$	(M1)A1	
			[5 marks]
			[5 murks]
		Total	[18 marks]
	MEDABH		
	EDR		

$\frac{5 \times 6 + 6k + 7 \times 3 + 8 \times 1 + 9 \times 2 + 10 \times 1}{13 + k} = 6.5 $ (or equivalent)	(M1)(A1)(A1)	
ote: Award (M1)(A1) for correct numerator, and (A1) for correct denominate	or.	
$0.5k = 2.5 \Longrightarrow k = 5$	<u>A1</u>	
		[4 marks]

Question 16

Let X represent the length of time a journey takes on a particular day.

(a)	P(X > 15) = 0.0912112819 = 0.0912	(MI)A1	
(b)	Use of correct Binomial distribution $N \sim B(5, 0.091)$	(M1)	
	1 - 0.0912112819 = 0.9087887181		
	$1 - (0.9087887181)^5 = 0.380109935 = 0.380$	(MI)A1	
No	te: Allow answers to be given as percentages.		
			[5 marks]
Questio	on 17		
(a)	$X \sim Po(0.25T)$	(A1)	
1	Attempt to solve $P(X \le 3) = 0.6$	(M1)	
	T = 12.8453 = 13 (minutes)	AI	
Note:	Award A1M1A0 if T found correctly but not stated to the nearest minute.		
		1	3 marks]
(b) 1	et X_1 be the number of cars that arrive during the first interval and X_2		
l	be the number arriving during the second.		
	X_1 and X_2 are Po(2.5)	(A1)	

A_1 and A_2 are 10(2.5)	(AI)
P (all get on) = $P(X_1 \le 3) \times P(X_2 \le 3) + P(X_1 = 4) \times P(X_2 \le 2)$	
$+P(X_1 = 5) \times P(X_2 \le 1) + P(X_1 = 6) \times P(X_2 = 0)$	(M1)
= 0.573922 + 0.072654 + 0.019192 + 0.002285	(MI)
= 0.668 (053)	Al

[4 marks]

Total [7 marks]

(a)
$$X \sim Po(1.2)$$

 $P(X=3) \times P(X=0)$ (M1)
 $= 0.0867... \times 0.3011...$
 $= 0.0261$ A1

[2 marks]

(b) Three requests over two days can occur as (3, 0), (0, 3), (2, 1) or (1, 2). *R1* using conditional probability, for example

$$\frac{P(3,0)}{P(3 \text{ requests}, m=2.4)} = 0.125 \text{ or } \frac{P(2,1)}{P(3 \text{ requests}, m=2.4)} = 0.375$$
M1A1

expected income is $2 \times 0.125 \times US$ 120 + 2 × 0.375 × US 180

Award M1 for attempting to find the expected income including both

(3,0) and (2,1) cases.

= US\$30 + US\$135 = US\$165

A1 [5 marks]

M1

Total [7 marks]

Question 21

Note:

$$P\left(Z < \frac{780 - \mu}{\sigma}\right) = 0.92 \text{ and } P\left(Z < \frac{755 - \mu}{\sigma}\right) = 0.12$$
(M1)
use of inverse normal
$$\Rightarrow \frac{780 - \mu}{\sigma} = 1.405... \text{ and } \frac{755 - \mu}{\sigma} = -1.174...$$
(A1)
solving simultaneously (M1)

Note: Award *M1* for attempting to solve an incorrect pair of equations *eg*, inverse normal not used.

 $\mu = 766.385$ $\sigma = 9.6897$ $\mu = 12$ hrs 46 mins (= 766 mins) $\sigma = 10$ mins

Total [6 marks]

Al

AI

(a)
$$P(F) = \left(\frac{1}{7} \times \frac{7}{9}\right) + \left(\frac{6}{7} \times \frac{4}{9}\right)$$
 (M1)(A1)
Note: Award M1 for the sum of two products.
 $= \frac{31}{63}$ (=0.4920...) A1
[3 marks]
(b) Use of $P(S|F) = \frac{P(S \cap F)}{P(F)}$ to obtain $P(S|F) = \frac{1}{7} \times \frac{7}{9}$. M1
Note: Award M1 only if the numerator results from the product of two
probabilities.
 $= \frac{7}{31}$ (=0.2258...) [2 marks]
Total [5 marks]

(a) (i)
$$X \sim Po(0.6)$$

 $P(X=0) = 0.549 \ (=e^{-0.6})$ AI

(ii)
$$P(X \ge 3) = 1 - P(X \le 2)$$
 (M1)(A1)
= $1 - \left(e^{-0.6} + e^{-0.6} \times 0.6 + e^{-0.6} \times \frac{0.6^2}{2}\right)$
= 0.0231 AI

(iii)
$$Y \sim Po(2.4)$$
 (M1)
 $P(Y \le 5) = 0.964$ AI

(iv)
$$Z \sim B(12, 0.451...)$$
 (M1)(A1)

Note: Award M1 for recognising binomial and A1 for using correct parameters. P(Z=4) = 0.169AI [9 marks] $k\int_{1}^{3}\ln x\,\mathrm{d}x=1$ (b) (i) (M1) $(k \times 1.2958... = 1)$ k = 0.771702<u>A1</u> $E(X) = \int_{1}^{3} kx \ln x \, dx$ (ii) (A1) attempting to evaluate their integral (MI) = 2.27 AI (iii) x=3A1 (iv) $\int_{1}^{m} k \ln x \, dx = 0.5$ (M1) $k[x \ln x - x]_{1}^{m} = 0.5$ attempting to solve for m(M1) m = 2.34AI [9 marks] Total [18 marks]

Question 24

$X: \mathbf{N}(100, \sigma^2)$	
P(X < 124) = 0.68	(M1)(A1)
$\frac{24}{\sigma} = 0.4676$	(MI)
$\sigma = 51.315$	(A1)
variance=2630	Al
	[5 marks]

Notes: Accept use of P(X < 124.5) = 0.68 leading to variance = 2744.

