Subject - Math(Higher Level) Topic - Algebra
 Year - Nov 2011 - Nov 2019

Question -1

$$
\begin{align*}
& i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \tag{A1}\\
& z_{1}=i^{\frac{1}{3}}=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{\frac{1}{3}}=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6} \quad\left(=\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
& z_{2}=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6} \quad\left(=-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \tag{MI}\\
& z_{3}=\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)=-i
\end{align*}
$$

Question-2

$$
\text { proposition is true for } n=1 \text { since } \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{(1-x)^{2}} \\
& =\frac{1!}{(1-x)^{2}}
\end{aligned}
$$

te: Must see the 1 ! for the $A 1$.
assume true for $n=k, k \in \mathbb{Z}^{+}$, i.e. $\frac{\mathrm{d}^{k} y}{\mathrm{~d} x^{k}}=\frac{k!}{(1-x)^{k+1}}$
consider $\frac{\mathrm{d}^{k+1} y}{\mathrm{~d} x^{k+1}}=\frac{\mathrm{d}\left(\frac{\mathrm{d}^{k} y}{\mathrm{~d} x^{k}}\right)}{\mathrm{d} x}$

$$
\begin{aligned}
& =(k+1) k!(1-x)^{-(k+1)-1} \\
& =\frac{(k+1)!}{(1-x)^{k+2}}
\end{aligned}
$$

hence, P_{k+1} is true whenever P_{k} is true, and P_{1} is true, and therefore the proposition is true for all positive integers

Question 3

$$
\begin{aligned}
& u_{1}=\frac{1}{3} k, r=\frac{1}{3} \\
& 7=\frac{\frac{1}{3} k}{1-\frac{1}{3}} \\
& k=14
\end{aligned}
$$

$$
(A 1)(A 1)
$$

$$
M 1
$$

Question -4

$$
z_{1}=2 a \operatorname{cis}\left(\frac{\pi}{3}\right), z_{2}=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)
$$

EITHER

$$
\left(\frac{z_{1}}{z_{2}}\right)^{6}=\frac{2^{6} a^{6} \operatorname{cis}(0)}{\sqrt{2}^{6} \operatorname{cis}\left(\frac{\pi}{2}\right)}\left(=8 a^{6} \operatorname{cis}\left(-\frac{\pi}{2}\right)\right)
$$

M1A1A1

OR

$$
\begin{aligned}
\left(\frac{z_{1}}{z_{2}}\right)^{6} & =\left(\frac{2 a}{\sqrt{2}} \operatorname{cis}\left(\frac{7 \pi}{12}\right)\right)^{6} \\
& =8 a^{6} \operatorname{cis}\left(-\frac{\pi}{2}\right)
\end{aligned}
$$

THEN

$=-8 a^{6}{ }_{i}$

Question -5

$$
\sqrt{x^{2}+y^{2}}+x+y \mathrm{i}=6-2 \mathrm{i}
$$

equating real and imaginary parts
$y=-2$
$\sqrt{x^{2}+4}+x=6$
$x^{2}+4=(6-x)^{2}$
$-32=-12 x \Rightarrow x=\frac{8}{3}$

Question-6

$$
\log _{3}\left(\frac{9}{x+7}\right)=\log _{3} \frac{1}{2 x}
$$

te: Award M1 for changing to single base, M1 for incorporating the 2 into a log and $\boldsymbol{A 1}$ for a correct equation with maximum one log expression each side.
$x+7=18 x$ M1
$x=\frac{7}{17}$

Question-7

(a) $\left(x-\frac{2}{x}\right)^{4}=x^{4}+4 x^{3}\left(-\frac{2}{x}\right)+6 x^{2}\left(-\frac{2}{x}\right)^{2}+4 x\left(-\frac{2}{x}\right)^{3}+\left(-\frac{2}{x}\right)^{4}$

Note: Award (A1) for 3 or 4 correct terms.
Note: Accept combinatorial expressions, e.g. $\binom{4}{2}$ for 6.

$$
=x^{4}-8 x^{2}+24-\frac{32}{x^{2}}+\frac{16}{x^{4}}
$$

A1
[3 marks]
(b) constant term from expansion of $\left(2 x^{2}+1\right)\left(x-\frac{2}{x}\right)^{4}=-64+24=-40$

A2
Note: Award A1 for -64 or 24 seen.

Question -8

(a) attempt to equate real and imaginary parts
M1
equate real parts: $4 m+4 n=16$; equate imaginary parts: $-5 m=15$
A1
$\Rightarrow m=-3, n=7$
(b) let $m=x+\mathrm{i} y, n=x-\mathrm{i} y$
$\Rightarrow(4-5 \mathrm{i})(x+\mathrm{iy})+4(x-\mathrm{i} y)=16+15 \mathrm{i}$
$\Rightarrow 4 x-5 \mathrm{i} x+4 \mathrm{i} y+5 y+4 x-4 \mathrm{i} y=16+15 \mathrm{i}$
attempt to equate real and imaginary parts
$8 x+5 y=16,-5 x=15$
A1
$\Rightarrow x=-3, y=8$
A1
$(\Rightarrow m=-3+8 \mathrm{i}, n=-3-8 \mathrm{i})$

Question-9

Part A

(a) (i) $\quad(x+\mathrm{i} y)^{2}=-5+12 \mathrm{i}$
$x^{2}+2 \mathrm{i} x y+\mathrm{i}^{2} y^{2}=-5+12 \mathrm{i} \quad$ A1
(ii) equating real and imaginary parts
$x^{2}-y^{2}=-5$
$x y=6$
(b) substituting

EITHER
$x^{2}-\frac{36}{x^{2}}=-5$
$x^{4}+5 x^{2}-36=0$
$x^{2}=4,-9$
$x= \pm 2$ and $y= \pm 3$
OR
$\frac{36}{y^{2}}-y^{2}=-5$
$y^{4}-5 y^{2}-36=0$
$y^{2}=9,-4$
$y= \pm 3$ and $x= \pm 2$
(A1)

Note: Accept solution by inspection if completely correct.
THEN
the square roots are $(2+3 \mathrm{i})$ and $(-2-3 \mathrm{i})$
(c) EITHER
consider $z=x+\mathrm{i} y$
$z^{*}=x-\mathrm{i} y$
$\left(z^{*}\right)^{2}=x^{2}-y^{2}-2 \mathrm{i} x y$
A1
$\left(z^{2}\right)=x^{2}-y^{2}+2 \mathrm{i} x y$
A1
$\left(z^{2}\right)^{*}=x^{2}-y^{2}-2 \mathrm{ixy} \quad$ A1
$\left(z^{*}\right)^{2}=\left(z^{2}\right)^{*} \quad \boldsymbol{A G}$
OR

$$
\begin{array}{ll}
z^{*}=r \mathrm{e}^{-\mathrm{i} \theta} & \\
\left(z^{*}\right)^{2}=r^{2} \mathrm{e}^{-2 i \theta} & \boldsymbol{A 1} \\
z^{2}=r^{2} \mathrm{e}^{2 \mathrm{i} \theta} & \boldsymbol{A 1}
\end{array}
$$

$\left(z^{2}\right)^{*}=r^{2} \mathrm{e}^{-2 i \theta}$
A1
$\left(z^{*}\right)^{2}=\left(z^{2}\right)^{*}$
$A G$
[3 marks]
(d) $(2-3 i)$ and $(-2+3 i)$

A1A1
[2 marks]

Part B

(a) the graph crosses the x-axis twice, indicating two real roots $\boldsymbol{R 1}$
since the quartic equation has four roots and only two are real, the other
two roots must be complex

A1A1

A1
$f(0)=-32 \Rightarrow d=4$ M1
$-18=3 \times(-3)(5-c)$
A1
Hence $f(x)=(x+4)(x-2)\left(x^{2}+3 x+4\right)$
[5 marks]
(c) $x=\frac{-3 \pm \sqrt{9-16}}{2}$
$\Rightarrow x=-\frac{3}{2} \pm \mathrm{i} \frac{\sqrt{7}}{2}$
(M1)
A1
(d)

Note: Accept points or vectors on complex plane. Award $A 1$ for two real roots and $A 1$ for two complex roots.
[2 marks]
(e) real roots are $4 \mathrm{e}^{\mathrm{i} \pi}$ and $2 \mathrm{e}^{\mathrm{i} 0}$
considering $-\frac{3}{2} \pm \mathrm{i} \frac{\sqrt{7}}{2}$
$r=\sqrt{\frac{9}{4}+\frac{7}{4}}=2$
finding θ using $\arctan \left(\frac{\sqrt{7}}{3}\right)$
M1
$\theta=\arctan \left(\frac{\sqrt{7}}{3}\right)+\pi$ or $\theta=\arctan \left(-\frac{\sqrt{7}}{3}\right)+\pi$ A1
$\Rightarrow z=2 \mathrm{e}^{\mathrm{i}\left(\arctan \left(\frac{\sqrt{7}}{3}\right)+\pi\right)}$ or $\Rightarrow z=2 \mathrm{e}^{\mathrm{i}\left(\arctan \left(\frac{-\sqrt{7}}{3}\right)+\pi\right)}$
Note: Accept arguments in the range $-\pi$ to π or 0 to 2π. Accept answers in degrees.

Question 10
$\underline{\left.\left(\frac{x}{y}-\frac{y}{x}\right)^{4}=\left(\frac{x}{y}\right)^{4}+4\left(\frac{x}{y}\right)^{3}\left(-\frac{y}{x}\right)+6\left(\frac{x}{y}\right)^{2}\left(-\frac{y}{x}\right)^{2}+4\left(\frac{x}{y}\right)\left(-\frac{y}{x}\right)^{3}+\left(-\frac{y}{x}\right)^{4} \quad \text { (M1)(A1) }\right) .}$
Award $\boldsymbol{M 1}$ for attempt to expand and $\boldsymbol{A 1}$ for correct unsimplified expansion.
$=\frac{x^{4}}{y^{4}}-4 \frac{x^{2}}{y^{2}}+6-4 \frac{y^{2}}{x^{2}}+\frac{y^{4}}{x^{4}} \quad\left(=\frac{x^{8}-4 x^{6} y^{2}+6 x^{4} y^{4}-4 x^{2} y^{6}+y^{8}}{x^{4} y^{4}}\right)$
Award $\boldsymbol{A 1}$ for powers, $\boldsymbol{A 1}$ for coefficients and signs.
Final two \boldsymbol{A} marks are independent of first A mark.

