> Subject - Math(Higher Level)
> Topic - Statistics and Probability
> Year - Nov 2011 - Nov 2017
> Paper -2

Question -1
$\begin{array}{lr}\text { (a) } & m=\frac{300}{60}=5 \\ \mathrm{P}(X=0)=0.00674 \\ \text { or } \mathrm{e}^{-5}\end{array}$
(b) $\mathrm{E}(X)=5 \times 2=10 \quad$ AI
(c) $\quad \mathrm{P}(X>10)=1-\mathrm{P}(X \leq 10)$ $=0.417 \square \boldsymbol{A 1}$
[5 marks]

Question-2
(a) $\quad X \sim \mathrm{~B}(5,0.1)$
(M1)
$\mathrm{P}(X=2)=0.0729$
(b) $\quad \mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)$
$0.9<1-\left(\frac{9}{10}\right)^{n}$
$n>\frac{\ln 0.1}{\ln 0.9}$
$n=22$ days

AI
[5 marks]

Question 3
(a) $\quad X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$
$\mathrm{P}(X<x)=0.2 \Rightarrow x=58.69 \mathrm{~m}$
(b) $z=-0.8416 \ldots$
(A1)
$-0.8416=\frac{56.52-59.39}{\sigma}$
$\sigma \approx 3.41$
(M1)
AI
[3 marks]
(c) Jan $X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$; Sia $X \sim \mathrm{~N}\left(59.50,3.00^{2}\right)$
(i) Jan: $\mathrm{P}(X>65) \approx 0.00831$
(M1)AI
Sia: $\mathrm{P}(Y>65) \approx 0.0334$
AI
Sia is more likely to qualify
Note: Only award RI if (M1) has been awarded.
(ii) Jan: $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)$
(MI)

$$
=1-(1-0.00831 \ldots)^{3} \approx 0.0247
$$

Sia: $\mathrm{P}(Y \geq 1)=1-\mathrm{P}(Y=0)=1-(1-0.0334 \ldots)^{3} \approx 0.0968$
A1
Note: Accept 0.0240 and 0.0969 .
hence, $\mathrm{P}(X \geq 1$ and $Y \geq 1)=0.0247 \times 0.0968=0.00239$

## (M1)A1

[10 marks]
Total [15 marks]

Question -4
(a) $\quad\binom{10}{6}=210$
(M1)A1
[2 marks]
(b) $\quad 2 \times\binom{ 8}{5}=112$
(M1)A1A1

Note: Accept $210-28-70=112$
(c) $\frac{112}{210}\left(=\frac{8}{15}=0.533\right)$
(M1)A1
[2 marks]

Question-5
(a) 50
(b) Lower quartile is 4 so at least 26 obtained a 4

R1
Lower bound is 26
A1

Minimum is 2 but the rest could be 4 R1

So upper bound is 49
A1
Note: Do not allow follow through for $\boldsymbol{A}$ marks.
Note: If answers are incorrect award ROAO, if argument is correct but no clear lower/upper bound is stated award R1AO; award R0A1 for correct answer without explanation or incorrect explanation.

Question -7
(a) (i) $X \sim \operatorname{Po}(11)$
$\mathrm{P}(X \leq 11)=0.579$
(ii) $P(X>8 \mid X<12)=$
$=\frac{\mathrm{P}(8<X<12)}{\mathrm{P}(X<12)}\left(\right.$ or $\frac{\mathrm{P}(X \leq 11)-\mathrm{P}(X \leq 8)}{\mathrm{P}(X \leq 11)}$ or $\left.\frac{0.3472 \ldots}{0.5792 \ldots}\right)$
$=0.600$
A1
(b)
(i) $\quad Y \sim \operatorname{Po}(m)$
$\mathrm{P}(Y>3)=0.24$
$\mathrm{P}(Y \leq 3)=0.76$
$\mathrm{e}^{-m}\left(1+m+\frac{1}{2} m^{2}+\frac{1}{6} m^{3}\right)=0.76$
Note: At most two of the above lines can be implied
Attempt to solve equation with GDC

$$
m=2.49
$$

(ii) $\quad A \sim \operatorname{Po}(4.98)$
$\mathrm{P}(A>5)=1-\mathrm{P}(\mathrm{A} \leq 5)=0.380$.
M1A1
$W \sim \mathrm{~B}(4,0.380 \ldots)$
(M1)
$\mathrm{P}(W \geq 2)=1-\mathrm{P}(W \leq 1)=0.490$
(c) $\mathrm{P}(A<25)=0.8, \mathrm{P}(A<18)=0.4$
$\frac{25-\mu}{\sigma}=0.8416 \ldots$
(M1)(A1)
$\frac{18-\mu}{\sigma}=-0.2533 \ldots$ (or -0.2534 from tables)
(M1)(A1)
solving these equations
(M1)
$\mu=19.6$
A1
Note: Accept just 19.6, 19 or 20; award A0 to any other final answer.

Question -8
(a) $\mathrm{E}(X)=n p$
$\Rightarrow 10=30 p$
$\Rightarrow p=\frac{1}{3}$
(b) $\mathrm{P}(X=10)=\binom{30}{10}\left(\frac{1}{3}\right)^{10}\left(\frac{2}{3}\right)^{20}=0.153$ (M1)A1
[2 marks]
(c) $\mathrm{P}(X \geq 15)=1-\mathrm{P}(X \leq 14)$
(M1)

$$
=1-0.9565 \ldots=0.0435
$$

[2 marks]

Question -9
(a) $\mathrm{P}(X=5)=\mathrm{P}(X=3)+\mathrm{P}(X=4)$

$$
\begin{aligned}
& \frac{\mathrm{e}^{-m} m^{5}}{5!}=\frac{\mathrm{e}^{-m} m^{3}}{3!}+\frac{\mathrm{e}^{-m} m^{4}}{4!} \\
& m^{2}-5 m-20=0 \\
& \Rightarrow m=\frac{5+\sqrt{105}}{2}=(7.62)
\end{aligned}
$$

(b) $\quad \mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2)$
(M1)

A1

Question 10
(a) $\begin{array}{lc}\int_{0}^{a} \frac{1}{1+x^{4}} \mathrm{~d} x=1 \\ a=1.40\end{array} \quad \boldsymbol{M} 2$
$a=1.40 \quad$ A1
(b) $\mathrm{E}(X)=\int_{0}^{a} \frac{x}{1+x^{4}} \mathrm{~d} x$

$$
\left(=\frac{1}{2} \arctan \left(a^{2}\right)\right)
$$

$$
=0.548
$$

## Total [5 marks]

Question 11
(a) (i) $\mathrm{P}(X>225)=0.158 \ldots$
(M1)(A1)
expected number $=450 \times 0.158 \ldots=71.4$
A1
(ii) $\mathrm{P}(X<m)=0.7$
(M1)

$$
\Rightarrow m=213 \text { (grams) }
$$

(b) $\frac{270-\mu}{\sigma}=1.40 \ldots$
$\frac{250-\mu}{\sigma}=-1.03$.
Note: These could be seen in graphical form.