(a)
$$\left(A\binom{6}{5}2^{5}B+3\binom{6}{4}2^{4}B^{2}\right)x^{5}$$
 M1A1A1
= $(192AB+720B^{2})x^{5}$ *A1*

[4 marks]

(b) METHOD 1 $x = \frac{1}{6}, A = \frac{3}{6} \left(= \frac{1}{2} \right), B = \frac{4}{6} \left(= \frac{2}{3} \right)$ AlAIAI

METHOD 2

P(5 eaten) = P(M eats 1) P(N eats 4) + P(M eats 0) P(N eats 5)	(M1)
$=\frac{1}{2}\binom{6}{4}\binom{1}{3}\binom{2}{3}\binom{2}{3}+\frac{1}{2}\binom{6}{5}\binom{1}{3}\binom{2}{3}$	(AI)(AI)
$=\frac{1}{2}\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)$ $=\frac{4}{81} (=0.0494)$	Al
	[4 marks]
	Total [8 marks]
MED B	
EDA	

$$P(S > 40) = 1 - P(S \le 40) = 0.513$$
 A1

(b) probability there were more than 10 on Monday AND more than 40 over the week probability there were more than 10 on Monday *M1*

possibilities for the numerator are:

there were more than 40 birds on the power line on Monday **R1** 11 on Monday and more than 29 over the course of the next 6 days R1 12 on Monday and more than 28 over the course of the next 6 days ... until 40 on Monday and more than 0 over the course of the next 6 days R1 hence if X is the number on the power line on Monday and Y, the number on the power line Tuesday - Sunday then the numerator is M1 $P(X > 40) + P(X = 11) \times P(Y > 29) + P(X = 12) \times P(Y > 28) + ...$ $+P(X = 40) \times P(Y > 0)$ $= P(X > 40) + \sum_{r=11}^{40} P(X = r) P(Y > 40 - r)$ $P(X > 40) + \sum_{r=11}^{40} P(X = r) P(Y > 40 - r)$ hence solution is AG P(X > 10)[5 marks] Total [7 marks] **X**ME

Question 27 (a) $\int_{2}^{3} (ax+b) dx (=1)$ M1A1 $\left[\frac{1}{2}ax^2 + bx\right]_2^3 (=1)$ AI $\frac{5}{2}a+b=1$ 5a+2b=2M1 AG [4 marks] (b) (i) $\int_{2}^{3} (ax^{2} + bx) dx (= \mu)$ M1A1 $\left[\frac{1}{3}ax^3 + \frac{1}{2}bx^2\right]_2^3 (=\mu)$ A1 $\frac{19}{3}a + \frac{5}{2}b = \mu$ A1 RED eliminating b M1 $\frac{eg}{\frac{19}{3}a + \frac{5}{2}\left(1 - \frac{5}{2}a\right) = \mu$ A1 $\frac{1}{12}a + \frac{5}{2} = \mu$ $a = 12\mu - 30$ AG Note: Elimination of b could be at different stages. (ii) $b = 1 - \frac{5}{2}(12\mu - 30)$ $= 76 - 30 \mu$ A1 ABA Note: This solution may be seen in part (i). [7 marks] (c) (i) $\int_{2}^{2.3} (ax+b) dx (=0.5)$ (M1)(A1) $\left[\frac{1}{2}ax^2 + bx\right]_{2}^{2.3} (=0.5)$ 0.645a + 0.3b (= 0.5)(A1) $0.645(12\mu - 30) + 0.3(76 - 30\mu) = 0.5$ M1 $\mu = 2.34 \left(= \frac{295}{126} \right)$ A1

(ii)
$$E(X^2) = \int_{2}^{3} x^2 (ax+b) dx$$
 (M1)

$$a = 12\mu - 30 = -\frac{40}{21}, \ b = 76 - 30\mu = \frac{121}{21}$$
 (A1)

$$E(X^{2}) = \int_{2}^{3} x^{2} \left(-\frac{40}{21} x + \frac{121}{21} \right) dx = 5.539... \left(= \frac{349}{63} \right)$$
(A1)

Var
$$(X) = 5.539 \text{K} - (2.341 \text{K})^2 = 0.05813...$$
 (M1)
 $\sigma = 0.241$ A1

[10 marks]

Question 28

(a) (i) $0.6^3 \times 0.4^3$	(M1)
Note: Award (M1) for use of the product of probabilities.	
= 0.0138	<i>A1</i>
(ii) binomial distribution $X : B(6, 0.6)$	(M1)
Note: Award <i>(M1)</i> for recognizing the binomial distribution.	
$P(X = 3) = {}^{6}C_{3} (0.6)^{3} (0.4)^{3}$ = 0.276	Al
Note: Award (M1)A1 for ${}^{6}C_{3} \times 0.0138 = 0.276$.	
(b) $Y: B(n, 0.4)$	
$P(Y \ge 1) > 0.995$ 1 - $P(Y = 0) > 0.995$	
P(Y=0) < 0.005	(M1)
Note: Award (M1) for any of the last three lines. Accept equalities.	
0.6" < 0.005	(M1)
Note: Award <i>(M1)</i> for attempting to solve $0.6^n < 0.005$ using any method, <i>eg</i> , logs, graphically, use of solver. Accept an equality.	
<i>n</i> >10.4	
$\therefore n = 11$	A1 [3 marks]

Total [7 marks]

(a)
$$\frac{\mu^2 e^{-\mu}}{2!} + \frac{\mu^3 e^{-\mu}}{3!} = \frac{\mu^5 e^{-\mu}}{5!}$$
 (M1)
 $\frac{\mu^2}{2} + \frac{\mu^3}{6} - \frac{\mu^5}{120} = 0$
 $\mu = 5.55$ A1

[2 marks]

(b) $\sigma = \sqrt{5.55...} = 2.35598...$ $P(3.19 \le X \le 7.9)$ $P(4 \le X \le 7)$ = 0.607

<u>A1</u>

(M1)

[2 marks]

Total [4 marks]

(a)
$$a \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = 1$$
 (M1)

integrating by parts:

$$u = x v' = \cos x M1$$

$$u' = 1 v = \sin x M1$$

$$\int x \cos x \, dx = x \sin x + \cos x \qquad \qquad A1$$

$$\left[x\sin x + \cos x\right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 1$$
 A1

[5 marks]

$$=\frac{\pi}{\pi-2}$$
[5 marks]
(b) $P\left(X < \frac{\pi}{4}\right) = \frac{2}{\pi-2} \int_{0}^{\frac{\pi}{4}} x \cos x \, dx = 0.460$
[5 marks]
Note: Accept $\frac{2}{\pi-2} \left(= \frac{\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2} - 1 \right)$ or equivalent
(c) (i) mode = 0.860
(x-value of a maximum on the graph over the given domain)
(ii) $\frac{2}{\pi-2} \int_{0}^{m} x \cos x \, dx = 0.5$
 $\int_{0}^{m} x \cos x \, dx = \frac{\pi-2}{4}$
m sin $m + \cos m - 1 = \frac{\pi-2}{4}$
(M1)
median = 0.826
(M1)
AI