Question 11

(a) (i) $z_{1}=2 \sqrt{3}$ cis $\frac{3 \pi}{2} \Rightarrow z_{1}=-2 \sqrt{3} \mathrm{i}$
(ii) $z_{1}+z_{2}=-2 \sqrt{3} \mathrm{i}-1+\sqrt{3} \mathrm{i}=-1-\sqrt{3} \mathrm{i}$ A1
$\left(z_{1}+z_{2}\right)^{*}=-1+\sqrt{3} \mathrm{i}$
(b) (i) $\left|z_{2}\right|=2$
$\tan \theta=-\sqrt{3}$
z_{2} lies on the second quadrant
$\theta=\arg z_{2}=\frac{2 \pi}{3}$
$z_{2}=2 \operatorname{cis} \frac{2 \pi}{3}$
(ii) attempt to use De Moivre's theorem M1

$$
\begin{aligned}
& z=\sqrt[3]{2} \operatorname{cis} \frac{\frac{2 \pi}{3}+2 k \pi}{3}, k=0,1 \text { and } 2 \\
& z=\sqrt[3]{2} \operatorname{cis} \frac{2 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{8 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{14 \pi}{9}\left(=\sqrt[3]{2} \operatorname{cis}\left(\frac{-4 \pi}{9}\right)\right)
\end{aligned}
$$

Note: Award $\boldsymbol{A 1}$ for modulus, $\boldsymbol{A 1}$ for arguments.
Note: Allow equivalent forms for z.
[6 marks]
(c) (i) METHOD 1

$$
\begin{align*}
& z^{2}=(1-1+\sqrt{3} \mathrm{i})^{2}=-3(\Rightarrow z= \pm \sqrt{3} \mathrm{i}) \tag{M1}\\
& z=\sqrt{3} \operatorname{cis} \frac{\pi}{2} \text { or } z_{1}=\sqrt{3} \operatorname{cis} \frac{3 \pi}{2}\left(=\sqrt{3} \operatorname{cis}\left(\frac{-\pi}{2}\right)\right) \\
& \text { so } r=\sqrt{3} \text { and } \theta=\frac{\pi}{2} \text { or } \theta=\frac{3 \pi}{2}\left(=\frac{-\pi}{2}\right)
\end{align*}
$$

Note: Accept $r \operatorname{cis}(\theta)$ form.

METHOD 2

$$
\begin{array}{ll}
z^{2}=(1-1+\sqrt{3} \mathrm{i})^{2}=-3 \Rightarrow z^{2}=3 \operatorname{cis}((2 n+1) \pi) & \text { M1 } \\
r^{2}=3 \Rightarrow r=\sqrt{3} & \text { A1 } \\
2 \theta=(2 n+1) \pi \Rightarrow \theta=\frac{\pi}{2} \text { or } \theta=\frac{3 \pi}{2}(\text { as } 0 \leq \theta<2 \pi) & \text { A1 }
\end{array}
$$

(ii) METHOD 1
$z=-\frac{1}{2 \operatorname{cis} \frac{2 \pi}{3}} \Rightarrow z=\frac{\operatorname{cis} \pi}{2 \operatorname{cis} \frac{2 \pi}{3}}$
$\Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3}$
so $r=\frac{1}{2}$ and $\theta=\frac{\pi}{3}$
A1A1

METHOD 2

$z_{1}=-\frac{1}{-1+\sqrt{3} \mathrm{i}} \Rightarrow z_{1}=-\frac{-1-\sqrt{3} \mathrm{i}}{(-1+\sqrt{3} \mathrm{i})(-1-\sqrt{3} \mathrm{i})}$
$z=\frac{1+\sqrt{3} \mathrm{i}}{4} \Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3}$
so $r=\frac{1}{2}$ and $\theta=\frac{\pi}{3}$
M1

A1A1
(d) $\frac{z_{1}}{z_{2}}=\sqrt{3} \operatorname{cis} \frac{5 \pi}{6}$
(A1)
$\left(\frac{z_{1}}{z_{2}}\right)^{n}=\sqrt{3}^{n} \operatorname{cis} \frac{5 n \pi}{6}$
equating imaginary part to zero and attempting to solve obtain $n=12$
Note: Working which only includes the argument is valid.M1A1
(a) (i) $z_{1}=2 \sqrt{3} \operatorname{cis} \frac{3 \pi}{2} \Rightarrow z_{1}=-2 \sqrt{3} \mathrm{i}$
(ii) $z_{1}+z_{2}=-2 \sqrt{3} \mathrm{i}-1+\sqrt{3} \mathrm{i}=-1-\sqrt{3} \mathrm{i}$
$\left(z_{1}+z_{2}\right)^{*}=-1+\sqrt{3} \mathrm{i}$
(b) (i) $\left|z_{2}\right|=2$

$$
\tan \theta=-\sqrt{3}
$$

z_{2} lies on the second quadrant
$\theta=\arg z_{2}=\frac{2 \pi}{3}$
$z_{2}=2 \operatorname{cis} \frac{2 \pi}{3}$
(ii) attempt to use De Moivre's theorem

$$
\begin{aligned}
& z=\sqrt[3]{2} \operatorname{cis} \frac{\frac{2 \pi}{3}+2 k \pi}{3}, k=0,1 \text { and } 2 \\
& z=\sqrt[3]{2} \operatorname{cis} \frac{2 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{8 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{14 \pi}{9}\left(=\sqrt[3]{2} \operatorname{cis}\left(\frac{-4 \pi}{9}\right)\right)
\end{aligned}
$$

Note: \quad Award $\boldsymbol{A 1}$ for modulus, $\boldsymbol{A 1}$ for arguments.
Note: Allow equivalent forms for z.
(c) (i) METHOD 1

$$
\begin{aligned}
& z^{2}=(1-1+\sqrt{3} \mathrm{i})^{2}=-3(\Rightarrow z= \pm \sqrt{3} \mathrm{i}) \\
& z=\sqrt{3} \operatorname{cis} \frac{\pi}{2} \text { or } z_{1}=\sqrt{3} \operatorname{cis} \frac{3 \pi}{2}\left(=\sqrt{3} \operatorname{cis}\left(\frac{-\pi}{2}\right)\right) \\
& \text { so } r=\sqrt{3} \text { and } \theta=\frac{\pi}{2} \text { or } \theta=\frac{3 \pi}{2}\left(=\frac{-\pi}{2}\right)
\end{aligned}
$$

Note: Accept $r \operatorname{cis}(\theta)$ form.

METHOD 2

$$
\begin{array}{ll}
z^{2}=(1-1+\sqrt{3} i)^{2}=-3 \Rightarrow z^{2}=3 \operatorname{cis}((2 n+1) \pi) & \text { M1 } \\
r^{2}=3 \Rightarrow r=\sqrt{3} & \text { A1 } \\
2 \theta=(2 n+1) \pi \Rightarrow \theta=\frac{\pi}{2} \text { or } \theta=\frac{3 \pi}{2}(\text { as } 0 \leq \theta<2 \pi) & \text { A1 }
\end{array}
$$

(ii) METHOD 1

$$
\begin{aligned}
& z=-\frac{1}{2 \operatorname{cis} \frac{2 \pi}{3}} \Rightarrow z=\frac{\operatorname{cis} \pi}{2 \operatorname{cis} \frac{2 \pi}{3}} \\
& \Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3} \\
& \text { so } r=\frac{1}{2} \text { and } \theta=\frac{\pi}{3}
\end{aligned}
$$

METHOD 2

$$
\begin{aligned}
& z_{1}=-\frac{1}{-1+\sqrt{3} \mathrm{i}} \Rightarrow z_{1}=-\frac{-1-\sqrt{3} \mathrm{i}}{(-1+\sqrt{3} \mathrm{i})(-1-\sqrt{3} \mathrm{i})} \\
& z=\frac{1+\sqrt{3} \mathrm{i}}{4} \Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3} \\
& \text { so } r=\frac{1}{2} \text { and } \theta=\frac{\pi}{3}
\end{aligned}
$$

(d) $\frac{z_{1}}{z_{2}}=\sqrt{3} \operatorname{cis} \frac{5 \pi}{6}$

$$
\left(\frac{z_{1}}{z_{2}}\right)^{n}=\sqrt{3}^{n} \operatorname{cis} \frac{5 n \pi}{6}
$$

equating imaginary part to zero and attempting to solve M1

Note: Working which only includes the argument is valid.