> solving simultaneously $\mu=258, \sigma=8.19$ (M1)
(c)

$$
\begin{aligned}
& X \sim \mathrm{~N}\left(80,4^{2}\right) \\
& \mathrm{P}(X>82)=0.3085 \ldots \\
& \text { recognition of the use of binomial distribution. } \\
& X \sim \mathrm{~B}(5,0.3085 \ldots) \\
& \mathrm{P}(X=3)=0.140
\end{aligned}
$$

Question 12

$$
\begin{align*}
& \frac{\sum_{i=1}^{15} x_{i}}{15}=11.5 \Rightarrow \sum_{i=1}^{15} x_{i}=172.5  \tag{AI}\\
& \text { new mean }=\frac{172.5-22.1}{14} \\
& =10.7428 \ldots=10.7(3 \mathrm{sf})
\end{align*}
$$

$$
A 1
$$

$\frac{\sum_{i=1}^{15} x_{i}^{2}}{15}-11.5^{2}=9.3$
(M1)
$\Rightarrow \sum_{i=1}^{15} x_{i}^{2}=2123.25$
new variance $=\frac{2123.25-22.1^{2}}{14}-(10.7428 \ldots)^{2}$ (M1)

$$
=1.37(3 \mathrm{sf})
$$

Question 13
(a) $\mathrm{P}(\mathrm{WWW})=0.75 \times 0.375 \times 0.1875=0.0527(3 \mathrm{sf})\left(\frac{3}{4} \times \frac{3}{8} \times \frac{3}{16}=\frac{27}{512}\right)$
(M1)A1
(b)

(M1)(A1)
Note: Award M1 for any reasonable attempt to use a tree diagram showing that three games were played (do not award M1 for tree diagrams that only show the first two games) and $A I$ for the highlighted probabilities.
$\mathrm{P}($ wins 2 games $\mid$ wins first game $)=\frac{\mathrm{P}(\text { WWL, WLW })}{\mathrm{P}(\text { wins first game })}$
$=\frac{0.75 \times 0.375 \times 0.8125+0.75 \times 0.625 \times 0.375}{0.75}$
(A1)(A1)
$=0.539(3 \mathrm{sf})\left(\right.$ or $\left.\frac{69}{128}\right)$
Note: Candidates may use the tree diagram to obtain the answer without using the conditional probability formula, ie,
$\mathrm{P}($ wins 2 games $\mid$ wins first game $)=0.375 \times 0.8125+0.625 \times 0.375=0.539$.

Question 14
(a) $2.2 \times 6 \times 60=792$ (M1)A1
(b) $\quad V \sim \mathrm{Po}(2.2 \times 60)$
(b) $\quad V \sim \mathrm{Po}(2.2 \times 60), ~ \begin{array}{ll}\mathrm{P}(V>100)=0.998\end{array}$
(c) $\quad(0.997801 \ldots)^{6}=0.987$
(M1)A1
(d) $A \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
$\mathrm{P}(A<35)=0.29$ and $\mathrm{P}(A>55)=0.23 \Rightarrow \mathrm{P}(A<55)=0.77$
$\mathrm{P}\left(Z<\frac{35-\mu}{\sigma}\right)=0.29$ and $\mathrm{P}\left(Z<\frac{55-\mu}{\sigma}\right)=0.77$
use of inverse normal
$\frac{35-\mu}{\sigma}=-0.55338 \ldots$ and $\frac{55-\mu}{\sigma}=0.738846 \ldots$
solving simultaneously
$\mu=43.564 \ldots$ and $\sigma=15.477 \ldots$
$\mu=43.6$ and $\sigma=15.5(3 \mathrm{sf})$
(e) $0.29 n=100 \Rightarrow n=344.82 \ldots$
$\mathrm{P}(A<50)=0.66121 \ldots$
expected number of visitors under $50=228$
(MI)
(M1)A1
[2 marks]
[3 marks]
[2 marks]
(M1)
(M1)
(M1)

A1A1
[6 marks]
(MI)(AI)
(A1)
(M1)A1
[5 marks]
Total [18 marks]

Question 15
$\frac{5 \times 6+6 k+7 \times 3+8 \times 1+9 \times 2+10 \times 1}{13+k}=6.5$ (or equivalent)
(M1)(A1)(A1)
ote: Award (M1)(A1) for correct numerator, and (A1) for correct denominator.

$$
0.5 k=2.5 \Rightarrow k=5
$$

Question 16
Let $X$ represent the length of time a journey takes on a particular day.
(a) $P(X>15)=0.0912112819 \ldots=0.0912$
(M1)A1
(M1)
$N \sim B(5,0.091 \ldots)$
$1-0.0912112819 \ldots=0.9087887181$. .
$1-(0.9087887181 \ldots)^{5}=0.380109935 \ldots=0.380$
(MI)AI

Note: Allow answers to be given as percentages.
[5 marks]
Question 17
(a) $\quad X \sim \operatorname{Po}(0.25 \mathrm{~T})$

Attempt to solve $\mathrm{P}(X \leq 3)=0.6$
$T=12.8453 \ldots=13$ (minutes)

Note: Award A1M1A0 if $T$ found correctly but not stated to the nearest minute.
(b) let $X_{1}$ be the number of cars that arrive during the first interval and $X_{2}$ be the number arriving during the second.
$X_{1}$ and $X_{2}$ are $\operatorname{Po}(2.5)$
$\mathrm{P}($ all get on $)=\mathrm{P}\left(X_{1} \leq 3\right) \times \mathrm{P}\left(X_{2} \leq 3\right)+\mathrm{P}\left(X_{1}=4\right) \times \mathrm{P}\left(X_{2} \leq 2\right)$
$+\mathrm{P}\left(X_{1}=5\right) \times \mathrm{P}\left(X_{2} \leq 1\right)+\mathrm{P}\left(X_{1}=6\right) \times \mathrm{P}\left(X_{2}=0\right)$ (M1)
$=0.573922 \ldots+0.072654 \ldots+0.019192 \ldots+0.002285 \ldots$
(MI)
$=0.668(053 \ldots)$

## Question 18

(a) $\quad X \sim N(13.5,9.5)$
$13.5-\sqrt{9.5}<X<13.5+\sqrt{9.5}$
$10.4<X<16.6$
Note: Accept 6.16.
(b) $\mathrm{P}(X<10)=0.12807 \ldots$
(M1)(A1)
estimate is 1281 (correct to the nearest whole number).

## Note: Accept 1280.

Question 19
(a) $\int_{0}^{0.5} a x^{2} \mathrm{~d} x+\int_{0.5}^{1} 0.5 a(1-x) \mathrm{d} x=1$

M1AI
A1

Note: Award M1 for considering two definite integrals.
Award $A 1$ for equating to 1 .
Award $A I$ for a correct equation.
The $A 1 A 1$ can be awarded in any order.
$a=9.6$
$A G$
[3 marks]
(b)

correct shape for $0 \leq x \leq 0.5$ and $f(0.5) \approx 2.4$
correct shape for $0.5 \leq x \leq 1$ and $f(1)=0$
A1
A1
(c) attempting to find $\mathrm{P}(X<0.6)$
(M1)
direct GDC use or eg $\mathrm{P}(0 \leq X \leq 0.5)+\mathrm{P}(0.5 \leq X \leq 0.6)$ or $1-\mathrm{P}(0.6 \leq X \leq 1)$
$\mathrm{P}(X<0.6)=0.616\left(=\frac{77}{125}\right)$
A1
[2 marks]
Total [7 marks]

Question 20
(a) $X \sim \operatorname{Po}(1.2)$

$$
\begin{aligned}
& \mathrm{P}(X=3) \times \mathrm{P}(X=0) \\
& =0.0867 \ldots \times 0.3011 \ldots \\
& =0.0261
\end{aligned}
$$

(b) Three requests over two days can occur as $(3,0),(0,3),(2,1)$ or $(1,2)$.