[4 marks]

(d)
$$P\left(X < \frac{\pi}{8} | X < \frac{\pi}{4}\right) = \frac{P\left(X < \frac{\pi}{8}\right)}{P\left(X < \frac{\pi}{4}\right)}$$

 $= \frac{0.129912}{0.459826}$
 $= 0.283$
(a) $P(X > x) = 0.99 \ (= P(X < x) = 0.01)$
 $\Rightarrow x = 54.6 \ (cm)$
(b) $P(60.15 \le X \le 60.25)$
 $= 0.0166$
(M1)
(A1
[2 marks]
(M1)
(A1
[3 marks]
(M1)(A1)
[3 marks]

TANEDABH

use of
$$\mu = \frac{\sum_{i=1}^{k} f_i x_i}{n}$$
 to obtain $\frac{2 + x + y + 10 + 17}{5} = 8$ (M1)
 $x + y = 11$ A1

EITHER

use of
$$\sigma^2 = \frac{\sum_{i=1}^{k} f_i (x_i - \mu)^2}{n}$$
 to obtain $\frac{(-6)^2 + (x - 8)^2 + (y - 8)^2 + 2^2 + 9^2}{5} = 27.6$ (M1)
 $(x - 8)^2 + (y - 8)^2 = 17$ (M1)

OR

use of
$$\sigma^2 = \frac{\sum_{i=1}^{k} f_i x_i^2}{n} - \mu^2$$
 to obtain $\frac{2^2 + x^2 + y^2 + 10^2 + 17^2}{5} - 8^2 = 27.6$ (M1)
 $x^2 + y^2 = 65$ A1

THEN

attempting to solve the two equations	(M1)		
x = 4 and $y = 7$ (only as $x < y$)	AI	N4	
Note: Award A0 for $x = 7$ and $y = 4$.			

Note: Award (M1)A1(M0)A0(M1)A1 for $x + y = 11 \Rightarrow x = 4$ and y = 7.

Total [6 marks]

Question 33

Ques			
(a)	(i)	$P(X=0) = 0.549 (=e^{-0.6})$	A1

(ii) $P(X \ge 3) = 1 - P(X \le 2)$ (M1) $P(X \ge 3) = 0.0231$ A1

[3 marks]

(M1)

(M1)

(b) EITHER

using $Y \sim Po(3)$

OR

using (0.549)⁵

THEN

 $P(Y=0) = 0.0498 (=e^{-3})$ A1

[2 marks]

(c)	P(X = 0) (most likely number of complaints received is zero)	Al
	EITHER calculating $P(X = 0) = 0.549$ and $P(X = 1) = 0.329$	M1A1
	OR sketching an appropriate (discrete) graph of $P(X = x)$ against <i>x</i>	M1A1
	OR finding $P(X=0) = e^{-0.6}$ and stating that $P(X=0) > 0.5$	M1A1
	OR	
	using $P(X=x) = P(X=x-1) \times \frac{\mu}{x}$ where $\mu < 1$	M1A1 [3 marks]
(d)	$P(X=0) = 0.8 (\Rightarrow e^{-\lambda} = 0.8)$	(A1)
	$\lambda = 0.223 \left(= \ln \frac{5}{4}, = -\ln \frac{4}{5} \right)$	A1 [2 marks]
		Total [10 marks]
	MEDABR	

(a) P(Ava wins on her first turn) =
$$\frac{1}{3}$$
 A1
[*I mark*]
(b) P(Barry wins on his first turn) = $\left(\frac{2}{3}\right)^2$ (*M1*)
= $\frac{4}{9}(=0.444)$ *A1*
[2 marks]
(c) P(Ava wins in one of her first three turns)
= $\frac{1}{3} + \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\frac{1}{3} + \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\frac{1}{3}$ *MIALAI*
Note: Award *M1* for adding probabilities, award *A1* for a correct second
term and award *A1* for a correct third term.
Accept a correctly labelled tree diagram, awarding marks as above.
= $\frac{103}{243}(=0.424)$ *A1*
[*I marks*]
(d) P(Ava eventually wins) = $\frac{1}{3} + \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\frac{1}{3} + \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\frac{1}{3} + \dots$ (*A1*)
using $S_{-} = \frac{a}{1-r}$ with $a = \frac{1}{3}$ and $r = \frac{2}{9}$ (*M1*)(*A1*)
Note: Award (*M1*) for using $S_{-} = \frac{a}{1-r}$ and award (*A1*) for $a = \frac{1}{3}$ and
 $r = \frac{2}{9}$.
 $= \frac{3}{7}(=0.429)$ *A1*
[*I marks*]
Question 35
(a) $X \sim N(210, 22^2)$
 $P(X < 180) = 0.0863$ (*M1*)A1
[2 marks]
(b) $P(X < T) = 0.9 \Rightarrow T = 238$ (mins) (*M1*)A1

[2 marks]

Total [4 marks]

Note: First <i>A1</i> is for recognizing the binomial, second <i>A1</i> for both parameters if stated explicitly in this part of the question.	
	[2 marks]
b) $\mu (=1000 \times 0.1) = 100$	A1
	[1 mark]
(c) $P(W > 89) = P(W \ge 90) (= 1 - P(W \le 89))$	(M1)
= 0.867	A1
Notes: Award MOAO for 0.889	
A PD	[2 marks]
	Total [5 marks]
uestion 37	
(a) $2\frac{e^{-m}m^4}{4!} = \frac{e^{-m}m^5}{5!}$	M1A1
$\frac{2}{4!} = \frac{m}{5!}$ or other simplification	M1
Note: accept a labelled graph showing clearly the solution to the equation. Do not accept simple verification that $m = 10$ is a solution.	
equation. Do not accept simple vernication that $m = 10$ is a solution.	
	AG
$\Rightarrow m = 10$	
	[3 marks]
(b) $P(X=6 X \le 11) = \frac{P(X=6)}{P(X \le 11)}$	[3 marks] (M1) (A1)
(b) $P(X = 6 X \le 11) = \frac{P(X = 6)}{P(X \le 11)}$ = $\frac{0.063055}{0.696776}$	[3 marks] (M1) (A1) (A1)
(b) $P(X=6 X \le 11) = \frac{P(X=6)}{P(X \le 11)}$	[3 marks] (M1) (A1) (A1) A1
(b) $P(X = 6 X \le 11) = \frac{P(X = 6)}{P(X \le 11)}$ = $\frac{0.063055}{0.696776}$	[3 marks] (M1) (A1) (A1)