Question 12
(a) modulus $=\sqrt{8}$ A1
argument $=\frac{\pi}{4}\left(\operatorname{accept} 45^{\circ}\right)$
A1

Note: $\boldsymbol{A 0}$ if extra values given.
[2 marks]
(b) METHOD 1

$$
w^{4} z^{6}=64 e^{\pi i} \times e^{5 \pi i}
$$

(A1)(A1)
Note: Allow alternative notation.
$=64 e^{6 \pi i}$
(M1)
$=64$
A1

METHOD 2

$$
\begin{array}{lr}
w^{4}=-64 & \text { (M1)(A1) } \\
z^{6}=-1 & \text { (A1) } \\
w^{4} z^{6}=64 & \text { A1 }
\end{array}
$$

[4 marks]

Question 13

METHOD 1

$$
\begin{aligned}
d & =\frac{1}{\log _{8} x}-\frac{1}{\log _{2} x} \\
& =\frac{\log _{2} 8}{\log _{2} x}-\frac{1}{\log _{2} x}
\end{aligned}
$$

(M1)
(M1)
te: Award this M1 for a correct change of base anywhere in the question.

$$
\begin{equation*}
=\frac{2}{\log _{2} x} \tag{A1}
\end{equation*}
$$

$$
\frac{20}{2}\left(2 \times \frac{1}{\log _{2} x}+19 \times \frac{2}{\log _{2} x}\right)
$$

$$
=\frac{400}{\log _{2} x}
$$

$$
100=\frac{400}{\log _{2} x}
$$

$$
\log _{2} x=4 \Rightarrow x=2^{4}=16
$$

METHOD 2

$$
20^{\text {th }} \text { term }=\frac{1}{\log _{2^{39}} x}
$$

$$
100=\frac{20}{2}\left(\frac{1}{\log _{2} x}+\frac{1}{\log _{2^{39}} x}\right)
$$

$$
100=\frac{20}{2}\left(\frac{1}{\log _{2} x}+\frac{\log _{2} 2^{39}}{\log _{2} x}\right)
$$

te: Award this M1 for a correct change of base anywhere in the question.

$$
\begin{equation*}
100=\frac{400}{\log _{2} x} \tag{A1}
\end{equation*}
$$

$\log _{2} x=4 \Rightarrow x=2^{4}=16$

METHOD 3

$$
\begin{aligned}
& \frac{1}{\log _{2} x}+\frac{1}{\log _{8} x}+\frac{1}{\log _{32} x}+\frac{1}{\log _{128} x}+\ldots \\
& \frac{1}{\log _{2} x}+\frac{\log _{2} 8}{\log _{2} x}+\frac{\log _{2} 32}{\log _{2} x}+\frac{\log _{2} 128}{\log _{2} x}+\ldots
\end{aligned}
$$

(M1)(A1)
te: Award this M1 for a correct change of base anywhere in the question.

$$
\begin{align*}
& =\frac{1}{\log _{2} x}(1+3+5+\ldots) \tag{A1}\\
& =\frac{1}{\log _{2} x}\left(\frac{20}{2}(2+38)\right) \\
& 100=\frac{400}{\log _{2} x} \\
& \log _{2} x=4 \Rightarrow x=2^{4}=16 \tag{A1}
\end{align*}
$$

[6 marks]

Question 14

clear attempt at binomial expansion for exponent 5
$2^{5}+5 \times 2^{4} \times(-3 x)+\frac{5 \times 4}{2} \times 2^{3} \times(-3 x)^{2}+\frac{5 \times 4 \times 3}{6} \times 2^{2} \times(-3 x)^{3}$
$+\frac{5 \times 4 \times 3 \times 2}{24} \times 2 \times(-3 x)^{4}+(-3 x)^{5}$

3: Only award M1 if binomial coefficients are seen.
$=32-240 x+720 x^{2}-1080 x^{3}+810 x^{4}-243 x^{5}$
2: Award $\boldsymbol{A 1}$ for correct moduli of coefficients and powers. $A \boldsymbol{1}$ for correct signs.

Total [4 marks]

Question 15

for the first series $\frac{a}{1-r}=76$
A1
for the second series $\frac{a}{1-r^{3}}=36$
A1
attempt to eliminate a e.g. $\frac{76(1-r)}{1-r^{3}}=36$
MI
simplify and obtain $9 r^{2}+9 r-10=0$
Note: Only award the $\boldsymbol{M 1}$ if a quadratic is seen.
obtain $r=\frac{12}{18}$ and $-\frac{30}{18}$
$r=\frac{12}{18}\left(=\frac{2}{3}=0.666 \ldots\right)$
Note: Award $\boldsymbol{A 0}$ if the extra value of r is given in the final answer.

Question 16

(a) $\left|z_{1}\right|=\sqrt{10} ; \arg \left(z_{2}\right)=-\frac{3 \pi}{4}\left(\operatorname{accept} \frac{5 \pi}{4}\right)$
(b) $\left|z_{1}+\alpha z_{2}\right|=\sqrt{(1-\alpha)^{2}+(3-\alpha)^{2}}$ or the squared modulus attempt to minimise $2 \alpha^{2}-8 \alpha+10$ or their quadratic or its half or its square root obtain $\alpha=2$ at minimum
state $\sqrt{2}$ as final answer

Question 17

(a)
(i) $\quad z_{1}=2 \operatorname{cis}\left(\frac{\pi}{6}\right), z_{2}=2 \operatorname{cis}\left(\frac{5 \pi}{6}\right), z_{3}=2 \operatorname{cis}\left(-\frac{\pi}{2}\right)$ or $2 \operatorname{cis}\left(\frac{3 \pi}{2}\right)$

A1A1A1

Note: Accept modulus and argument given separately, or the use of exponential (Euler) form.

Note: Accept arguments given in rational degrees, except where exponential form is used.
(ii) the points lie on a circle of radius 2 centre the origin
differences are all $\frac{2 \pi}{3}(\bmod 2 \pi)$
\Rightarrow points equally spaced \Rightarrow triangle is equilateral
Note: Accept an approach based on a clearly marked diagram.
(iii) $z_{1}^{3 n}+z_{2}^{3 n}=2^{3 n} \operatorname{cis}\left(\frac{n \pi}{2}\right)+2^{3 n} \operatorname{cis}\left(\frac{5 n \pi}{2}\right)$

$$
=2 \times 2^{3 n} \operatorname{cis}\left(\frac{n \pi}{2}\right)
$$

$$
A 1
$$

$2 z_{3}^{3 n}=2 \times 2^{3 n} \operatorname{cis}\left(\frac{9 n \pi}{2}\right)=2 \times 2^{3 n} \operatorname{cis}\left(\frac{n \pi}{2}\right)$
(b) (i) attempt to obtain seven solutions in modulus argument form

M1

$$
z=\operatorname{cis}\left(\frac{2 k \pi}{7}\right), k=0,1 \ldots 6
$$

(ii) $\quad w$ has argument $\frac{2 \pi}{7}$ and $1+w$ has argument ϕ,

$$
\begin{aligned}
& \text { then } \tan (\phi)=\frac{\sin \left(\frac{2 \pi}{7}\right)}{1+\cos \left(\frac{2 \pi}{7}\right)} \\
& =\frac{2 \sin \left(\frac{\pi}{7}\right) \cos \left(\frac{\pi}{7}\right)}{2 \cos ^{2}\left(\frac{\pi}{7}\right)} \\
& =\tan \left(\frac{\pi}{7}\right) \Rightarrow \phi=\frac{\pi}{7}
\end{aligned}
$$

(iii) since roots occur in conjugate pairs,
$z^{7}-1$ has a quadratic factor $\left(z-\operatorname{cis}\left(\frac{2 \pi}{7}\right)\right) \times\left(z-\operatorname{cis}\left(-\frac{2 \pi}{7}\right)\right)$
$=z^{2}-2 z \cos \left(\frac{2 \pi}{7}\right)+1$
other quadratic factors are $z^{2}-2 z \cos \left(\frac{4 \pi}{7}\right)+1$
and $z^{2}-2 z \cos \left(\frac{6 \pi}{7}\right)+1$

Total [18 marks]

Question 18

$$
n=1: 1^{3}+11=12
$$

$=3 \times 4$ or a multiple of 3
assume the proposition is true for $n=k\left(\right.$ ie $\left.k^{3}+11 k=3 \mathrm{~m}\right)$
e: Do not award M1 for statements with "Let $n=k$ ".

$$
\text { consider } n=k+1: \quad(k+1)^{3}+11(k+1) \quad \text { M1 }
$$

$$
\begin{aligned}
& =k^{3}+3 k^{2}+3 k+1+11 k+11 \\
& =k^{3}+11 k+\left(3 k^{2}+3 k+12\right) \\
& =3\left(m+k^{2}+k+4\right)
\end{aligned}
$$A1

e: Accept $k^{3}+11 k+3\left(k^{2}+k+4\right)$ or statement that $k^{3}+11 k+\left(3 k^{2}+3 k+12\right)$ is a multiple of 3 .
true for $n=1$, and $n=k$ true $\Rightarrow n=k+1$ true hence true for all $n \in \mathbb{Z}^{+}$
e: Only award the final $\boldsymbol{R 1}$ if at least 4 of the previous marks have been achieved.

Question 19
(a) METHOD 1

$$
\begin{array}{lc}
a+a r=10 & \text { A1 } \\
a+a r+a r^{2}+a r^{3}=30 & \text { A1 } \\
a+a r=10 \Rightarrow a r^{2}+a r^{3}=10 r^{2} \text { or } a r^{2}+a r^{3}=20 & \text { M1 } \\
10+10 r^{2}=30 & \text { or } r^{2}(a+a r)=20 \\
\Rightarrow r^{2}=2 & \\
\boldsymbol{A 1} \\
\boldsymbol{A G}
\end{array}
$$

METHOD 2
$\frac{a\left(1-r^{2}\right)}{1-r}=10$ and $\frac{a\left(1-r^{4}\right)}{1-r}=30$
$\Rightarrow \frac{1-r^{4}}{1-r^{2}}=3$
leading to either $1+r^{2}=3$ (or $r^{4}-3 r^{2}+2=0$)
$\Rightarrow r^{2}=2$
(b) (i) $a+a \sqrt{2}=10$

$$
\Rightarrow a=\frac{10}{1+\sqrt{2}} \quad \text { or } a=10(\sqrt{2}-1)
$$

(ii) $S_{10}=\frac{10}{1+\sqrt{2}}\left(\frac{\sqrt{2}^{10}-1}{\sqrt{2}-1}\right)(=10 \times 31)$

$$
=310
$$

Question 20

(a) $\log _{2}(x-2)=\log _{4}\left(x^{2}-6 x+12\right)$

EITHER

$\log _{2}(x-2)=\frac{\log _{2}\left(x^{2}-6 x+12\right)}{\log _{2} 4}$
M1
$2 \log _{2}(x-2)=\log _{2}\left(x^{2}-6 x+12\right)$
OR
$\frac{\log _{4}(x-2)}{\log _{4} 2}=\log _{4}\left(x^{2}-6 x+12\right)$
$2 \log _{4}(x-2)=\log _{4}\left(x^{2}-6 x+12\right)$

THEN

$(x-2)^{2}=x^{2}-6 x+12$
$x^{2}-4 x+4=x^{2}-6 x+12$
$x=4$

Note: Award second (A1) only if factorisation seen or if two correct solutions are seen.