R1
using conditional probability, for example
$\frac{\mathrm{P}(3,0)}{\mathrm{P}(3 \text { requests, } m=2.4)}=0.125$ or $\frac{\mathrm{P}(2,1)}{\mathrm{P}(3 \text { requests, } m=2.4)}=0.375$
expected income is
$2 \times 0.125 \times$ US $\$ 120+2 \times 0.375 \times$ US $\$ 180$
Note: Award M1 for attempting to find the expected income including both $(3,0)$ and $(2,1)$ cases.

$$
\begin{aligned}
& =\text { US } \$ 30+\text { US } \$ 135 \\
& =\text { US } \$ 165
\end{aligned}
$$

Question 21
$\mathrm{P}\left(Z<\frac{780-\mu}{\sigma}\right)=0.92$ and $\mathrm{P}\left(Z<\frac{755-\mu}{\sigma}\right)=0.12$
A1
[5 marks]
Total [7 marks]
use of inverse normal
$\Rightarrow \frac{780-\mu}{\sigma}=1.405 \ldots$ and $\frac{755-\mu}{\sigma}=-1.174 \ldots$
solving simultaneously
Note: Award M1 for attempting to solve an incorrect pair of equations $e g$, inverse normal not used.

$$
\begin{align*}
& \mu=766.385 \\
& \sigma=9.6897 \\
& \mu=12 \text { hrs } 46 \text { mins }(=766 \mathrm{mins})
\end{align*}
$$

$\sigma=10 \mathrm{mins} \quad$ A1
Total [6 marks]

## Question 22

(a) $\mathrm{P}(F)=\left(\frac{1}{7} \times \frac{7}{9}\right)+\left(\frac{6}{7} \times \frac{4}{9}\right)$
(M1)(A1)

Note: Award M1 for the sum of two products.

$$
=\frac{31}{63}(=0.4920 \ldots) \quad \text { A1 }
$$

[3 marks]
(b) Use of $\mathrm{P}(S \mid F)=\frac{\mathrm{P}(S \cap F)}{\mathrm{P}(F)}$ to obtain $\mathrm{P}(S \mid F)=\frac{\frac{1}{7} \times \frac{7}{9}}{31}$.

Note: Award M1 only if the numerator results from the product of two probabilities.


Question 23
(a) (i) $X \sim \operatorname{Po}(0.6)$
$\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right) \quad$ AI
(ii) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$
(M1)(A1)
$=1-\left(e^{-0.6}+e^{-0.6} \times 0.6+e^{-0.6} \times \frac{0.6^{2}}{2}\right)$
$=0.0231$
A1
(iii) $\quad Y \sim \operatorname{Po}(2.4)$
$\mathrm{P}(Y \leq 5)=0.964$
A1
(iv) $Z \sim B(12,0.451 \ldots)$
(M1)(A1)
Note: Award $\boldsymbol{M 1}$ for recognising binomial and $\boldsymbol{A 1}$ for using correct parameters.

$$
\mathrm{P}(Z=4)=0.169
$$

(b) (i) $k \int_{1}^{3} \ln x \mathrm{~d} x=1$
$(k \times 1.2958 \ldots=1)$ $k=0.771702$
(ii) $\mathrm{E}(X)=\int_{1}^{3} k x \ln x \mathrm{~d} x$ attempting to evaluate their integral
$=2.27$
(iii) $x=3$
(iv) $\int_{1}^{m} k \ln x d x=0.5$ (M1)
$k[x \ln x-x]_{1}^{m}=0.5$
attempting to solve for $m \quad \square$ (M1)

$$
m=2.34
$$

## Total [18 marks]

Question 24

$$
\begin{array}{lr}
X: \mathrm{N}\left(100, \sigma^{2}\right) \\
\mathrm{P}(X<124)=0.68 \\
\frac{24}{\sigma}=0.4676 \ldots & \text { (M1)(A1) } \\
\sigma=51.315 \ldots \\
\text { variance }=2630 & \text { (M1) } \\
\text { (A1) } \\
\text { (M1 }
\end{array}
$$

Notes: Accept use of $\mathrm{P}(X<124.5)=0.68$ leading to variance $=2744$.

Question 25
(a) $\left(A\binom{6}{5} 2^{5} B+3\binom{6}{4} 2^{4} B^{2}\right) x^{5}$
$=\left(192 A B+720 B^{2}\right) x^{5}$
M1A1A1

A1
[4 marks]
(b) METHOD 1
$x=\frac{1}{6}, A=\frac{3}{6}\left(=\frac{1}{2}\right), B=\frac{4}{6}\left(=\frac{2}{3}\right)$
A1A1A1
probability is $\frac{4}{81}(=0.0494)$

## METHOD 2

$P(5$ eaten $)=P(M$ eats 1$) P(N$ eats 4$)+P(M$ eats 0$) P(N$ eats 5$)$
$=\frac{1}{2}\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)$
$=\frac{4}{81}(=0.0494)$
(A1)(A1)

A1
[4 marks]
Total [8 marks]

Question 26
(a) mean for week is 40.88
$\mathrm{P}(S>40)=1-\mathrm{P}(S \leq 40)=0.513$
(b) probability there were more than 10 on Monday AND more than 40 over the week
possibilities for the numerator are:
there were more than 40 birds on the power line on Monday R1
11 on Monday and more than 29 over the course of the next 6 days R1
12 on Monday and more than 28 over the course of the next 6 days ... until
40 on Monday and more than 0 over the course of the next 6 days
hence if $X$ is the number on the power line on Monday and $Y$, the number on the power line Tuesday - Sunday then the numerator is
$\mathrm{P}(X>40)+\mathrm{P}(X=11) \times \mathrm{P}(Y>29)+\mathrm{P}(X=12) \times \mathrm{P}(Y>28)+\ldots$
$+\mathrm{P}(X=40) \times \mathrm{P}(Y>0)$
$=\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)$
hence solution is $\frac{\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)}{\mathrm{P}(X>10)}$
$A G$
[5 marks]

Question 27
(a) $\int_{2}^{3}(a x+b) \mathrm{d} x(=1)$

M1A1
$\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{3}(=1)$
A1
$\frac{5}{2} a+b=1$
$5 a+2 b=2$
$A G$
(b) (i) $\int_{2}^{3}\left(a x^{2}+b x\right) \mathrm{d} x(=\mu)$
$\left[\frac{1}{3} a x^{3}+\frac{1}{2} b x^{2}\right]_{2}^{3}(=\mu)$
$\frac{19}{3} a+\frac{5}{2} b=\mu$
A1
eliminating $b$
M1
eg

$$
\frac{19}{3} a+\frac{5}{2}\left(1-\frac{5}{2} a\right)=\mu
$$

$$
\frac{1}{12} a+\frac{5}{2}=\mu
$$

$$
a=12 \mu-30
$$

$A G$

A1
[7 marks]
(c) (i) $\quad \int_{2}^{2.3}(a x+b) \mathrm{d} x(=0.5)$
$\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{2.3}(=0.5)$
$0.645 a+0.3 b(=0.5)$
$0.645(12 \mu-30)+0.3(76-30 \mu)=0.5$
$\mu=2.34\left(=\frac{295}{126}\right)$
(ii) $\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}(a x+b) \mathrm{d} x$
$a=12 \mu-30=-\frac{40}{21}, b=76-30 \mu=\frac{121}{21}$
$\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}\left(-\frac{40}{21} x+\frac{121}{21}\right) \mathrm{d} x=5.539 \ldots\left(=\frac{349}{63}\right)$
$\operatorname{Var}(X)=5.539 \mathrm{~K}-(2.341 \mathrm{~K})^{2}=0.05813 \ldots$
$\sigma=0.241$
(M1) A1
[10 marks]