Award A1 for sine curve from 0 to π , award A1 for straight line from π to 2π A1A1

[2 marks]

(b)
$$\int_0^{\pi} \frac{\sin x}{4} dx = \frac{1}{2}$$
 (M1)A1

(c) METHOD 1

require
$$\frac{1}{2} + \int_{\pi}^{2\pi} a(x-\pi) dx = 1$$
 (M1)

$$\Rightarrow \frac{1}{2} + a \left[\frac{(x-\pi)^2}{2} \right]_{\pi}^{\pi} = 1 \text{ (or } \frac{1}{2} + a \left[\frac{x^2}{2} - \pi x \right]_{\pi}^{2\pi} = 1 \text{)}$$

$$\Rightarrow a \frac{\pi^2}{2} = \frac{1}{2}$$
A1

$$\Rightarrow a \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow a = \frac{1}{\pi^2}$$
Af Ag

Note: Must obtain the exact value. Do not accept answers obtained with calculator.

METHOD 2

0.5 + area of triangle = 1	R1
area of triangle = $\frac{1}{2} \pi \times a\pi = 0.5$	M1A1

Note: Award M1 for correct use of area formula = 0.5, A1 for $a\pi$.

$$a = \frac{1}{\pi^2}$$
 AG

[3 marks]

(d) median is π

A1 [1 mark]

(e)
$$\mu = \int_0^{\pi} x \cdot \frac{\sin x}{4} dx + \int_{\pi}^{2\pi} x \cdot \frac{x - \pi}{\pi^2} dx$$
 (M1)(A1)
= 3.40339... = 3.40 (or $\frac{\pi}{4} + \frac{5\pi}{6} = \frac{13}{12}\pi$) A1
[3 marks]

(f)

For
$$\mu = 3.40339...$$

EITHER
 $\sigma^2 = \int_0^{\pi} x^2 \cdot \frac{\sin x}{4} dx + \int_{\pi}^{2\pi} x^2 \cdot \frac{x - \pi}{\pi^2} dx - \mu^2$ (M1)(A1)
OR
 $\sigma^2 = \int_0^{\pi} (x - \mu)^2 \cdot \frac{\sin x}{4} dx + \int_{\pi}^{2\pi} (x - \mu)^2 \cdot \frac{x - \pi}{\pi^2} dx$ (M1)(A1)
THEN
= 3.866277... = 3.87 A1

[3 marks]

(g)
$$\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{4} dx + \int_{\pi}^{\frac{3\pi}{2}} \frac{x - \pi}{\pi^2} dx = 0.375$$
 (or $\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$) (M1)A1 [2 marks]

(h)
$$P\left(\pi \le X \le 2\pi \left| \frac{\pi}{2} \le X \le \frac{3\pi}{2} \right| = \frac{P\left(\pi \le X \le \frac{3\pi}{2}\right)}{P\left(\frac{\pi}{2} \le X \le \frac{3\pi}{2}\right)}$$
 (M1)(A1)
 $= \frac{\int_{\pi}^{\frac{3\pi}{2}} \frac{(x-\pi)}{\pi^2} dx}{0.375} = \frac{0.125}{0.375} \text{ (or } = \frac{\frac{1}{8}}{\frac{3}{8}} \text{ from diagram areas)}$ (M1)
 $= \frac{1}{3} (0.333)$ A1
[4 marks]

Total [20 marks]

attempt to set up the problem using a tree diagram and/or an equation, (a) with the unknown xM1 $\frac{\frac{4}{5}x + \frac{2}{3}(1 - x) = \frac{13}{18}}{\frac{\frac{4x}{5}}{5} - \frac{2x}{3} = \frac{13}{18} - \frac{2}{3}}$ A1 $\frac{2x}{15} = \frac{1}{18}$ $x = \frac{5}{12}$ A1 [3 marks] (b) attempt to set up the problem using conditional probability M1 EITHER $\frac{\frac{5}{12} \times \frac{1}{5}}{1 - \frac{13}{18}}$ YME A1 OR $\frac{\frac{5}{12} \times \frac{1}{5}}{\frac{1}{12} + \frac{7}{36}}$ A1 THEN

PDF Merger Mac - Unregistered M

No	ote: Ad	ccept 50		
	SAYS2A 083			
N	ote: A	ward M1A0 for 0.50 (0.500)		
	(ii)	P(X > 130) = (1 - 0.707) = 0.293 expected number of turnips = 29.3	M1 A1	
N	ote: A	ccept 29.		
а <u>.</u>	(iii)	no of turnips weighing more than 130 is $Y \sim B(100, 0.293)$ $P(Y \ge 30) = 0.478$	M1 A1	
			[6 m	nark
(b)	(i)	$X \sim N(144, \sigma^2)$		
		$X \sim N(144, \sigma^2)$ $P(X \le 130) = \frac{1}{15} = 0.0667$	(M1)	
		$P\left(Z \le \frac{130 - 144}{\sigma}\right) = 0.0667$		
		$\frac{14}{\sigma} = 1.501$	(A1)	
		$\sigma = 9.33 g$	A1	
	(ii)	$P(X > 150 X > 130) = \frac{P(X > 150)}{P(X > 130)}$	M1	
			41	
		$=\frac{0.26008}{1-0.06667}=0.279$	A1	
		expected number of turnips $= 55.7$	A1	
		MEDAB	[6 m Total [12 m	
)ues	stion [,]		Total 112 II	M
(a)	0.818	$B = 0.65 + 0.48 - P(A \cap B)$	(M1)	
		(B) = 0.312	A1	L.
			[2 n	nark
(b)		$P(B) = 0.312 (= 0.48 \times 0.65)$	A1	
	since	$P(A) P(B) = P(A \cap B)$ then A and B are independent	R1	

[2 marks]

Total [4 marks]

(a)
$$\frac{0 \cdot 4 + 1 \cdot k + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 3 + 8 \cdot 1}{13 + k} = 1.95 \left(\frac{k + 32}{k + 13} = 1.95\right)$$
 (M1)
attempting to solve for k
 $k = 7$ [3 marks]
(b) (i) $\frac{7 + 32 + 22}{2} = 2.90 \left(-\frac{61}{2}\right)$ (M1)A1

(b) (i)
$$\frac{7+32+22}{7+13+1} = 2.90 \left(= \frac{61}{21} \right)$$
 (M1)A1

(ii) standard deviation
$$= 4.66$$

:: Award A0 for 4.77.