M1
(b) $x^{\ln x}=\mathrm{e}^{(\ln x)^{3}}$
taking \ln of both sides or writing $x=\mathrm{e}^{\ln x}$
M1
$(\ln x)^{2}=(\ln x)^{3}$
A1
$(\ln x)^{2}(\ln x-1)=0$
$x=1, x=\mathrm{e}$

Question 21

$$
\begin{array}{lrl}
\text { (a) } & z^{n}+z^{-n}=\cos n \theta+i \sin n \theta+\cos (-n \theta)+i \sin (-n \theta) & \boldsymbol{M 1} \\
& =\cos n \theta+\cos n \theta+i \sin n \theta-i \sin n \theta & \boldsymbol{A} 1 \\
& =2 \cos n \theta & \boldsymbol{A G}
\end{array}
$$

(b) $\left(z+z^{-1}\right)^{4}=z^{4}+4 z^{3}\left(\frac{1}{z}\right)+6 z^{2}\left(\frac{1}{z^{2}}\right)+4 z\left(\frac{1}{z^{3}}\right)+\frac{1}{z^{4}}$

Note: Accept $\left(z+z^{-1}\right)^{4}=16 \cos ^{4} \theta$.
(c) METHOD 1
$\left(z+z^{-1}\right)^{4}=\left(z^{4}+\frac{1}{z^{4}}\right)+4\left(z^{2}+\frac{1}{z^{2}}\right)+6$
$(2 \cos \theta)^{4}=2 \cos 4 \theta+8 \cos 2 \theta+6$
Note: Award $\boldsymbol{A 1}$ for RHS, $\boldsymbol{A 1}$ for LHS independent of the $\boldsymbol{M 1}$.
$\cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}$
$\left(\right.$ or $\left.p=\frac{1}{8}, q=\frac{1}{2}, r=\frac{3}{8}\right)$

METHOD 2

$\cos ^{4} \theta=\left(\frac{\cos 2 \theta+1}{2}\right)^{2}$
$=\frac{1}{4}\left(\cos ^{2} 2 \theta+2 \cos 2 \theta+1\right)$
$=\frac{1}{4}\left(\frac{\cos 4 \theta+1}{2}+2 \cos 2 \theta+1\right)$
$\cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}$
$\left(\right.$ or $\left.p=\frac{1}{8}, q=\frac{1}{2}, r=\frac{3}{8}\right)$
(d) $\left(z+z^{-1}\right)^{6}=z^{6}+6 z^{5}\left(\frac{1}{z}\right)+15 z^{4}\left(\frac{1}{z^{2}}\right)+20 z^{3}\left(\frac{1}{z^{3}}\right)+15 z^{2}\left(\frac{1}{z^{4}}\right)+6 z\left(\frac{1}{z^{5}}\right)+\frac{1}{z^{6}} \boldsymbol{M} \mathbf{1}$
$\left(z+z^{-1}\right)^{6}=\left(z^{6}+\frac{1}{z^{6}}\right)+6\left(z^{4}+\frac{1}{z^{4}}\right)+15\left(z^{2}+\frac{1}{z^{2}}\right)+20$
$(2 \cos \theta)^{6}=2 \cos 6 \theta+12 \cos 4 \theta+30 \cos 2 \theta+20$
Note: Award $\boldsymbol{A 1}$ for RHS, $\boldsymbol{A 1}$ for LHS, independent of the M1.
$\cos ^{6} \theta=\frac{1}{32} \cos 6 \theta+\frac{3}{16} \cos 4 \theta+\frac{15}{32} \cos 2 \theta+\frac{5}{16}$
Note: Accept a purely trigonometric solution as for (c).
(e) $\int_{0}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}}\left(\frac{1}{32} \cos 6 \theta+\frac{3}{16} \cos 4 \theta+\frac{15}{32} \cos 2 \theta+\frac{5}{16}\right) d \theta$
$=\left[\frac{1}{192} \sin 6 \theta+\frac{3}{64} \sin 4 \theta+\frac{15}{64} \sin 2 \theta+\frac{5}{16} \theta\right]_{0}^{\frac{\pi}{2}}$
M1A1
[3 marks]
$=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{4} x \mathrm{~d} x-\pi \int_{0}^{\frac{\pi}{2}} \cos ^{6} x \mathrm{~d} x$

Note: Follow through from an incorrect r in (c) provided the final answer is positive.
(g) (i) constant term $=\binom{2 k}{k}=\frac{(2 k)!}{k!k!}=\frac{(2 k)!}{(k!)^{2}}\left(\right.$ accept $\left.C_{k}^{2 k}\right)$

A1
(ii) $\quad 2^{2 k} \int_{0}^{\frac{\pi}{2}} \cos ^{2 k} \theta \mathrm{~d} \theta=\frac{(2 k)!}{(k!)^{2}} \frac{\pi}{2}$

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2 k} \theta \mathrm{~d} \theta=\frac{(2 k)!\pi}{2^{2 k+1}(k!)^{2}}\left(\text { or } \frac{\binom{2 k}{k} \pi}{2^{2 k+1}}\right)
$$

Question 22
$\begin{array}{lr}\frac{\log 3}{\log 2} \times \frac{\log 4}{\log 3} \times \ldots \times \frac{\log 32}{\log 31} & \text { MIAI } \\ =\frac{\log 32}{\log 2} & \text { AI } \\ =\frac{5 \log 2}{\log 2} & \text { (MI) } \\ =5 & \text { AI } \\ \text { hence } a=5 & \end{array}$
[5 marks]
Note: Accept the above if done in a specific base eg $\log _{2} x$.

Question 23
$\begin{array}{ll}\text { (a) } & r=1+\mathrm{i} \\ u_{4}=3(1+\mathrm{i})^{3}\end{array} \quad$ (A1)
$=-6+6 \mathrm{i}$
A1
(b) $\quad S_{20}=\frac{3\left((1+\mathrm{i})^{20}-1\right)}{\mathrm{i}}$
(M1)
$=\frac{3\left((2 i)^{10}-1\right)}{i}$
(M1)

Note: Only one of the two M1s can be implied. Other algebraic methods may be seen.

$$
\begin{align*}
& =\frac{3\left(-2^{10}-1\right)}{\mathrm{i}} \tag{A1}\\
& =3 \mathrm{i}\left(2^{10}+1\right)
\end{align*}
$$

(c) (i) METHOD 1

$$
\begin{aligned}
& v_{n}=\left(3(1+\mathrm{i})^{n-1}\right)\left(3(1+\mathrm{i})^{n-1+k}\right) \\
& 9(1+\mathrm{i})^{k}(1+i)^{2 n-2} \\
& =9(1+\mathrm{i})^{k}\left((1+i)^{2}\right)^{n-1}\left(=9(1+\mathrm{i})^{k}(2 \mathrm{i})^{n-1}\right)
\end{aligned}
$$

this is the general term of a geometrical sequence
Notes: Do not accept the statement that the product of terms in a geometric sequence is also geometric unless justified further.
If the final expression for v_{n} is $9(1+\mathrm{i})^{k}(1+i)^{2 n-2}$ award M1A1R0.

METHOD 2

$\frac{v_{n+1}}{v_{n}}=\frac{u_{n+1} u_{n+k+1}}{u_{n} u_{n+k}}$
$=(1+\mathrm{i})(1+\mathrm{i})$
A1
this is a constant, hence sequence is geometric
Note: Do not allow methods that do not consider the general term.
(d) (i) METHOD 1
$w_{n}=\left|3(1+i)^{n-1}-3(1+\mathrm{i})^{n}\right| \quad \boldsymbol{M 1}$
$=3|1+i|^{n-1}|1-(1+i)| \quad$ M1
$=3|1+i|^{n-1} \quad$ A1
$\left(=3(\sqrt{2})^{n-1}\right)$
this is the general term for a geometric sequence
R1AG
METHOD 2

this is the general term for a geometric sequence
Note: Do not allow methods that do not consider the general term.
(ii) distance between successive points representing u_{n} in the complex plane forms a geometric sequence

Note: Various possibilities but must mention distance between successive points.

Question 24

METHOD 1

$$
2^{3(x-1)}=(2 \times 3)^{3 x} \quad \text { M1 }
$$

ote: Award $M 1$ for writing in terms of 2 and 3.

```
\(2^{3 x} \times 2^{-3}=2^{3 x} \times 3^{3 x}\)
\(2^{-3}=3^{3 x}\)A1
```

$\ln \left(2^{-3}\right)=\ln \left(3^{3 x}\right)$ (M1)
$-3 \ln 2=3 x \ln 3$ A1
$x=-\frac{\ln 2}{\ln 3}$ A1

METHOD 2

$$
\begin{array}{lr}
\ln 8^{x-1}=\ln 6^{3 x} & \text { (M1) } \\
(x-1) \ln 2^{3}=3 x \ln (2 \times 3) & \text { M1A1 } \\
3 x \ln 2-3 \ln 2=3 x \ln 2+3 x \ln 3 & \text { A1 } \\
x=-\frac{\ln 2}{\ln 3} & \text { A1 }
\end{array}
$$

METHOD 3

$$
\ln 8^{x-1}=\ln 6^{3 x}
$$

$$
(x-1) \ln 8=3 x \ln 6
$$

$x=\frac{\ln 8}{\ln 8-3 \ln 6}$
$x=\frac{3 \ln 2}{\ln \left(\frac{2^{3}}{6^{3}}\right)}$
$x=-\frac{\ln 2}{\ln 3}$

Question 25

(a) METHOD 1
$\frac{1}{2+3 \mathrm{i}}+\frac{1}{3+2 \mathrm{i}}=\frac{2-3 \mathrm{i}}{4+9}+\frac{3-2 \mathrm{i}}{9+4}$
M1A1
$\frac{10}{w}=\frac{5-5 \mathrm{i}}{13}$
A1
$w=\frac{130}{5-5 \mathrm{i}}$
$=\frac{130 \times 5 \times(1+\mathrm{i})}{50}$
$w=13+13 \mathrm{i}$

METHOD 2
$\frac{1}{2+3 \mathrm{i}}+\frac{1}{3+2 \mathrm{i}}=\frac{3+2 \mathrm{i}+2+3 \mathrm{i}}{(2+3 \mathrm{i})(3+2 \mathrm{i})}$
(b) $w^{*}=13-13 \mathrm{i}$
$z=\sqrt{338} e^{-\frac{\pi}{4}}\left(=13 \sqrt{2} e^{-\frac{\pi}{4}}\right)$
A1A1

Note: Accept $\theta=\frac{7 \pi}{4}$.
Do not accept answers for θ given in degrees.