Question 28
(a) (i) $0.6^{3} \times 0.4^{3}$

Note: Award (M1) for use of the product of probabilities.

$$
=0.0138
$$

(ii) binomial distribution $X: \mathrm{B}(6,0.6)$

Note: Award (M1) for recognizing the binomial distribution.

$$
\begin{aligned}
& \mathrm{P}(X=3)={ }^{6} \mathrm{C}_{3}(0.6)^{3}(0.4)^{3} \\
& =0.276
\end{aligned}
$$



Note: Award (M1)A1 for ${ }^{6} C_{3} \times 0.0138=0.276$.
(b) $\quad Y: \mathrm{B}(n, 0.4)$
$\mathrm{P}(Y \geq 1)>0.995$
$1-\mathrm{P}(Y=0)>0.995$
$\mathrm{P}(Y=0)<0.005$
Note: Award (M1) for any of the last three lines. Accept equalities.
$0.6^{n}<0.005$
Note: Award (M1) for attempting to solve $0.6^{n}<0.005$ using any method, eg, logs, graphically, use of solver. Accept an equality.
$n>10.4$
$\therefore n=11$

Question 29
(a) $\frac{\mu^{2} \mathrm{e}^{-\mu}}{2!}+\frac{\mu^{3} \mathrm{e}^{-\mu}}{3!}=\frac{\mu^{5} \mathrm{e}^{-\mu}}{5!}$

$$
\frac{\mu^{2}}{2}+\frac{\mu^{3}}{6}-\frac{\mu^{5}}{120}=0
$$

$$
\mu=5.55 \quad A 1
$$

(b) $\sigma=\sqrt{5.55 \ldots}=2.35598 \ldots$
$\mathrm{P}(3.19 \leq X \leq 7.9)$
$\mathrm{P}(4 \leq X \leq 7)$
$=0.607$ A1

## [2 marks]

Total [4 marks]

## Question 30

(a) $a \int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x=1$
integrating by parts:

$$
\begin{array}{ll}
u=x & v^{\prime}=\cos x \\
u^{\prime}=1 & v=\sin x \\
\int x \cos x \mathrm{~d} x=x \sin x+\cos x & M 1 \\
{[x \sin x+\cos x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-1} & A 1 \\
a=\frac{1}{\frac{\pi}{2}-1} & A 1 \\
=\frac{2}{\pi-2} & A G
\end{array}
$$

(b) $\mathrm{P}\left(X<\frac{\pi}{4}\right)=\frac{2}{\pi-2} \int_{0}^{\frac{\pi}{4}} x \cos x \mathrm{~d} x=0.460$

Note: Accept $\frac{2}{\pi-2}\left(=\frac{\pi \sqrt{2}}{8}+\frac{\sqrt{2}}{2}-1\right)$ or equivalent
[2 marks]
(c) (i) mode $=0.860$
( $x$-value of a maximum on the graph over the given domain)
(ii) $\frac{2}{\pi-2} \int_{0}^{m} x \cos x \mathrm{~d} x=0.5$
(M1)
$\int_{0}^{m} x \cos x \mathrm{~d} x=\frac{\pi-2}{4}$
$m \sin m+\cos m-1=\frac{\pi-2}{4}$
(M1)
median $=0.826$ AI

Note: Do not accept answers containing additional solutions.
(d) $\mathrm{P}\left(\left.X<\frac{\pi}{8} \right\rvert\, X<\frac{\pi}{4}\right)=\frac{\mathrm{P}\left(X<\frac{\pi}{8}\right)}{\mathrm{P}\left(X<\frac{\pi}{4}\right)}$

$$
=\frac{0.129912}{0.459826}
$$

$$
=0.283
$$

Question 31


Question 32
use of $\mu=\frac{\sum_{i=1}^{k} f_{i} x_{t}}{n}$ to obtain $\frac{2+x+y+10+17}{5}=8$
(M1)
A1

## EITHER

use of $\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}$ to obtain $\frac{(-6)^{2}+(x-8)^{2}+(y-8)^{2}+2^{2}+9^{2}}{5}=27.6$ (M1)
$(x-8)^{2}+(y-8)^{2}=17$
OR
use of $\sigma^{2}=\frac{\sum_{i=1}^{k} f_{t} x_{t}^{2}}{n}-\mu^{2}$ to obtain $\frac{2^{2}+x^{2}+y^{2}+10^{2}+17^{2}}{5}-8^{2}=27.6$ (M1)
$x^{2}+y^{2}=65$

## THEN

attempting to solve the two equations
$x=4$ and $y=7$ (only as $x<y$ )
Note: Award $\boldsymbol{A} 0$ for $x=7$ and $y=4$.

Note: Award (M1)A1(M0)AO(M1)A1 for $x+y=11 \Rightarrow x=4$ and $y=7$.

Question 33
(a) (i) $\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right)$

$$
A 1
$$

(ii) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(x \leq 2)$ (M1)

$$
\mathrm{P}(X \geq 3)=0.0231
$$

(b) EITHER
using $Y \sim \operatorname{Po}(3)$
OR
using (0.549) ${ }^{5}$ (M1)

THEN
$\mathrm{P}(Y=0)=0.0498\left(=\mathrm{e}^{-3}\right)$
(c) $\mathrm{P}(X=0)$ (most likely number of complaints received is zero)

## EITHER

calculating $\mathrm{P}(X=0)=0.549$ and $\mathrm{P}(X=1)=0.329$
OR
sketching an appropriate (discrete) graph of $\mathrm{P}(X=x)$ against $x$
M1A1

OR
finding $\mathrm{P}(X=0)=e^{-0.6}$ and stating that $\mathrm{P}(X=0)>0.5$
M1A1

OR
using $\mathrm{P}(X=x)=\mathrm{P}(X=x-1) \times \frac{\mu}{x}$ where $\mu<1$
M1A1
(d) $\mathrm{P}(X=0)=0.8\left(\Rightarrow e^{-\lambda}=0.8\right)$
$\lambda=0.223\left(=\ln \frac{5}{4},=-\ln \frac{4}{5}\right)$
(A1)
A1
[2 marks]

Question 34
(a) $\quad \mathrm{P}($ Ava wins on her first turn $)=\frac{1}{3}$
[1 mark]
(b) $\mathrm{P}\left(\right.$ Barry wins on his first turn) $=\left(\frac{2}{3}\right)^{2}$

$$
\begin{equation*}
=\frac{4}{9}(=0.444) \tag{M1}
\end{equation*}
$$

(c) P (Ava wins in one of her first three turns)

$$
=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}
$$

Note: Award M1 for adding probabilities, award A1 for a correct second term and award A1 for a correct third term.
Accept a correctly labelled tree diagram, awarding marks as above.

$$
=\frac{103}{243}(=0.424)
$$

## A1

[4 marks]
(d) $\mathrm{P}($ Ava eventually wins $)=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\ldots$ using $S_{\infty}=\frac{a}{1-r}$ with $a=\frac{1}{3}$ and $r=\frac{2}{9}$

Note: Award (M1) for using $S_{\infty}=\frac{a}{1-r}$ and award (A1) for $a=\frac{1}{3}$ and $r=\frac{2}{9}$.

$$
=\frac{3}{7}(=0.429)
$$

$$
A 1
$$

Total [11 marks]
Question 35
(a) $X \sim N\left(210,22^{2}\right)$

$$
\mathrm{P}(X<180)=0.0863
$$

(M1)A1
(b) $\mathrm{P}(X<T)=0.9 \Rightarrow T=238$ (mins)
(M1)A1
(a) $\quad W \sim B(1000,0.1)$ (accept $C_{k}^{1000}(0.1)^{k}(0.9)^{1000-k}$ )