[3 marks] Total [6 marks] Question 44 (0.05) 0.95 0.3 (0.1)0.2 0.9 L 0.5 -L (0.25)W 0.75 L M1A1A1

e: Award *M1* for a two-level tree diagram, *A1* for correct first level probabilities, and *A1* for correct second level probabilities.

OR

$$P(B | L') = \frac{P(L' | B) P(B)}{P(L' | B) P(B) + P(L' | C) P(C) + P(L' | W) P(W)} \left(= \frac{P(B \cap L')}{P(L')} \right) (M1)(A1)(A1)$$

THEN

$$P(B|L') = \frac{0.9 \times 0.2}{0.9 \times 0.2 + 0.95 \times 0.3 + 0.75 \times 0.5} \left(=\frac{0.18}{0.84}\right)$$

$$= 0.214 \left(=\frac{3}{14}\right)$$
A1

[6 marks]

A1

(a)
$$A \int_{1}^{5} \sin(\ln x) dx = 1$$
 (M1)
 $A = 0.323$ (3 dp only) A1

[2 marks]

[2 marks]

[2 marks]

(b) either a graphical approach or
$$f'(x) = \frac{\cos(\ln x)}{x} = 0$$
 (M1)

$$x = 4.81 \left(=e^{\frac{2}{2}}\right)$$
 A1

Note: Do not award A1FT for a candidate working in degrees.

(c)
$$P(X \le 3 | X \ge 2) = \frac{P(2 \le X \le 3)}{P(X \ge 2)} \left(= \frac{\int_{2}^{3} \sin(\ln(x)) dx}{\int_{2}^{5} \sin(\ln(x)) dx} \right)$$
 (M1)
= 0.288 A1

Note: Do not award A1FT for a candidate working in degrees.

Question 46

(a) (i) let W be the weight of a worker and $W \sim \mathrm{N}ig(\mu,\,\sigma^2ig)$

$$P\left(Z < \frac{62 - \mu}{\sigma}\right) = 0.3 \text{ and } P\left(Z < \frac{98 - \mu}{\sigma}\right) = 0.75$$
(M1)

$$\frac{62 - \mu}{\sigma} = \Phi^{-1}(0.3) (= -0.524...) \text{ and}$$

$$\frac{98 - \mu}{\sigma} = \Phi^{-1}(0.75) (= 0.674...)$$
or linear equivalents
A1A1
(ii) attempting to solve simultaneously (M1)
 $\mu = 77.7, \sigma = 30.0$
[6 marks]

(b)
$$P(W > 100) = 0.229$$
 A1 [1 mark]

(c) let X represent the number of workers over 100 kg in a lift of ten passengers $X \sim B(10, 0.229)$

$X \sim B(10, 0.229)$	(M1)
$P(X \ge 4) = 0.178$	A1
	[2 marks]

) (M1) (M1) (M1) A1 (A1) (M1) A1	[3 marks] [3 marks] [3 marks]
(M1) (M1) A1 (A1) (M1)	[3 marks]
(M1) A1 (A1) (M1)	[3 marks]
(M1) A1 (A1) (M1)	
A1 (A1) (M1)	
(A1) (M1)	
(M1)	
(M1)	[3 marks]
	[3 marks]
A1	[3 marks]
	[3 marks]
M1 M1	
M1 A1	
A1A1	
	[6 marks]
	M1A1 A1A1

P(3 in the first hour) = $\frac{\lambda^3 e^{-\lambda}}{3!}$	A1	
$P(3 \text{ in the first Hour}) = \frac{3!}{3!}$	AI	
number to arrive in the four hours follows $Po(4\lambda)$	M1	
P(5 arrive in total) = $\frac{(4\lambda)^5 e^{-4\lambda}}{5!}$	A1	
attempt to find P(2 arrive in the next three hours)	M1	
$=\frac{(3\lambda)^2 e^{-3\lambda}}{2!}$	A1	
use of conditional probability formula	M1	
P(3 in the first hour given 5 in total) = $\frac{\frac{\lambda^3 e^{-\lambda}}{3!} \times \frac{(3\lambda)^2 e^{-3\lambda}}{2!}}{(4\lambda)^5 e^{-4\lambda}}$	A1	
51		
$\frac{\left(\frac{9}{2131}\right)}{\left(\frac{4^{5}}{51}\right)} = \frac{45}{512} = 0.0879$	A1	
(5!)		[8 marks]
		[•
Question 49		[]
Question 49 (a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$	(M1)A1	[]
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$	(M1)A1	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$	(M1)A1 (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$	(M1)A1	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$	(M1)A1 (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases.	(M1)A1 (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases.	(M1)A1 (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases. (ii) recognising 111 as a possibility (implied by $\frac{1}{216}$)	(M1)A1 (M1) A1 (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases. (ii) recognising 111 as a possibility (implied by $\frac{1}{216}$) recognising 112 and 113 as possibilities (implied by $\frac{2}{216}$ and	(M1)A1 (M1) A1 (M1) d $\frac{3}{216}$) (M1)	
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases. (ii) recognising 111 as a possibility (implied by $\frac{1}{216}$)	(M1)A1 (M1) A1 (M1)	[2 marks]
(a) $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{2}{6} + 3 \times \frac{3}{6} = \frac{14}{6} \left(= \frac{7}{3} = 2.33 \right)$ (b) (i) $3 \times P(113) + 3 \times P(122)$ $3 \times \frac{1}{6} \times \frac{1}{2} + 3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{7}{72} (= 0.0972)$ Note: Award <i>M1</i> for attempt to find at least four of the cases. (ii) recognising 111 as a possibility (implied by $\frac{1}{216}$) recognising 112 and 113 as possibilities (implied by $\frac{2}{216}$ and seeing the three arrangements of 112 and 113	(M1)A1 (M1) A1 (M1) d $\frac{3}{216}$) (M1)	