Question 26
(a) $\sin x, \sin 2 x$ and $4 \sin x \cos ^{2} x$

$$
r=\frac{2 \sin x \cos x}{\sin x}=2 \cos x
$$

Note: Accept $\frac{\sin 2 x}{\sin x}$.
(b) EITHER
$|r|<1 \Rightarrow|2 \cos x|<1 \quad$ M1
OR
$-1<r<1 \Rightarrow-1<2 \cos x<1 \quad$ M1

THEN
$0<\cos x<\frac{1}{2}$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$
$-\frac{\pi}{2}<x<-\frac{\pi}{3}$ or $\frac{\pi}{3}<x<\frac{\pi}{2}$
A1A1
[3 marks]
(c) $S_{\infty}=\frac{\sin x}{1-2 \cos x}$

M1
$S_{\infty}=\frac{\sin \left(\arccos \left(\frac{1}{4}\right)\right)}{1-2 \cos \left(\arccos \left(\frac{1}{4}\right)\right)}$
$=\frac{\frac{\sqrt{15}}{4}}{\frac{1}{2}}$
A1A1

Note: Award $\boldsymbol{A 1}$ for correct numerator and $\boldsymbol{A 1}$ for correct denominator.

$$
=\frac{\sqrt{15}}{2}
$$

Question 27

let $\mathrm{P}(n)$ be the proposition that $(2 n)!\geq 2^{n}(n!)^{2}, n \in \mathbb{Z}^{+}$
consider $\mathrm{P}(1)$:
$\begin{array}{lc}2!=2 \text { and } 2^{1}(1!)^{2}=2 \text { so } \mathrm{P}(1) \text { is true } & \boldsymbol{R I} \\ \text { assume } \mathrm{P}(k) \text { is true } \text { ie }(2 k)!\geq 2^{k}(k!)^{2}, k \in \mathbb{Z}^{+} & \text {MI }\end{array}$
Note: Do not award MI for statements such as "let $n=k$ ".
consider $\mathrm{P}(k+1)$:

$$
\begin{aligned}
(2(k+1))! & =(2 k+2)(2 k+1)(2 k)! & & \text { M1 } \\
(2(k+1))! & \geq(2 k+2)(2 k+1)(k!)^{2} 2^{k} & & \text { A1 } \\
& =2(k+1)(2 k+1)(k!)^{2} 2^{k} & & \boldsymbol{R 1} \\
& >2^{k+1}(k+1)(k+1)(k!)^{2} \text { since } 2 k+1>k+1 & & \boldsymbol{A 1}
\end{aligned}
$$

$\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true and $\mathrm{P}(1)$ is true, so $\mathrm{P}(n)$ is true for $n \in \mathbb{Z}^{+} \quad \boldsymbol{R} \boldsymbol{1}$
Note: To obtain the final $\boldsymbol{R} \boldsymbol{I}$, four of the previous marks must have been awarded.

Question 28
(a) (i) METHOD 1
$\begin{array}{lc}\frac{v_{n+1}}{v_{n}}=\frac{2^{u_{n+1}}}{2^{u_{n}}} & \text { M1 } \\ =2^{u_{n+1}-u_{n}}=2^{d} & \boldsymbol{A 1}\end{array}$
METHOD 2
$\frac{v_{n+1}}{v_{n}}=\frac{2^{a+n d}}{2^{a+(n-1) d}}$
$=2^{d}$
A1
(ii) $2^{a} \quad \boldsymbol{A 1}$

Note: Accept $2^{u_{1}}$.

(iii) EITHER
v_{n} is a GP with first term 2^{a} and common ratio 2^{d}
$v_{n}=2^{a}\left(2^{d}\right)^{(n-1)}$
OR
$u_{n}=a+(n-1) d$ as it is an AP

THEN

$v_{n}=2^{a+(n-l) d}$
(b) (i) $\quad S_{n}=\frac{2^{a}\left(\left(2^{d}\right)^{n}-1\right)}{2^{d}-1}=\frac{2^{a}\left(2^{d n}-1\right)}{2^{d}-1}$

A1
[4 marks]

Note: Accept either expression.
(ii) for sum to infinity to exist need $-1<2^{d}<1$

$$
\Rightarrow \log 2^{d}<0 \Rightarrow d \log 2<0 \Rightarrow d<0
$$

(M1)A1

Note: Also allow graph of 2^{d}.
(iii) $\quad S_{\infty}=\frac{2^{a}}{1-2^{d}}$

$$
\begin{aligned}
& \text { (iv) } \frac{2^{a}}{1-2^{d}}=2^{a+1} \Rightarrow \frac{1}{1-2^{d}}=2 \\
& \Rightarrow 1=2-2^{d+1} \Rightarrow 2^{d+1}=1
\end{aligned}
$$

$$
\Rightarrow d=-1 \quad \boldsymbol{A 1}
$$

(c) METHOD 1

$$
\begin{aligned}
& w_{n}=p q^{n-1}, z_{n}=\ln p q^{n-1} \\
& z_{n}=\ln p+(n-1) \ln q \\
& z_{n+1}-z_{n}=(\ln p+n \ln q)-(\ln p+(n-1) \ln q)=\ln q
\end{aligned}
$$

which is a constant so this is an AP
(with first term $\ln p$ and common difference $\ln q$)

$$
\begin{aligned}
\sum_{i=1}^{n} z_{i} & =\frac{n}{2}(2 \ln p+(n-1) \ln q) \\
& =n\left(\ln p+\ln q^{\left(\frac{n-1}{2}\right)}\right)=n \ln \left(p q^{\left(\frac{n-1}{2}\right)}\right) \\
& =\ln \left(p^{n} q^{\frac{n(n-1)}{2}}\right)
\end{aligned}
$$

A1

$$
\text { (with first term } \ln p \text { and common difference } \ln q \text {) }
$$

METHOD 2

$\sum_{i=1}^{n} z_{i}=\ln p+\ln p q+\ln p q^{2}+\ldots+\ln p q^{n-1}$
$=\ln \left(p^{n} q^{(1+2+3+\ldots+(n-1))}\right)$
$=\ln \left(p^{n} q^{\frac{n(n-1)}{2}}\right)$
(M1)A1
(M1)A1
(M1)A1
[6 marks]
Total [18 marks]

Question 29

$$
\begin{array}{ll}
(3-x)^{4}=1.3^{4}+4.3^{3}(-x)+6.3^{2}(-x)^{2}+4.3(-x)^{3}+1(-x)^{4} \text { or equivalent } \\
=81-108 x+54 x^{2}-12 x^{3}+x^{4} & \text { (M1)(A1) } \\
\text { A1A1 }
\end{array}
$$

Note: A1 for ascending powers, A1 for correct coefficients including signs.

Question 30

(a) METHOD 1
$z^{3}=-\frac{27}{8}=\frac{27}{8}(\cos \pi+i \sin \pi)$
$=\frac{27}{8}(\cos (\pi+2 n \pi)+\mathrm{i} \sin (\pi+2 n \pi))$
$z=\frac{3}{2}\left(\cos \left(\frac{\pi+2 n \pi}{3}\right)+\mathrm{i} \sin \left(\frac{\pi+2 n \pi}{3}\right)\right)$
$z_{1}=\frac{3}{2}\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)$,
$z_{2}=\frac{3}{2}(\cos \pi+\mathrm{i} \sin \pi)$,
$z_{3}=\frac{3}{2}\left(\cos \frac{5 \pi}{3}+\mathrm{i} \sin \frac{5 \pi}{3}\right)$.

Note: Accept $-\frac{\pi}{3}$ as the argument for z_{3}.

Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian $\left(r e^{i \theta}\right)$ form.
Note: Allow use of degrees in mod-arg (r-cis) form only.

METHOD 2

$8 z^{3}+27=0$
$\Rightarrow z=-\frac{3}{2}$ so $(2 z+3)$ is a factor
Attempt to use long division or factor theorem:
$\Rightarrow 8 z^{3}+27 \equiv(2 z+3)\left(4 z^{2}-6 z+9\right)$
$\Rightarrow 4 z^{2}-6 z+9=0$
Attempt to solve quadratic:
$z=\frac{3 \pm 3 \sqrt{3} \mathrm{i}}{4}$
$z_{1}=\frac{3}{2}\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)$,
$z_{2}=\frac{3}{2}(\cos \pi+\mathrm{i} \sin \pi)$,
$z_{3}=\frac{3}{2}\left(\cos \frac{5 \pi}{3}+\mathrm{i} \sin \frac{5 \pi}{3}\right)$.

Note: Accept $-\frac{\pi}{3}$ as the argument for z_{3}.
Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian $\left(r e^{\mathrm{i} \theta}\right)$ form.
Note: Allow use of degrees in mod-arg (r-cis) form only.

METHOD 3

$8 z^{3}+27=0$
Substitute $z=x+\mathrm{i} y$
$8\left(x^{3}+3 \mathrm{i} x^{2} y-3 x y^{2}-\mathrm{i} y^{3}\right)+27=0$
$\Rightarrow 8 x^{3}-24 x y^{2}+27=0$ and $24 x^{2} y-8 y^{3}=0$
Attempt to solve simultaneously:
$8 y\left(3 x^{2}-y^{2}\right)=0$
$y=0, y=x \sqrt{3}, y=-x \sqrt{3}$
$\Rightarrow\left(x=-\frac{3}{2}, y=0\right), x=\frac{3}{4}, y= \pm \frac{3 \sqrt{3}}{4}$
$z_{1}=\frac{3}{2}\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)$,
$z_{2}=\frac{3}{2}(\cos \pi+\mathrm{i} \sin \pi)$,
$z_{3}=\frac{3}{2}\left(\cos \frac{5 \pi}{3}+\mathrm{i} \sin \frac{5 \pi}{3}\right)$.