A1A1
Note: First A1 is for recognizing the binomial, second A1 for both parameters if stated explicitly in this part of the question.
(b) $\mu(=1000 \times 0.1)=100$

A1
[1 mark]
(c) $\quad \mathrm{P}(W>89)=\mathrm{P}(W \geq 90) \quad(=1-\mathrm{P}(W \leq 89))$
(M1)

$$
=0.867
$$

A1

Notes: Award MOAO for 0.889
[2 marks]
Total [5 marks]
Question 37
(a) $2 \frac{\mathrm{e}^{-m} m^{4}}{4!}=\frac{\mathrm{e}^{-m} m^{5}}{5!}$
$\frac{2}{4!}=\frac{m}{5!}$ or other simplification
Note: accept a labelled graph showing clearly the solution to the equation. Do not accept simple verification that $m=10$ is a solution.

$$
\Rightarrow m=10
$$

## M1A1

M1
$A G$
[3 marks]
(b) $\mathrm{P}(X=6 \mid X \leq 11)=\frac{\mathrm{P}(X=6)}{\mathrm{P}(X \leq 11)}$

$$
\begin{aligned}
& =\frac{0.063055 \ldots}{0.696776 \ldots} \\
& =0.0905
\end{aligned}
$$

(A1)
A1
[4 marks]
Total [7 marks]

Question 38
(a)


Award $\boldsymbol{A 1}$ for sine curve from 0 to $\pi$, award $\boldsymbol{A 1}$ for straight line from $\pi$ to $2 \pi$

> A1A1
[2 marks]
(b) $\int_{0}^{\pi} \frac{\sin x}{4} \mathrm{~d} x=\frac{1}{2}$
(M1)A1
[2 marks]
(c) METHOD 1
require $\frac{1}{2}+\int_{\pi}^{2 \pi} a(x-\pi) \mathrm{d} x=1$

(M1)

A1

A1
AG

Note: Must obtain the exact value. Do not accept answers obtained with calculator.

## METHOD 2

$0.5+$ area of triangle $=1$
area of triangle $=\frac{1}{2} \pi \times a \pi=0.5$
M1A1
Note: Award $\boldsymbol{M 1}$ for correct use of area formula $=0.5, \boldsymbol{A 1}$ for $a \pi$.
$a=\frac{1}{\pi^{2}}$
AG
[3 marks]
A1
[1 mark]
(e) $\quad \mu=\int_{0}^{\pi} x \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x$

$$
\left.=3.40339 \ldots=3.40 \quad \text { (or } \frac{\pi}{4}+\frac{5 \pi}{6}=\frac{13}{12} \pi\right)
$$

A1
(f) For $\mu=3.40339 \ldots$

EITHER
$\sigma^{2}=\int_{0}^{\pi} x^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x-\mu^{2}$
(M1)(A1)
OR
$\sigma^{2}=\int_{0}^{\pi}(x-\mu)^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi}(x-\mu)^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x$
(M1)(A1)
THEN
$=3.866277 \ldots=3.87$
A1
[3 marks]
(g) $\quad \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{\frac{3 \pi}{2}} \frac{x-\pi}{\pi^{2}} \mathrm{~d} x=0.375 \quad$ (or $\frac{1}{4}+\frac{1}{8}=\frac{3}{8}$ )
(M1)A1
[2 marks]
(h) $\mathrm{P}\left(\pi \leq X \leq 2 \pi \left\lvert\, \frac{\pi}{2} \leq X \leq \frac{3 \pi}{2}\right.\right)=\frac{\mathrm{P}\left(\pi \leq X \leq \frac{3 \pi}{2}\right)}{\mathrm{P}\left(\frac{\pi}{2} \leq X \leq \frac{3 \pi}{2}\right)}$
$=\frac{\int_{\pi}^{\frac{3 \pi}{2}} \frac{(x-\pi)}{\pi^{2}} \mathrm{~d} x}{0.375}=\frac{0.125}{0.375}$ (or $=\frac{\frac{1}{8}}{\frac{3}{8}} \quad$ from diagram areas)
$=\frac{1}{3}(0.333)$

## Question 39

(a) $\quad$ (i) $\quad X \sim \operatorname{Po}$ (5)
$\mathrm{P}(X \geq 8)=0.133 \quad$ (M1)A1
(ii) $7 \times 0.133 \ldots$ M1
$\approx 0.934$ days
A1
Note: Accept " 1 day".
[4 marks]
(A1)
(M1)A1
[3 marks]
Total [7 marks]

Question 40

(a) attempt to set up the problem using a tree diagram and/or an equation, with the unknown $x$
$\frac{4}{5} x+\frac{2}{3}(1-x)=\frac{13}{18}$
$\frac{4 x}{5}-\frac{2 x}{3}=\frac{13}{18}-\frac{2}{3}$
$\frac{2 x}{15}=\frac{1}{18}$
$x=\frac{5}{12}$
A1
[3 marks]
(b) attempt to set up the problem using conditional probability

EITHER
$\frac{5}{12} \times \frac{1}{5}$
$1-\frac{13}{18}$

OR

$$
\frac{\frac{5}{12} \times \frac{1}{5}}{\frac{1}{12}+\frac{7}{36}}
$$

Question 41
(a) (i) $P(110<X<130)=0.49969 \ldots=0.500=50.0 \%$
(M1)A1

Note: Accept 50

Note: Award M1AO for $0.50(0.500)$
(ii) $P(X>130)=(1-0.707 \ldots)=0.293 \ldots$

M1
expected number of turnips $=29.3$
Note: Accept 29.
(iii) no of turnips weighing more than 130 is $Y \sim B(100,0.293)$
$P(Y \geq 30)=0.478$
(b) (i) $X \sim N\left(144, \sigma^{2}\right)$
$P(X \leq 130)=\frac{1}{15}=0.0667$
(M1)
$P\left(Z \leq \frac{130-144}{\sigma}\right)=0.0667$
$\frac{14}{\sigma}=1.501$
$\sigma=9.33 \mathrm{~g}$
(ii) $P(X>150 \mid X>130)=\frac{P(X>150)}{P(X>130)}$
$=\frac{0.26008 \ldots}{1-0.06667}=0.279$
A1
expected number of turnips $=55.7$

Question 42
(a) $0.818=0.65+0.48-\mathrm{P}(A \cap B)$
(M1)
$\mathrm{P}(A \cap B)=0.312$
(b) $\mathrm{P}(A) \mathrm{P}(B)=0.312(=0.48 \times 0.65)$
A1
since $\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A \cap B)$ then $A$ and $B$ are independent
R1
e: Only award the R1 if numerical values are seen. Award A1R1 for a correct conditional probability approach.

A1
[2 marks]

Question 43
(a) $\frac{0 \cdot 4+1 \cdot k+2 \cdot 3+3 \cdot 2+4 \cdot 3+8 \cdot 1}{13+k}=1.95\left(\frac{k+32}{k+13}=1.95\right)$
attempting to solve for $k$
(M1)
$k=7$
(M1)
A1
[3 marks]
(b) (i) $\frac{7+32+22}{7+13+1}=2.90\left(=\frac{61}{21}\right)$
(M1)A1
(ii) standard deviation $=4.66$
: Award $A O$ for 4.77.
[3 marks]
Total [6 marks]
Question 44

e: Award M1 for a two-level tree diagram, $\boldsymbol{A 1}$ for correct first level probabilities, and $\boldsymbol{A} 1$ for correct second level probabilities.