(c)	let the number of twos be X, $X \sim B\left(10, \frac{1}{3}\right)$	(M1)
	$P(X < 4) = P(X \le 3) = 0.559$	(M1)A1
		[3 marks]
(d)	let <i>n</i> be the number of balls drawn	
	$P(X \ge 1) = 1 - P(X = 0)$	M1

- P(X ≥ 1) = 1 P(X = 0) M1 = $1 - \left(\frac{2}{3}\right)^n > 0.95$ M1 $\left(\frac{2}{3}\right)^n < 0.05$ M1
 - [3 marks]

[8 marks]

[2 marks]

Total [22 marks]

(e) $8p_1 = 4.8 \Rightarrow p_1 = \frac{3}{5}$ (M1)A1 $8p_2(1 - p_2) = 1.5$ (M1) $p_2^2 - p_2 - 0.1875 = 0$ (M1) $p_2 = \frac{1}{4} \left(\text{ or } \frac{3}{4} \right)$ A1 reject $\frac{3}{4}$ as it gives a total greater than one $P(1 \text{ or } 2) = \frac{17}{20}$ or $P(3) = \frac{3}{20}$ (A1) recognising LCM as 20 so min total number is 20 (M1) the least possible number of 3's is 3 A1

Question 50

(a) $P(0 \le X \le 2) = 0.242$ (M1)A1

METHOD 1	
P(X > 1) = P(X < -1) + P(X > 1)	(M1)
= 0.02275 + 0.84134	(A1)
= 0.864	A1
	P(X > 1) = P(X < -1) + P(X > 1) = 0.02275 + 0.84134

METHOD 2

c = 3.30

(C)

P(X > 1) = 1 - P(-1 < X < 1)	(M1)
= 1 - 0.13590	(A1)
= 0.864	A1
	[3 marks]

(M1)A1

[2 marks]

Total [7 marks]

- (a) $X \sim Po(0.5)$ (A1) $P(X \ge 1) = 0.393 (=1-e^{-0.5})$ (M1)A1
- (b) P(X = 0) = 0.607... $E(P) = (0.607... \times 5) - (0.393... \times 3)$ the expected profit is \$1.85 per glass sheet

(c)
$$Y \sim Po(2)$$

 $P(Y = 0) = 0.135 (= e^{-2})$

(A1) [1)A1 [3 marks] (A1) (M1) A1 [3 marks] (M1) A1 [2 marks]

Total [8 marks]

Question 52

(a) two enclosed regions $(0 \le t \le \frac{\pi}{2} \text{ and } \frac{\pi}{2} \le t \le \pi)$ bounded by the curve and the *t*-axis **A1** correct non-symmetrical shape for $0 \le t \le \frac{\pi}{2}$ and

$$\frac{\pi}{2}$$
 < mode of $T < \pi$ clearly apparent **A1**

(b) mode =
$$2.46$$

(c) $E(T) = \frac{1}{\pi} \int_{0}^{\pi} t^{2} |\sin 2t| dt$ (M1) = 2.04 A1 [2 marks]

[2 marks]

[1 mark]

A1

(d) **EITHER**

$$Var(T) = \int_{0}^{\pi} (t - 2.03788...)^{2} \left(\frac{t |\sin 2t|}{\pi}\right) dt$$
 (M1)(A1)

OR

$$\operatorname{Var}(T) = \int_{0}^{\pi} t^{2} \left(\frac{t |\sin 2t|}{\pi} \right) dt - (2.03788...)^{2}$$
 (M1)(A1)

THEN

Var(T) = 0.516

A1 [3 marks]

(e)
$$\frac{1}{\pi} \int_{2.03788...}^{2.456590...} t |\sin 2t| dt = 0.285$$
 (M1)A1

(f) (i) attempting integration by parts

[2 marks]

(M1)

A1

 $(u = t, du = dt, dv = \sin 2t dt \text{ and } v = -\frac{1}{2}\cos 2t$

$$\frac{1}{\pi} \left[t \left(-\frac{1}{2} \cos 2t \right) \right]_{0}^{T} - \frac{1}{\pi} \int_{0}^{T} \left(-\frac{1}{2} \cos 2t \right) dt$$
Note: Award **A1** if the limits are not included.

$$= \frac{\sin 2T}{4\pi} - \frac{T \cos 2T}{2\pi}$$
A1

(ii)
$$\frac{\sin \pi}{4\pi} - \frac{\frac{\pi}{2}\cos \pi}{2\pi} = \frac{1}{4}$$

as $P\left(0 \le T \le \frac{\pi}{2}\right) = \frac{1}{4}$ (or equivalent), then the lower quartile of T is $\frac{\pi}{2}$ R1AG
[5]
Total [15]

[5 marks]

Total [15 marks]

(a)	$E(X^2) = \sum x^2 \cdot P(X = x) = 10.37 \ (=10.4 \ 3 \text{ sf})$	(M1)A1	[2 marks]
(b)	METHOD 1		
	sd(X) = 1.44069	(M1)(A1)	
	$Var(X) = 2.08 \ (= 2.0756)$	A1	
	METHOD 2		
	E(X) = 2.88 (= 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)	(A1)	
	use of $\operatorname{Var}(X) = \operatorname{E}(X^2) - (\operatorname{E}(X))^2$	(M1)	
Not	te: Award (<i>M1</i>) only if $(E(X))^2$ is used correctly.		
	$(\operatorname{Var}(X) = 10.37 - 8.29)$		
Mat	$Var(X) = 2.08 \ (= 2.0756)$	A1	
NO	te: Accept 2.11.		
	METHOD 3		
	E(X) = 2.88 (= 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)	(A1)	
	use of $\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$	(M1)	
	(0.679728++0.549152)		
	Var(X) = 2.08 (= 2.0756)	A1	[3 marks]
		Tota	[5 marks]
	MEDAP		

(a) METHOD 1

$$P(X = x + 1) = \frac{\mu^{x+1}}{(x + 1)!} e^{-\mu}$$
A1

$$=\frac{\mu}{x+1} \times \frac{\mu^2}{x!} e^{-\mu}$$
 M1A1

$$=\frac{\mu}{x+1} \times P(X=x)$$
 AG

METHOD 2

$$\frac{\mu}{x+1} \times P(X=x) = \frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} e^{-\mu}$$

$$= \frac{\mu^{x+1}}{(x+1)!} e^{-\mu}$$
M1A1

$$= \frac{\mu^{x+1}}{(x+1)!} e^{-\mu}$$
M1A1
$$= P(X = x + 1)$$
METHOD 3
$$\mu^{x+1}$$