Note: Accept $-\frac{\pi}{3}$ as the argument for z_{3}.
Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian $\left(r e^{i \theta}\right)$ form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
(b) EITHER

Valid attempt to use area $=3\left(\frac{1}{2} a b \sin C\right)$

$$
=3 \times \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2} \times \frac{\sqrt{3}}{2}
$$

Note: Award A1 for correct sides, A1 for correct $\sin C$.
OR
Valid attempt to use area $=\frac{1}{2}$ base \times height M1
area $=\frac{1}{2} \times\left(\frac{3}{4}+\frac{3}{2}\right) \times \frac{6 \sqrt{3}}{4}$
Note: A1 for correct height, A1 for correct base.

THEN

$$
=\frac{27 \sqrt{3}}{16}
$$

AG

[3 marks]
Total [9 marks]

Question 31

(a) $a>0$ A1

(b) METHOD 1
$\log _{x} y=\frac{\ln y}{\ln x}$ and $\log _{y} x=\frac{\ln x}{\ln y}$
Note: Use of any base is permissible here, not just "e".

$$
\left(\frac{\ln y}{\ln x}\right)^{2}=4
$$

A1
$\ln y= \pm 2 \ln x$ A1
$y=x^{2}$ or $\frac{1}{x^{2}}$
A1A1

METHOD 2

$$
\log _{y} x=\frac{\log _{x} x}{\log _{x} y}=\frac{1}{\log _{x} y}
$$

$\left(\log _{x} y\right)^{2}=4$
A1
$\log _{x} y= \pm 2$
$y=x^{2}$ or $y=\frac{1}{x^{2}}$

Note: The final two \boldsymbol{A} marks are independent of the one coming before.

Question 32
(a) $\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}$
$=\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}$
$=\sqrt{n+1}-\sqrt{n}$
M1

AG
[2 marks]
(b) $\quad \sqrt{2}-1=\frac{1}{\sqrt{2}+\sqrt{1}}$
$<\frac{1}{\sqrt{2}}$
(c) consider the case $n=2$: required to prove that $1+\frac{1}{\sqrt{2}}>\sqrt{2}$ from part (b) $\frac{1}{\sqrt{2}}>\sqrt{2}-1$ hence $1+\frac{1}{\sqrt{2}}>\sqrt{2}$ is true for $n=2$
now assume true for $n=k: \sum_{r=1}^{r=k} \frac{1}{\sqrt{r}}>\sqrt{k}$
$\frac{1}{\sqrt{1}}+\ldots+\frac{1}{\sqrt{k}}>\sqrt{k}$
attempt to prove true for $n=k+1: \frac{1}{\sqrt{1}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>\sqrt{k+1}$
from assumption, we have that $\frac{1}{\sqrt{1}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>\sqrt{k}+\frac{1}{\sqrt{k+1}}$
so attempt to show that $\sqrt{k}+\frac{1}{\sqrt{k+1}}>\sqrt{k+1}$

AG

[2 marks]

 M1
A2

AI
(M1) M1
M1
-
(M1)

EITHER

$\frac{1}{\sqrt{k+1}}>\sqrt{k+1}-\sqrt{k}$
$\frac{1}{\sqrt{k+1}}>\frac{1}{\sqrt{k}+\sqrt{k+1}}$, (from part a), which is true A1

OR
$\sqrt{k}+\frac{1}{\sqrt{k+1}}=\frac{\sqrt{k+1} \sqrt{k}+1}{\sqrt{k+1}}$. A1
$>\frac{\sqrt{k} \sqrt{k}+1}{\sqrt{k+1}}=\sqrt{k+1}$
THEN
so true for $n=2$ and $n=k$ true $\Rightarrow n=k+1$ true. Hence true for all $n \geq 2$
Note: Award $\boldsymbol{R 1}$ only if all previous \boldsymbol{M} marks have been awarded.

Question 33

use of either $u_{n}=u_{1}+(n-1) d$ or $S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)$
M1
$u_{1}+4 d=6$
(A1)
$\frac{12}{2}\left(2 u_{1}+11 d\right)=45$
(A1)
$\Rightarrow 4 u_{1}+22 d=15$
attempt to solve simultaneous equations

$$
4(6-4 d)+22 d=15
$$

$6 d=-9 \Rightarrow d=-1.5$
A1
$u_{1}=12$

A1
[6 marks]

Question 34

METHOD 1

$m-n \log _{3} 2=10 \log _{9} 6$
$m-n \log _{3} 2=5 \log _{3} 6 \quad$ M1
$m=\log _{3}\left(6^{5} 2^{n}\right)$
$3^{m} 2^{-n}=6^{5}=3^{5} \times 2^{5}$
$m=5, n=-5$
गte: First $\boldsymbol{M} \mathbf{1}$ is for any correct change of base, second $\boldsymbol{M 1}$ for writing as a single logarithm, third $\boldsymbol{M 1}$ is for writing 6 as 2×3.