OR
$\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)}{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)+\mathrm{P}\left(L^{\prime} \mid C\right) \mathrm{P}(C)+\mathrm{P}\left(L^{\prime} \mid W\right) \mathrm{P}(W)}\left(=\frac{\mathrm{P}\left(B \cap L^{\prime}\right)}{\mathrm{P}\left(L^{\prime}\right)}\right)$ (M1)(A1)(A1)

## THEN

$$
\begin{aligned}
& \mathrm{P}\left(B \mid L^{\prime}\right)=\frac{0.9 \times 0.2}{0.9 \times 0.2+0.95 \times 0.3+0.75 \times 0.5}\left(=\frac{0.18}{0.84}\right) \\
& =0.214\left(=\frac{3}{14}\right)
\end{aligned}
$$

M1A1 A1

Question 45
(a) $A \int_{1}^{5} \sin (\ln x) \mathrm{d} x=1$
(M1)
$A=0.323$ ( 3 dp only)
(b) either a graphical approach or $f^{\prime}(x)=\frac{\cos (\ln x)}{x}=0$
(M1)

$$
x=4.81\left(=\mathrm{e}^{\frac{\pi}{2}}\right)
$$

(c) $\quad \mathrm{P}(X \leq 3 \mid X \geq 2)=\frac{\mathrm{P}(2 \leq X \leq 3)}{\mathrm{P}(X \geq 2)}\left(=\frac{\int_{2}^{3} \sin (\ln (x)) \mathrm{d} x}{\int_{2}^{5} \sin (\ln (x)) \mathrm{d} x}\right)$

$$
=0.288
$$

Note: Do not award A1FT for a candidate working in degrees.

Question 46
(a) (i) let $W$ be the weight of a worker and $W \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
(M1)
[2 marks]

$$
\begin{aligned}
& \mathrm{P}\left(Z<\frac{62-\mu}{\sigma}\right)=0.3 \text { and } \mathrm{P}\left(Z<\frac{98-\mu}{\sigma}\right)=0.75 \\
& \frac{62-\mu}{\sigma}=\Phi^{-1}(0.3)(=-0.524 \ldots) \text { and } \\
& \frac{98-\mu}{\sigma}=\Phi^{-1}(0.75)(=0.674 \ldots) \\
& \text { or linear equivalents }
\end{aligned}
$$

(ii) attempting to solve simultaneously

$$
\mu=77.7, \sigma=30.0
$$

## A1A1

[6 marks]
(b) $\mathrm{P}(W>100)=0.229$
[1 mark]
(c) let $X$ represent the number of workers over 100 kg in a lift of ten passengers

$$
X \sim \mathrm{~B}(10,0.229 \ldots)
$$

$$
\mathrm{P}(X \geq 4)=0.178
$$

(d) $\quad \mathrm{P}(X<4 \mid X \geq 1)=\frac{\mathrm{P}(1 \leq X \leq 3)}{\mathrm{P}(X \geq 1)}$

Note: Award the M1 for a clear indication of conditional probability.

$$
=0.808
$$

A1
[3 marks]
(M1)
(M1)
A1
[3 marks]
(A1)
(M1)
A1
[3 marks]

Question 47
let the heights of the students be $X$
$\mathrm{P}(X<1.62)=0.4, \mathrm{P}(X>1.79)=0.25$
M1
Note: Award $\mathbf{M 1}$ for either of the probabilities above.
$\mathrm{P}\left(Z<\frac{1.62-\mu}{\sigma}\right)=0.4, \mathrm{P}\left(Z<\frac{1.79-\mu}{\sigma}\right)=0.75$
Note: Award M1 for either of the expressions above.
$\frac{1.62-\mu}{\sigma}=-0.2533 \ldots, \frac{1.79-\mu}{\sigma}=0.6744 \ldots$
M1A1
Note: A1 for both values correct.
$\mu=1.67(\mathrm{~m}), \sigma=0.183(\mathrm{~m})$

Note: Accept answers that round to $1.7(\mathrm{~m})$ and $0.18(\mathrm{~m})$.
Note: Accept answers in centimetres.

Question 48

P (3 in the first hour) $=\frac{\lambda^{3} e^{-\lambda}}{3!} \quad$ A1
number to arrive in the four hours follows $\operatorname{Po}(4 \lambda) \quad$ M1
$\mathrm{P}(5$ arrive in total $)=\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}$
attempt to find P (2 arrive in the next three hours)
$=\frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}$
use of conditional probability formula
$\mathrm{P}(3$ in the first hour given 5 in total $)=\frac{\frac{\lambda^{3} e^{-\lambda}}{3!} \times \frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}}{\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}}$
$\frac{\left(\frac{9}{2!3!}\right)}{\left(\frac{4^{5}}{5!}\right)}=\frac{45}{512}=0.0879$
A1

Question 49
(a) $\mathrm{E}(X)=1 \times \frac{1}{6}+2 \times \frac{2}{6}+3 \times \frac{3}{6}=\frac{14}{6}\left(=\frac{7}{3}=2.33\right)$
(M1)A1
[2 marks]
(b) (i) $3 \times \mathrm{P}(113)+3 \times \mathrm{P}(122)$
$3 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}+3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3}=\frac{7}{72}(=0.0972)$
Note: Award M1 for attempt to find at least four of the cases.
(ii) recognising 111 as a possibility (implied by $\frac{1}{216}$ )
recognising 112 and 113 as possibilities (implied by $\frac{2}{216}$ and $\frac{3}{216}$ )
seeing the three arrangements of 112 and 113

$$
\begin{aligned}
& \mathrm{P}(111)+3 \times \mathrm{P}(112)+3 \times \mathrm{P}(113) \\
& =\frac{1}{216}+\frac{6}{216}+\frac{9}{216}=\frac{16}{216}\left(=\frac{2}{27}=0.0741\right)
\end{aligned}
$$

(c) let the number of twos be $X, X \sim B\left(10, \frac{1}{3}\right)$
(M1)
(M1)A1
[3 marks]
(d) let $n$ be the number of balls drawn
$\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0) \quad$ M1
$=1-\left(\frac{2}{3}\right)^{n}>0.95$
M1
$\left(\frac{2}{3}\right)^{n}<0.05$
$n=8$
A1
[3 marks]
(e) $8 p_{1}=4.8 \Rightarrow p_{1}=\frac{3}{5}$
(M1)A1
$8 p_{2}\left(1-p_{2}\right)=1.5$
(M1)
$p_{2}^{2}-p_{2}-0.1875=0$
(M1)
$p_{2}=\frac{1}{4}\left(\right.$ or $\left.\frac{3}{4}\right)$
A1
reject $\frac{3}{4}$ as it gives a total greater than one
$\mathrm{P}(1$ or 2$)=\frac{17}{20}$ or $\mathrm{P}(3)=\frac{3}{20}$
recognising LCM as 20 so min total number is 20
the least possible number of 3 's is 3

Question 50
(a) $\mathrm{P}(0 \leq X \leq 2)=0.242$
(M1)A1
[2 marks]
(b) METHOD 1

```
\(\mathrm{P}(|X|>1)=\mathrm{P}(X<-1)+\mathrm{P}(X>1)\)
\(=0.02275 \ldots+0.84134 \ldots\)
\(=0.864\)
```

(M1)
(A1)
A1

## METHOD 2

$\mathrm{P}(|X|>1)=1-\mathrm{P}(-1<X<1)$
(M1)
(A1)
A1
[3 marks]
(M1)A1
[2 marks]