METHOD 3

$$\frac{P(X = x + 1)}{P(X = x)} = \frac{\frac{\mu}{(x + 1)!}e^{-\mu}}{\frac{\mu^{x}}{x!}e^{-\mu}}$$
(M1)

$$= \frac{\mu^{x+1}}{\mu^{x}} \times \frac{x!}{(x + 1)!}$$
(M1)

$$= \frac{\mu}{x + 1}$$
A1
A1
A1
A1
A1
A1
A1
A1
[3 marks]

(b)
$$P(X=3) = \frac{\mu}{3} \cdot P(X=2) \left(0.112777 = \frac{\mu}{3} \cdot 0.241667 \right)$$
 A1
attempting to solve for μ (M1)
 $\mu = 1.40$ A1

Total [6 marks]

[3 marks]

A1

A1

(a)
$$P(X < 42.52) = 0.6940$$
 (M1)

either
$$P\left(Z < \frac{30.51 - \mu}{\sigma}\right) = 0.1180 \text{ or } P\left(Z < \frac{42.52 - \mu}{\sigma}\right) = 0.6940$$
 (M1)

$$\frac{30.31 - \mu}{\sigma} = \underbrace{\Phi^{-1}(0.1180)}_{-1.1850...}$$
(A1)

$$\frac{42.52 - \mu}{\sigma} = \underbrace{\Phi^{-1}(0.6940)}_{(A1)}$$

0.5072. attempting to solve simultaneously $\mu = 38.9$ and $\sigma = 7.22$

(M1)

A1

(b) $P(\mu - 1.2\sigma < X < \mu + 1.2\sigma)$ (or equivalent eg. $2P(\mu < X < \mu + 1.2\sigma)$) (M1) = 0.770 A1

Note: Award (*M1*)A1 for
$$P(-1.2 < Z < 1.2) = 0.770$$
.

[2 marks]

Total [8 marks]

Question 56

(a)	$P(X = 3) = (0.1)^3$	A1
	= 0.001	AG
	P(X = 4) = P(VVVV) + P(VVV) + P(VVV)	(M1)
	$= 3 \times (0.1)^3 \times 0.9$ (or equivalent)	A1
	= 0.0027	AG
		[3 marks]

(b) METHOD 1

attempting to form equations in a and b	M1
$\frac{9+3a+b}{2000} = \frac{1}{1000} (3a+b=-7)$	AT AT
$\frac{16+4a+b}{2000} \times \frac{9}{10} = \frac{27}{10000} (4a+b=-10)$	A1
attempting to solve simultaneously $a = -3, b = 2$	(M1) A1

METHOD 2

$$P(X = n) = {\binom{n-1}{2}} \times 0.1^{3} \times 0.9^{n-3}$$

$$= \frac{(n-1)(n-2)}{2000} \times 0.9^{n-3}$$
(M1)A1
$$= \frac{n^{2} - 3n + 2}{2000} \times 0.9^{n-3}$$
A1
$$a = -3, b = 2$$
A1

Note: Condone the absence of 0.9^{n-3} in the determination of the values of *a* and *b*.

[5 marks]

(c) METHOD 1

EITHER

$$P(X = n) = \frac{n^2 - 3n + 2}{2000} \times 0.9^{n-3}$$
(M1)
OR

$$P(X = n) = {\binom{n-1}{2}} \times 0.1^3 \times 0.9^{n-3}$$
(M1)

THEN

$$=\frac{(n-1)(n-2)}{2000}\times 0.9^{n-3}$$
 A1

$$P(X = n - 1) = \frac{(n - 2)(n - 3)}{2000} \times 0.9^{n-4}$$
A1

$$\frac{P(X = n)}{P(X = n - 1)} = \frac{(n - 1)(n - 2)}{(n - 2)(n - 3)} \times 0.9$$
A1
$$= \frac{0.9(n - 1)}{n}$$
A2

 $=\frac{0.9(n-1)}{n-3}$

METHOD 2

$$\frac{P(X = n)}{P(X = n - 1)} = \frac{\frac{n^2 - 3n + 2}{2000} \times 0.9^{n - 3}}{\frac{(n - 1)^2 - 3(n - 1) + 2}{2000}}$$
(M1)
$$= \frac{0.9(n^2 - 3n + 2)}{(n^2 - 5n + 6)}$$
A1A1

Note: Award A1 for a correct numerator and A1 for a correct denominator.

$$= \frac{0.9(n-1)(n-2)}{(n-2)(n-3)}$$

$$= \frac{0.9(n-1)}{n-3}$$
A1
AG
[4 marks]

(d) (i) attempting to solve
$$\frac{0.9(n-1)}{n-3} = 1$$
 for n M1
 $n = 21$ A1

$$\frac{0.9(n-1)}{n-3} < 1 \Longrightarrow n > 21$$
R1

$$\frac{0.9(n-1)}{n-3} > 1 \Longrightarrow n < 21$$
R1 X has two modes
AG

X has two modes

Note: Award R1R1 for a clearly labelled graphical representation of the two inequalities (using $\frac{P(X = n)}{P(X = n - 1)}$).

(ii) the modes are 20 and 21

A1 [5 marks]

METHOD 1 (e)

$Y \sim B(x, 0.1)$ attempting to solve $P(Y \ge 3) > 0.5$ (or equivalent <i>eg</i> $1 - P(Y \le 3)$	(A1) 2) > 0.5) for x (M1)
Note: Award <i>(M1)</i> for attempting to solve an equality (obtaining $x = x = 27$	= 26.4). A1
METHOD 2	
$\sum_{n=0}^{x} \mathbf{P}(X=n) > 0.5$	(A1)
attempting to solve for x x = 27	(M1) A1 [3 marks]
	Total [20 marks]
Question 57	
(a) use of $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1
$0.5 = k + 3k - k^2$	A1
$k^2 - 4k + 0.5 = 0$	
k = 0.129	A1
Note: Do not award the final A1 if two solutions are given.	
	[3 marks]
(b) use of $P(A' \cap B) = P(B) - P(A \cap B)$ or alternative	(M1)
$P(A' \cap B) = 3k - k^2$	(A1)
= 0.371	A1
	[3 marks]
	Total [6 marks]