METHOD 2

```
\(m-n \log _{3} 2=10 \log _{9} 6\)
\(m-n \log _{3} 2=5 \log _{3} 6 \quad\) M1
\(m-n \log _{3} 2=5 \log _{3} 3+5 \log _{3} 2\)
\(m-n \log _{3} 2=5+5 \log _{3} 2\)
\(m=5, n=-5\)
ote: First \(\boldsymbol{M} \mathbf{1}\) is for any correct change of base, second \(\boldsymbol{M} \mathbf{1}\) for writing 6 as \(2 \times 3\) and third \(\boldsymbol{M} \mathbf{1}\) is for forming an expression without \(\log _{3} 3\).

Question 35
(a) \(\left(\cos \left(\frac{\pi}{3}\right)+\mathrm{i} \sin \left(\frac{\pi}{3}\right)\right)^{3}=\cos \pi+\mathrm{i} \sin \pi\)
\(=-1\)

A1
[2 marks]
(b) show the expression is true for \(n=1\)
assume true for \(n=k, \quad(\cos \theta-\mathrm{i} \sin \theta)^{k}=\cos k \theta-\mathrm{i} \sin k \theta\)
Note: Do not accept "let \(n=k\) " or "assume \(n=k\) ", assumption of truth must be present \((\cos \theta-\mathrm{i} \sin \theta)^{k+1}=(\cos \theta-\mathrm{i} \sin \theta)^{k}(\cos \theta-\mathrm{i} \sin \theta)\)
\(=(\cos k \theta-\mathrm{i} \sin k \theta)(\cos \theta-\mathrm{i} \sin \theta)\)
\(=\cos k \theta \cos \theta-\sin k \theta \sin \theta-\mathrm{i}(\cos k \theta \sin \theta+\sin k \theta \cos \theta)\)
Note: Award A1 for any correct expansion.
\(=\cos ((k+1) \theta)-\mathrm{i} \sin ((k+1) \theta)\)
therefore if true for \(n=k\) true for \(n=k+1\), true for \(n=1\), so true for all \(n\left(\in \mathbb{Z}^{+}\right) \boldsymbol{R} \mathbf{1}\)
Note: To award the final \(\boldsymbol{R}\) mark the first 4 marks must be awarded.
(c) \(\quad(z)^{n}+\left(z^{*}\right)^{n}=(\cos \theta+\mathrm{i} \sin \theta)^{n}+(\cos \theta-\mathrm{i} \sin \theta)^{n}\)
\(=\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta=2 \cos (n \theta)\)
(M1)A1
[2 marks]
(d) (i) \(z z^{*}=(\cos \theta+\mathrm{i} \sin \theta)(\cos \theta-\mathrm{i} \sin \theta)\)
\[
=\cos ^{2} \theta+\sin ^{2} \theta
\]
\[
=1
\]

AG
e: Allow justification starting with \(|z|=1\).
(ii) \(\left(z+z^{*}\right)^{3}=z^{3}+3 z^{2} z^{*}+3 z\left(z^{*}\right)^{2}+\left(z^{*}\right)^{3}\left(=z^{3}+3 z+3 z^{*}+\left(z^{*}\right)^{3}\right)\)
(iii) \(\left(z+z^{*}\right)^{3}=(2 \cos \theta)^{3}\)
\[
\begin{aligned}
& z^{3}+3 z+3 z^{*}+\left(z^{*}\right)^{3}=2 \cos 3 \theta+6 \cos \theta \\
& \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
\]
M1A1
\[
A G
\]

Note: \(\boldsymbol{M} 1\) is for using \(z z^{*}=1\), this might be seen in d (ii).
(e) \(4 \cos ^{3} \theta-2 \cos ^{2} \theta-3 \cos \theta+1=0\)
\(4 \cos ^{3} \theta-3 \cos \theta=2 \cos ^{2} \theta-1\)
\(\cos (3 \theta)=\cos (2 \theta)\)
Note: \(\boldsymbol{A 1}\) for \(\cos (3 \theta)\) and \(\boldsymbol{A 1}\) for \(\cos (2 \theta)\).
\(\theta=0\)
A1
or \(3 \theta=2 \pi-2 \theta\) (or \(3 \theta=4 \pi-2 \theta\) ) M1
\(\theta=\frac{2 \pi}{5}, \frac{4 \pi}{5}\) A1A1

Note: Do not accept solutions via factor theorem or other methods that do not follow "hence".
[6 marks]
Total [21 marks]
Question 36
(a) \(1, n x, \frac{n(n-1)}{2} x^{2}, \frac{n(n-1)(n-2)}{6} x^{3}\)

Note: Award A1 for the first two terms and A1 for the next two terms.
Note: Accept \(\binom{n}{r}\) notation.
Note: Allow the terms seen in the context of an arithmetic sum.
Note: Allow unsimplified terms, eg, those including powers of 1 if seen.
(b) (i) EITHER
using \(u_{3}-u_{2}=u_{4}-u_{3}\)
(M1)
\(\frac{n(n-1)}{2}-n=\frac{n(n-1)(n-2)}{6}-\frac{n(n-1)}{2}\)
attempting to remove denominators and expanding (or vice versa) M1
\(3 n^{2}-9 n=n^{3}-6 n^{2}+5 n\) (or equivalent, eg, \(6 n^{2}-12 n=n^{3}-3 n^{2}+2 n\) ) A1
OR
using \(u_{2}+u_{4}=2 u_{3}\)
(M1)
\(n+\frac{n(n-1)(n-2)}{6}=n(n-1)\)
attempting to remove denominators and expanding (or vice versa) M1
\(6 n+n^{3}-3 n^{2}+2 n=6 n^{2}-6 n\) (or equivalent)
THEN
\(n^{3}-9 n^{2}+14 n=0\)
(ii) \(\quad n(n-2)(n-7)=0\) or \((n-2)(n-7)=0\)
\(n=7\) only (as \(n \geq 3\) )

Question 37
let \(\mathrm{P}(n)\) be the proposition that \(n\left(n^{2}+5\right)\) is divisible by 6 for \(n \in \mathbb{Z}^{+}\) consider \(\mathrm{P}(1)\) :
when \(n=1, n\left(n^{2}+5\right)=1 \times\left(1^{2}+5\right)=6\) and so \(\mathrm{P}(1)\) is true
R1
assume \(\mathrm{P}(k)\) is true ie, \(k\left(k^{2}+5\right)=6 m\) where \(k, m \in \mathbb{Z}^{+}\)
te: Do not award \(\boldsymbol{M} 1\) for statements such as "let \(n=k\) ".
consider \(\mathrm{P}(k+1)\) :
\((k+1)\left((k+1)^{2}+5\right)\)
\(=(k+1)\left(k^{2}+2 k+6\right)\)
\(=k^{3}+3 k^{2}+8 k+6\)
\(=\left(k^{3}+5 k\right)+\left(3 k^{2}+3 k+6\right)\)
\(=k\left(k^{2}+5\right)+3 k(k+1)+6\)
\(k(k+1)\) is even hence all three terms are divisible by 6 R1
\(\mathrm{P}(k+1)\) is true whenever \(\mathrm{P}(k)\) is true and \(\mathrm{P}(1)\) is true, so \(\mathrm{P}(n)\) is true for \(n \in \mathbb{Z}^{+}\)
\(\overline{\text { te: }}\) To obtain the final \(\boldsymbol{R 1}\), four of the previous marks must have been awarded.

Question 38
(a) EITHER
\[
\begin{aligned}
& w^{7}=\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{7} \\
& =\cos 2 \pi+\mathrm{i} \sin 2 \pi \\
& =1 \\
& \text { so } w \text { is a root }
\end{aligned}
\]
A1

OR
\[
z^{7}=1=\cos (2 \pi k)+i \sin (2 \pi k)
\]
\(z=\cos \left(\frac{2 \pi k}{7}\right)+i \sin \left(\frac{2 \pi k}{7}\right)\)
\(k=1 \Rightarrow z=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)\)
so \(w\) is a root
(b) (i) \(\quad(w-1)\left(1+w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}\right)\)
\[
\begin{array}{ll}
=w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}+w^{7}-1-w-w^{2}-w^{3}-w^{4}-w^{5}-w^{6} & \boldsymbol{M} 1 \\
=w^{7}-1(=0) & \boldsymbol{A 1}
\end{array}
\]
(ii) \(w^{7}-1=0\) and \(w-1 \neq 0\)
(c) the roots are \(1, w, w^{2}, w^{3}, w^{4}, w^{5}\) and \(w^{6}\)


7 points equidistant from the origin
approximately correct angular positions for \(1, w, w^{2}, w^{3}, w^{4}, w^{5}\) and \(w^{6}\)
Note: Condone use of cis notation for the final two \(\boldsymbol{A}\) marks.
Note: For the final \(\boldsymbol{A}\) mark there should be one root in the first quadrant, two in the second, two in the third, one in the fourth, and one on the real axis
(d) (i) \(\quad \alpha^{*}=\left(w+w^{2}+w^{4}\right)^{*}\)
\[
=w^{*}+\left(w^{2}\right)^{*}+\left(w^{4}\right)^{*}
\]
since \(w^{*}=w^{6},\left(w^{2}\right)^{*}=w^{5}\) and \(\left(w^{4}\right)^{*}=w^{3}\)
\(\Rightarrow \alpha^{*}=w^{6}+w^{5}+w^{3}\)
(ii) \(\quad b=-\left(\alpha+\alpha^{*}\right)\) (using sum of roots (or otherwise))
\[
\begin{align*}
& b=-\left(w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}\right)  \tag{A1}\\
& =-(-1)
\end{align*}
\]
\[
=1
\]A1
\[
c=\alpha \alpha^{*}(\text { using product of roots (or otherwise)) }
\]
\(c=\left(w+w^{2}+w^{4}\right)\left(w^{6}+w^{5}+w^{3}\right)\)

\section*{EITHER}
\[
\begin{aligned}
& =w^{10}+w^{9}+w^{8}+3 w^{7}+w^{6}+w^{5}+w^{4} \\
& =\left(w^{6}+w^{5}+w^{4}+w^{3}+w^{2}+w\right)+3 \\
& =3-1
\end{aligned}
\]A1
M1

\section*{OR}
\(=w^{10}+w^{9}+w^{8}+3 w^{7}+w^{6}+w^{5}+w^{4}\left(=w^{4}\left(1+w+w^{3}\right)\left(w^{3}+w^{2}+1\right)\right)\)
\(=w^{4}\left(w^{6}+w^{5}+w^{4}+w^{2}+w+1+3 w^{3}\right)\) M1
\(=w^{4}\left(w^{6}+w^{5}+w^{4}+w^{3}+w^{2}+w+1+2 w^{3}\right)\)
\(=w^{4}\left(2 w^{3}\right)\)

\section*{THEN}
\[
=2
\]
(e) \(z^{2}+z+2=0 \Rightarrow z=\frac{-1 \pm \mathrm{i} \sqrt{7}}{2}\)
\(\operatorname{Im}\left(w+w^{2}+w^{4}\right)>0\)
\(\operatorname{Im} \alpha=\frac{\sqrt{7}}{2}\)

\section*{M1A1}

R1

A1
Note: Final \(\boldsymbol{A}\) mark is independent of previous \(\boldsymbol{R}\) mark.

Question 39
\(\begin{array}{ll}\text { (a) } u_{1}=1 & \text { A1 } \\ \text { [1 mark] }\end{array}\)
(b) \(u_{6}=S_{6}-S_{5}=31\)

M1A1
[2 marks]
(c) \(u_{n}=S_{n}-S_{n-1}\)

M1
\(=\left(3 n^{2}-2 n\right)-\left(3(n-1)^{2}-2(n-1)\right)\)
\(=\left(3 n^{2}-2 n\right)-\left(3 n^{2}-6 n+3-2 n+2\right)\)
\(=6 n-5\)
A1
\(d=u_{n+1}-u_{n}\)
R1
\(=6 n+6-5-6 n+5\)
\(=(6(n+1)-5)-(6 n-5)\)
\(=6\) (constant)
Notes: Award R1 only if candidate provides a clear argument that proves that the difference between ANY two consecutive terms of the sequence is constant. Do not accept examples involving particular terms of the sequence nor circular reasoning arguments (eg use of formulas of APs to prove that it is an AP). Last A1 is independent of \(\mathbf{R 1}\).

Question 40
attempt to form a quadratic in \(2^{x}\)
\(\left(2^{x}\right)^{2}+4 \cdot 2^{x}-3=0\)
\(2^{x}=\frac{-4 \pm \sqrt{16+12}}{2}(=-2 \pm \sqrt{7})\) M1
\[
2^{x}=-2+\sqrt{7}(\text { as }-2-\sqrt{7}<0)
\]
\[
x=\log _{2}(-2+\sqrt{7}) \quad\left(x=\frac{\ln (-2+\sqrt{7})}{\ln 2}\right)
\]
te: Award R0 A1 if final answer is \(x=\log _{2}(-2 \pm \sqrt{7})\).

Question 41
(a) (i) METHOD 1
\(1+\omega+\omega^{2}=\frac{1-\omega^{3}}{1-\omega}=0 \quad\) A1
as \(\omega \neq 1\)
R1

\section*{METHOD 2}
solutions of \(1-\omega^{3}=0\) are \(\omega=1, \omega=\frac{-1 \pm \sqrt{3} i}{2}\)
verification that the sum of these roots is 0
(ii) \(1+\omega^{*}+\left(\omega^{*}\right)^{2}=0\)

A2
[4 marks]
(b) \(\quad\left(\omega-3 \omega^{2}\right)\left(\omega^{2}-3 \omega\right)=-3 \omega^{4}+10 \omega^{3}-3 \omega^{2}\)

EITHER
\(=-3 \omega^{2}\left(\omega^{2}+\omega+1\right)+13 \omega^{3}\)
\(=-3 \omega^{2} \times 0+13 \times 1\)
OR
\(=-3 \omega+10-3 \omega^{2}=-3\left(\omega^{2}+\omega+1\right)+13\)
\(=-3 \times 0+13\)
M1A1

M1
A1

M1
A1

OR
substitution by \(\omega=\frac{-1 \pm \sqrt{3} i}{2}\) in any form
M1
A1

THEN
\(=13\)
(c) \(\quad|p|=|q| \Rightarrow \sqrt{1^{2}+3^{2}}=\sqrt{x^{2}+(2 x+1)^{2}}\)
(M1)(A1)
\(5 x^{2}+4 x-9=0\)
A1
\((5 x+9)(x-1)=0\)
(M1)
\(x=1, x=-\frac{9}{5}\)
\[
\text { (d) } \begin{array}{lr}
p q=(1-3 \mathrm{i})(x+(2 x+1) \mathrm{i})=(7 x+3)+(1-x) \mathrm{i} & \text { M1A1 } \\
\operatorname{Re}(p q)+8<(\operatorname{Im}(p q))^{2} \Rightarrow(7 x+3)+8<(1-x)^{2} & \text { M1 } \\
\Rightarrow x^{2}-9 x-10>0 & \text { A1 } \\
\Rightarrow(x+1)(x-10)>0 & \text { M1 } \\
x<-1, x>10 & \text { A1 }
\end{array}
\]

Question 42
\[
\log _{2} x-\log _{2} 5=2+\log _{2} 3
\]

\section*{collecting at least two log terms}
eg \(\log _{2} \frac{x}{5}=2+\log _{2} 3\) or \(\log _{2} \frac{x}{15}=2\)
obtaining a correct equation without logs

Question 43
(a) \(\quad z_{1}=2 \operatorname{cis}\left(\frac{\pi}{3}\right)\) and \(z_{2}=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)\)

Note: Award A1AO for correct moduli and arguments found, but not written in mod-arg form.
(i) \(|x|=\sqrt{2}\)
A1
(ii) \(\quad \arg w=\frac{\pi}{12}\)
A1

Notes: Allow \(\boldsymbol{F T}\) from incorrect answers for \(z_{1}\) and \(z_{2}\) in modulus-argument form.
[4 marks]
(b) EITHER
\(\sin \left(\frac{\pi n}{12}\right)=0\)
OR
\(\arg \left(w^{n}\right)=\pi\) (M1)
\(\frac{n \pi}{12}=\pi\)

\section*{THEN}
\(\therefore n=12\)

\section*{A1}
[2 marks]
Total [6 marks]

\section*{Question 44}

Question 51
(a) use of \(u_{n}=u_{1}+(n-1) d\)
\((1+2 d)^{2}=(1+d)(1+5 d)\) (or equivalent) M1A1
\(d=-2\)
A1
[4 marks]
(b) \(1+(\mathrm{N}-1) \times-2=-15\)
\(N=9\)
(A1)
\(\sum_{r=1}^{9} u_{r}=\frac{9}{2}(2+8 \times-2)\)
\(=-63\)
(M1)
A1
[3 marks]
Total [7 marks]

\section*{Question 45}
let \(P(n)\) be the proposition that \(4^{n}+15 n-1\) is divisible by 9
showing true for \(n=1\)
ie for \(n=1,4^{1}+15 \times 1-1=18\)
which is divisible by 9 , therefore \(P(1)\) is true
assume \(P(k)\) is true so \(4^{k}+15 k-1=9 A,\left(A \in \mathbb{Z}^{+}\right)\)
Note: Only award M1 if "truth assumed" or equivalent.
consider \(4^{k+1}+15(k+1)-1\)
\(=4 \times 4^{k}+15 k+14\)
\(=4(9 A-15 k+1)+15 k+14\)
\(=4 \times 9 A-45 k+18\)
\(=9(4 A-5 k+2)\) which is divisible by 9

\section*{Note: Award R1 for either the expression or the statement above.}
since \(P(1)\) is true and \(P(k)\) true implies \(P(k+1)\) is true, therefore (by the principle of mathematical induction) \(P(n)\) is true for \(n \in \mathbb{Z}^{+}\)

\section*{Note: Only award the final R1 if the 2 M1s have been awarded.}

\section*{Question 46}
attempt at binomial expansion, relevant row of Pascal's triangle or use of general term with binomial coefficient must be seen
term independent of \(x\) is \(\binom{10}{4}\left(2 x^{2}\right)^{6}\left(\frac{1}{2 x^{3}}\right)^{4}\) (or equivalent)
(A1)(A1)(A1)

Notes: \(x\) 's may be omitted.
Also accept \(\binom{10}{6}\) or 210.
\(=840\)
A1
[5 marks]
Question 47
(a) EITHER
the first three terms of the geometric sequence are \(9,9 r\) and \(9 r^{2}\)
\(9+3 d=9 r(\Rightarrow 3+d=3 r)\) and \(9+7 d=9 r^{2}\)
attempt to solve simultaneously
\(9+7 d=9\left(\frac{3+d}{3}\right)^{2}\)
OR
the \(1^{\text {st }}, 4^{\text {th }}\) and \(8^{\text {th }}\) terms of the arithmetic sequence are
\(9,9+3 d, 9+7 d\)
\(\frac{9+7 d}{9+3 d}=\frac{9+3 d}{9}\)
attempt to solve

\section*{THEN}
\(d=1\)
A1
[4 marks]
(b) \(\quad r=\frac{4}{3}\)

A1

Note: Accept answers where a candidate obtains \(d\) by finding \(r\) first. The first two marks in either method for part (a) are awarded for the same ideas and the third mark is awarded for attempting to solve an equation in \(r\).

\section*{Question 48}

C represents the complex number \(1-2 \mathrm{i}\)
D represents the complex number \(3+2 \mathrm{i}\)
\(\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n-1}{2}=\binom{n}{3}\)
show true for \(n=3\)
LHS \(=\binom{2}{2}=1\) RHS \(=\binom{3}{3}=1\)
hence true for \(n=3\)
assume true for \(n=k:\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{k-1}{2}=\binom{k}{3}\)
consider for \(n=k+1:\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{k-1}{2}+\binom{k}{2}\)
\(=\binom{k}{3}+\binom{k}{2}\)
\(=\frac{k!}{(k-3)!3!}+\frac{k!}{(k-2)!2!}\left(=\frac{k!}{3!}\left[\frac{1}{(k-3)!}+\frac{3}{(k-2)!}\right]\right)\) or any correct expression
with a visible common factor
\(=\frac{k!}{3!}\left[\frac{k-2+3}{(k-2)!}\right]\) or any correct expression with a common denominator
\(=\frac{k!}{3!}\left[\frac{k+1}{(k-2)!}\right]\)
Note: At least one of the above three lines or equivalent must be seen.
\(=\frac{(k+1)!}{3!(k-2)!}\) or equivalent
\(=\binom{k+1}{3}\)
Result is true for \(k=3\). If result is true for \(k\) it is true for \(k+1\). Hence result is true for all \(k \geq 3\). Hence proved by induction.

Note: In order to award the R1 at least [5 marks] must have been awarded.
(c) (i) EITHER
\[
\begin{aligned}
& z=(1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta \\
& |z|=\sqrt{(1-\cos 2 \theta)^{2}+(\sin 2 \theta)^{2}} \\
& |z|=\sqrt{1-2 \cos 2 \theta+\cos ^{2} 2 \theta+\sin ^{2} 2 \theta} \\
& =\sqrt{2} \sqrt{(1-\cos 2 \theta)} \\
& =\sqrt{2\left(2 \sin ^{2} \theta\right)} \\
& =2 \sin \theta \\
& \text { let } \arg (z)=\alpha \\
& \tan \alpha=-\frac{\sin 2 \theta}{1-\cos 2 \theta} \\
& =\frac{-2 \sin \theta \cos \theta}{2 \sin ^{2} \theta} \\
& =-\cot \theta \\
& \arg (z)=\alpha=-\arctan \left(\tan \left(\frac{\pi}{2}-\theta\right)\right) \\
& =\theta-\frac{\pi}{2} \\
& z=(1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta \\
& =2 \sin ^{2} \theta-2 i \sin \theta \cos \theta \\
& =2 \sin \theta(\sin \theta-i \cos \theta) \\
& =-2 i \sin \theta(\cos \theta+i \sin \theta) \\
& =2 \sin \theta\left(\cos \left(\theta-\frac{\pi}{2}\right)+i \sin \left(\theta-\frac{\pi}{2}\right)\right) \\
& |z|=2 \sin \theta \\
& \arg (z)=\theta-\frac{\pi}{2}
\end{aligned}
\]
(ii) attempt to apply De Moivre's theorem

M1
\((1-\cos 2 \theta-i \sin 2 \theta)^{\frac{1}{3}}=2^{\frac{1}{3}}(\sin \theta)^{\frac{1}{3}}\left[\cos \left(\frac{\theta-\frac{\pi}{2}+2 n \pi}{3}\right)+i \sin \left(\frac{\theta-\frac{\pi}{2}+2 n \pi}{3}\right)\right]\)
A1A1A1
Note: \(\boldsymbol{A 1}\) for modulus, \(\boldsymbol{A} 1\) for dividing argument of \(z\) by 3 and \(\boldsymbol{A 1}\) for \(2 n \pi\).
Hence cube roots are the above expression when \(n=-1,0,1\).
Equivalent forms are acceptable.

\section*{Question 51}
```