Question 51
(a) $X \sim \operatorname{Po}(0.5)$
(A1) (M1)A1
[3 marks]
(b) $\mathrm{P}(X=0)=0.607 \ldots$
(A1)
$\mathrm{E}(P)=(0.607 \ldots \times 5)-(0.393 \ldots \times 3)$
(M1)
the expected profit is $\$ 1.85$ per glass sheet
[3 marks]
(c) $Y \sim \operatorname{Po}(2)$
(M1)
$\mathrm{P}(Y=0)=0.135\left(=\mathrm{e}^{-2}\right)$

A1
[2 marks]
Total [8 marks]

Question 52

(a) two enclosed regions ( $0 \leq t \leq \frac{\pi}{2}$ and $\frac{\pi}{2} \leq t \leq \pi$ ) bounded by the curve and the $t$-axis
correct non-symmetrical shape for $0 \leq t \leq \frac{\pi}{2}$ and
$\frac{\pi}{2}<$ mode of $T<\pi$ clearly apparent A1
[2 marks]
(b) mode $=2.46$
(c) $\mathrm{E}(T)=\frac{1}{\pi} \int_{0}^{\pi} t^{2}|\sin 2 t| \mathrm{d} t$

$$
=2.04
$$

(d) EITHER

$$
\operatorname{Var}(T)=\int_{0}^{\pi}(t-2.03788 \ldots)^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t
$$

## OR

$\operatorname{Var}(T)=\int_{0}^{\pi} t^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t-(2.03788 \ldots)^{2}$
(M1)(A1)

THEN
$\operatorname{Var}(T)=0.516$

A1
[3 marks]
(e) $\frac{1}{\pi} \int_{2.03788 \ldots}^{2456590 \ldots} t|\sin 2 t| \mathrm{d} t=0.285$
(M1)A1
[2 marks]
(f) (i) attempting integration by parts

Note: Award A1 if the limits are not included.

$$
=\frac{\sin 2 T}{4 \pi}-\frac{T \cos 2 T}{2 \pi}
$$

(ii) $\frac{\sin \pi}{4 \pi}-\frac{\frac{\pi}{2} \cos \pi}{2 \pi}=\frac{1}{4}$
as $\mathrm{P}\left(0 \leq T \leq \frac{\pi}{2}\right)=\frac{1}{4}$ (or equivalent), then the lower quartile of $T$ is $\frac{\pi}{2}$ R1AG

Question 53
(a) $\mathrm{E}\left(X^{2}\right)=\sum x^{2} \cdot \mathrm{P}(X=x)=10.37(=10.43 \mathrm{sf})$
(M1)A1
[2 marks]
(b) METHOD 1
$\operatorname{sd}(X)=1.44069 \ldots$
(M1)(A1)
$\operatorname{Var}(X)=2.08 \quad(=2.0756)$
A1

## METHOD 2

$\mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)$
use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$
Note: Award (M1) only if $(\mathrm{E}(X))^{2}$ is used correctly.

$$
(\operatorname{Var}(X)=10.37-8.29)
$$

$\operatorname{Var}(X)=2.08(=2.0756)$

## Note: Accept 2.11.

## METHOD 3

$\mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)$
(A1)
use of $\operatorname{Var}(X)=\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right)$
(M1)
$(0.679728+\ldots+0.549152)$
$\operatorname{Var}(X)=2.08(=2.0756)$

A1
[3 marks]
Total [5 marks]

## Question 54

(a) METHOD 1
$\mathrm{P}(X=x+1)=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}$
$=\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}$
$=\frac{\mu}{x+1} \times \mathrm{P}(X=x)$
$A G$

METHOD 2
$\frac{\mu}{x+1} \times \mathrm{P}(X=x)=\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}$
$=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}$
$=\mathrm{P}(X=x+1)$
METHOD 3
$\frac{\mathrm{P}(X=x+1)}{\mathrm{P}(X=x)}=\frac{\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}}{\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}}$
(M1)
$=\frac{\mu^{x+1}}{\mu^{x}} \times \frac{x!}{(x+1)!}$
$=\frac{\mu}{x+1}$
and so $\mathrm{P}(X=x+1)=\frac{\mu}{x+1} \times \mathrm{P}(X=x)$
$A G$
[3 marks]
(b) $\mathrm{P}(X=3)=\frac{\mu}{3} \cdot \mathrm{P}(X=2)\left(0.112777=\frac{\mu}{3} \cdot 0.241667\right)$

A1
attempting to solve for $\mu$ $\mu=1.40$

## Question 55

$$
\begin{equation*}
\text { (a) } \mathrm{P}(X<42.52)=0.6940 \tag{M1}
\end{equation*}
$$

## (M1)

$\frac{42.52-\mu}{\sigma}=\underbrace{\Phi^{-1}(0.6940)}_{0.5072}$
attempting to solve simultaneously
$\mu=38.9$ and $\sigma=7.22$
[6 marks]
(b) $\mathrm{P}(\mu-1.2 \sigma<X<\mu+1.2 \sigma)$ (or equivalent eg. $2 \mathrm{P}(\mu<X<\mu+1.2 \sigma)$ ) (M1) $=0.770$

Note: Award (M1)A1 for $\mathrm{P}(-1.2<Z<1.2)=0.770$.

## Total [8 marks]

Question 56
(a) $\quad \mathrm{P}(X=3)=(0.1)^{3}$
$=0.001$
$\mathrm{P}(X=4)=\mathrm{P}(V V \bar{V} V)+\mathrm{P}(V \bar{V} V V)+\mathrm{P}(\bar{V} V V V)$
$=3 \times(0.1)^{3} \times 0.9$ (or equivalent)
$=0.0027$
(b) METHOD 1
attempting to form equations in $a$ and $b$
M1
A1
A1
(M1) A1
attempting to solve simultaneously

## METHOD 2

$\mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3}$ M1
$=\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3}$
$=\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}$
A1
$a=-3, b=2$

Note: Condone the absence of $0.9^{n-3}$ in the determination of the values of $a$ and $b$.
(c) METHOD 1

EITHER
$\mathrm{P}(X=n)=\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}$
OR
$\mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3}$
THEN
$=\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3}$
$\mathrm{P}(X=n-1)=\frac{(n-2)(n-3)}{2000} \times 0.9^{n-4}$ A1
$\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{(n-1)(n-2)}{(n-2)(n-3)} \times 0.9$ A1
$=\frac{0.9(n-1)}{n-3}$
METHOD 2

$$
\begin{aligned}
& \frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}}{\frac{(n-1)^{2}-3(n-1)+2}{2000} \times 0.9^{n-4}} \\
& =\frac{0.9\left(n^{2}-3 n+2\right)}{\left(n^{2}-5 n+6\right)}
\end{aligned}
$$

Note: Award A1 for a correct numerator and A1 for a correct denominator.

$$
\begin{aligned}
& =\frac{0.9(n-1)(n-2)}{(n-2)(n-3)} \\
& =\frac{0.9(n-1)}{n-3}
\end{aligned}
$$

(d) (i) attempting to solve $\frac{0.9(n-1)}{n-3}=1$ for $n$

$$
n=21
$$

$\frac{0.9(n-1)}{n-3}<1 \Rightarrow n>21 \quad R$
$\frac{0.9(n-1)}{n-3}>1 \Rightarrow n<21 \quad R$
$X$ has two modes $A G$
Note: Award R1R1 for a clearly labelled graphical representation of the two inequalities (using $\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}$ ).
(ii) the modes are 20 and $21 \quad$ A1
(e) METHOD 1
$Y \sim \mathrm{~B}(x, 0.1)$
(A1)
attempting to solve $\mathrm{P}(Y \geq 3)>0.5$ (or equivalent eg $1-\mathrm{P}(Y \leq 2)>0.5)$ for $x$ (M1)
Note: Award (M1) for attempting to solve an equality (obtaining $x=26.4$ ).