(a)	$\lambda = 4 \times 0.5$	(M1)
	$\lambda = 2$	(A1)
	$P(X \le 2) = 0.677$	A1
		[3 marks]
(b)	$Y \sim B(10, 0.677)$	(M1)(A1)
	P(Y = 7) = 0.263	A1
Not	te: Award M1 for clear recognition of binomial distribution.	
	~	[3 marks]
		Total [6 marks]
Ques	stion 59	
(a)	$T \sim N(196, 24^2)$	
	P(T < 180) = 0.252	(M1)A1
		[2 marks]
(b)	$P(T < T_1) = 0.05$	(M1)
	T ₁ =157	AT
		[2 marks]
(c)	$F \sim N(210, \sigma^2)$	
(-)	P(F < 235) = 0.79	(M1)
	$\frac{235-210}{\sigma} = 0.806421 \text{ or equivalent}$	(M1)(A1)
	σ $\sigma = 31.0$	A1
	0 - 51.0	[4 marks]
		Total [8 marks]
Ques	stion 60	
(a)	$P(5 \text{ or more}) = \frac{29}{75} (= 0.387)$	(M1)A1
		[2 marks]
(b)	mean score = $\frac{2 \times 3 + 3 \times 15 + 4 \times 28 + 5 \times 17 + 6 \times 9 + 7 \times 3}{75}$	(M1)
	$=\frac{323}{75}(=4.31)$	A1
	15	[2 marks]
		Total [4 marks]

(a)
$$P(X < 250) = 0.0228$$
 (M1)A1 [2 marks]
(b) $\frac{250 - \mu}{1.5} = -2.878...$ (M1)(A1)
 $\Rightarrow \mu = 254.32$ A1
Notes: Only award A1 here if the correct 2dp answer is seen.
Award M0 for use of 1.5^2 . [3 marks]
(c) $\frac{250 - 253}{\sigma} = -2.878...$ (A1)
 $\Rightarrow \sigma = 1.04$ A1 [2 marks]
Total [7 marks]

(a)

(a)
$$\int_{0}^{4} \left(\frac{x^{2}}{a} + b\right) dx = 1 \Rightarrow \left[\frac{x^{3}}{3a} + bx\right]_{0}^{4} = 1 \Rightarrow \frac{64}{3a} + 4b = 1$$
 M1A1
 $\int_{0}^{4} \left(\frac{x^{2}}{a} + b\right) dx = 0.75 \Rightarrow \frac{56}{a} + 2b = 0.75$ M1A1

$$\int_{2} \left(\frac{x}{a} + b\right) dx = 0.75 \Rightarrow \frac{3}{3a} + 2b = 0.75$$
MIAT
Note:
$$\int_{0}^{2} \left(\frac{x^{2}}{a} + b\right) dx = 0.25 \Rightarrow \frac{8}{3a} + 2b = 0.25$$
 could be seen/used in place of either of the above equations.

evidence of an attempt to solve simultaneously (or check given a, b values are consistent)

$$a = 32, b = \frac{1}{12}$$

- (b) $E(X) = \int_{0}^{4} x \left(\frac{x^2}{32} + \frac{1}{12} \right) dx$ $E(X) = \frac{8}{3} (= 2.67)$
- (c) $E(X^2) = \int_0^4 x^2 \left(\frac{x^2}{32} + \frac{1}{12}\right) dx$ (M1) $Var(X) = E(X^2) - [E(X)]^2 = \frac{16}{15}(=1.07)$ A1 [2 marks]
- (d) $\int_{0}^{m} \left(\frac{x^2}{32} + \frac{1}{12}\right) dx = 0.5$ (M1) $\frac{m^3}{96} + \frac{m}{12} = 0.5 (\Longrightarrow m^3 + 8m - 48 = 0)$ BP (A1) m = 2.91A1 [3 marks] $Y \sim B(8, 0.75)$ (M1) (e) $E(Y) = 8 \times 0.75 = 6$ A1 [2 marks] (f) $P(Y \ge 3) = 0.996$ A1 [1 mark]

Total [15 marks]

M1

AG

(M1)

A1

[5 marks]

[2 marks]

(a)
$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$
$$\Rightarrow 0.75 = \frac{0.6}{P(B)}$$
(M1)
$$\Rightarrow P(B) \left(=\frac{0.6}{0.75}\right) = 0.8$$
A1

[2 marks]

[2 marks]

(M1)

A1

R1

AG

(b) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow 0.95 = P(A) + 0.8 - 0.6$ $\Rightarrow P(A) = 0.75$

(c) METHOD 1

$P(A' B) = \frac{P(A' \cap B)}{P(B)} = \frac{0.2}{0.8} = 0.25$	A1
P(B) = 0.8	

P(A' | B) = P(A')hence A' and B are independent

Question 65

let X be the random variable "amount of caffeine content in coffee"	
P(X > 120) = 0.2, $P(X > 110) = 0.6$	(M1)
$(\Rightarrow P(X < 120) = 0.8, P(X < 110) = 0.4)$	

ote: Award M1 for at least one correct probability statement.

$$\frac{120 - \mu}{\sigma} = 0.84162..., \frac{110 - \mu}{\sigma} = -0.253347...$$
 (M1)(A1)(A1)

ote: Award M1 for attempt to find at least one appropriate z-value.

 $120 - \mu = 0.84162\sigma$, $110 - \mu = -0.253347\sigma$ (M1)attempt to solve simultaneous equations(M1) $\mu = 112$, $\sigma = 9.13$ A1

[6 marks]

(a)	let X be the number of bananas eaten in one day $X \sim Po(0.2)$		
	$P(X \ge 1) = 1 - P(X = 0)$	(M1)	
	$=0.181(=1-e^{-0.2})$	A1	
		[2 mar	ks]

(b) EITHER

let Y be the number of bananas eaten in one week	
$Y \sim \operatorname{Po}(1.4)$	(A1)
$P(Y = 0) = 0.246596(=e^{-1.4})$	(A1)

OR

let Z be the number of days in one week at least one banana is eaten	
$Z \sim B(7, 0.181)$	(A1)
P(Z = 0) = 0.246596	(A1)

VANE

ABA

THEN 52 × 0.246596...

 $= 12.8 (= 52e^{-1.4})$

(M1)

A1

[4 marks]

Total [6 marks]