$$
x=27
$$

## METHOD 2

$\sum_{n=0}^{x} \mathrm{P}(X=n)>0.5$
(A1)
attempting to solve for $x$
$x=27$

Question 57
(a) use of $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

$$
\begin{aligned}
& 0.5=k+3 k-k^{2} \\
& k^{2}-4 k+0.5=0 \\
& k=0.129
\end{aligned}
$$

M1
A1

A1
Note: Do not award the final $\boldsymbol{A 1}$ if two solutions are given.
(b) use of $\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}(B)-\mathrm{P}(A \cap B)$ or alternative (M1)
$\mathrm{P}\left(A^{\prime} \cap B\right)=3 k-k^{2}$
(A1)
$=0.371$

Question 58
(a) $\lambda=4 \times 0.5$
(M1)
(A1)
$\lambda=2$
$\mathrm{P}(X \leq 2)=0.677$
(b) $\quad Y \sim B(10,0.677)$
$\mathrm{P}(Y=7)=0.263$
Note: Award M1 for clear recognition of binomial distribution.
[3 marks]

## Total [6 marks]

Question 59
(a) $T-N\left(196,24^{2}\right)$
$\mathrm{P}(T<180)=0.252$
(M1)A1
[2 marks]
(b) $\mathrm{P}\left(T<T_{1}\right)=0.05$
$T_{1}=157$
(M1)
A1
[2 marks]
(M1)
(M1)(A1)
A1
[4 marks]
Total [8 marks]
Question 60
(a) $\mathrm{P}(5$ or more $)=\frac{29}{75}(=0.387)$
(M1)A1
[2 marks]
(b) mean score $=\frac{2 \times 3+3 \times 15+4 \times 28+5 \times 17+6 \times 9+7 \times 3}{75}$
$=\frac{323}{75}(=4.31)$
(M1)
A1
[2 marks]
Total [4 marks]

Question 61
(a) $\mathrm{P}(X<250)=0.0228$
(M1)A1
[2 marks]
(b) $\frac{250-\mu}{1.5}=-2.878 \ldots$
(M1)(A1)
$\Rightarrow \mu=254.32$
A1
Notes: Only award A1 here if the correct 2dp answer is seen. Award MO for use of $1.5^{2}$.
[3 marks]
(c) $\frac{250-253}{\sigma}=-2.878 \ldots$
(A1)
$\Rightarrow \sigma=1.04$
A1
[2 marks]
Total [7 marks]

Question 62
(a)


M1A2
Note: Award M1 for 3 stage tree-diagram, A2 for $0.8,0.9,0.3$ probabilities correctly placed.
[3 marks]
(b) $0.2 \times 0.7 \times 0.3+0.2 \times 0.3 \times 0.9+0.8 \times 0.1 \times 0.3+0.8 \times 0.9 \times 0.9=0.768$
(M1)A1
[2 marks]
(c) $\quad \mathrm{P}(1$ st July is calm $\mid$ 3rd July is windy $)=\frac{\mathrm{P}(1 \text { st July is calm and 3rd July is windy })}{\mathrm{P} \text { (3rd July is windy })}$

$$
=\frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{1-0.768}
$$

OR $\frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{0.2 \times 0.7 \times 0.7+0.2 \times 0.3 \times 0.1+0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}$
OR $\frac{0.128}{0.232}$
(A1)(A1)
Note: Award A1 for correct numerator, A1 for correct denominator.

$$
=0.552
$$

Question 64
(a) $\int_{0}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=1 \Rightarrow\left[\frac{x^{3}}{3 a}+b x\right]_{0}^{4}=1 \Rightarrow \frac{64}{3 a}+4 b=1$
$\int_{2}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.75 \Rightarrow \frac{56}{3 a}+2 b=0.75$
Note: $\int_{0}^{2}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.25 \Rightarrow \frac{8}{3 a}+2 b=0.25$ could be seen/used in place of either of the above equations.
evidence of an attempt to solve simultaneously (or check given $a, b$ values are consistent)

M1
$a=32, b=\frac{1}{12}$
(b) $\mathrm{E}(X)=\int_{0}^{4} x\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x$
$\mathrm{E}(X)=\frac{8}{3}(=2.67)$

## (M1)

A1
[2 marks]
(c) $\mathrm{E}\left(X^{2}\right)=\int_{0}^{4} x^{2}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x$
(M1)

$$
\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{16}{15}(=1.07)
$$

(d) $\int_{0}^{m}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x=0.5$

$$
\begin{aligned}
& \frac{m^{3}}{96}+\frac{m}{12}=0.5\left(\Rightarrow m^{3}+8 m-48=0\right) \\
& m=2.91
\end{aligned}
$$

(e) $\quad Y \sim B(8,0.75)$
$E(Y)=8 \times 0.75=6$
A1
[2 marks]
(f) $\quad \mathrm{P}(Y \geq 3)=0.996$

A1

Question 64
(a) $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$\Rightarrow 0.75=\frac{0.6}{\mathrm{P}(B)}$
$\Rightarrow \mathrm{P}(B)\left(=\frac{0.6}{0.75}\right)=0.8$
A1
[2 marks]
(b) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\Rightarrow 0.95=\mathrm{P}(A)+0.8-0.6$
(M1)
$\Rightarrow \mathrm{P}(A)=0.75$
(c) METHOD 1
$\mathrm{P}\left(A^{\prime} \mid B\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B\right)}{\mathrm{P}(B)}=\frac{0.2}{0.8}=0.25 \quad \quad$ A1
$\mathrm{P}\left(A^{\prime} \mid B\right)=\mathrm{P}\left(A^{\prime}\right)$
R1
hence $A^{\prime}$ and $B$ are independent AG

Question 65
let $X$ be the random variable "amount of caffeine content in coffee" $\mathrm{P}(X>120)=0.2, \mathrm{P}(X>110)=0.6$
(M1)
$(\Rightarrow \mathrm{P}(X<120)=0.8, \mathrm{P}(X<110)=0.4)$
ote: Award M1 for at least one correct probability statement.

$$
\frac{120-\mu}{\sigma}=0.84162 \ldots, \frac{110-\mu}{\sigma}=-0.253347 \ldots
$$

$$
(M 1)(A 1)(A 1)
$$

ote: Award M1 for attempt to find at least one appropriate $z$-value.
$120-\mu=0.84162 \sigma, 110-\mu=-0.253347 \sigma$
attempt to solve simultaneous equations
$\mu=112, \sigma=9.13$

A1
[6 marks]

Question 66
(a) let $X$ be the number of bananas eaten in one day $X \sim \operatorname{Po}(0.2)$

$$
\begin{aligned}
& \mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0) \\
& =0.181\left(=1-\mathrm{e}^{-0.2}\right)
\end{aligned}
$$

(b) EITHER
let $Y$ be the number of bananas eaten in one week

$$
\begin{equation*}
Y \sim \operatorname{Po}(1.4) \tag{A1}
\end{equation*}
$$

$\mathrm{P}(Y=0)=0.246596 \ldots\left(=\mathrm{e}^{-1.4}\right)$
OR
let $Z$ be the number of days in one week at least one banana is eaten $Z \sim B(7,0.181 \ldots)$
$\mathrm{P}(Z=0)=0.246596$

## THEN

$52 \times 0.246596$

$$
=12.8\left(=52 \mathrm{e}^{-1.4}\right)
$$