$\log _{2}(x+3)+\log _{2}(x-3)=4$
$\log _{2}\left(x^{2}-9\right)=4$
$x^{2}-9=2^{4}(=16)$

$$
x^{2}=25
$$

$$
x= \pm 5
$$

$$
x=5
$$

Question 52

```
each term is of the form \(\binom{7}{r}\left(x^{2}\right)^{7-r}\left(\frac{-2}{x}\right)^{r}\)
(M1)
\(=\binom{7}{r} x^{14-2 r}(-2)^{r} x^{-r}\)
so \(14-3 r=8\)
(A1)
\(r=2\)
so require \(\binom{7}{2}\left(x^{2}\right)^{5}\left(\frac{-2}{x}\right)^{2}\left(\right.\) or simply \(\left.\binom{7}{2}(-2)^{2}\right)\)
    A1
\(=21 \times 4\)
\(=84\)
A1
```

?: Candidates who attempt a full expansion, including the correct term, may only be awarded M1A0A0A0.

Question 53

METHOD 1

$$
\begin{aligned}
& 216 \mathrm{i}=216\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right) \\
& z+2 \mathrm{i}=\sqrt[3]{216}\left(\cos \left(\frac{\pi}{2}+2 \pi k\right)+\mathrm{i} \sin \left(\frac{\pi}{2}+2 \pi k\right)\right)^{\frac{1}{3}} \\
& z+2 \mathrm{i}=6\left(\cos \left(\frac{\pi}{6}+\frac{2 \pi k}{3}\right)+\mathrm{i} \sin \left(\frac{\pi}{6}+\frac{2 \pi k}{3}\right)\right) \\
& z_{1}+2 \mathrm{i}=6\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)=6\left(\frac{\sqrt{3}}{2}+\frac{\mathrm{i}}{2}\right)=3 \sqrt{3}+3 \mathrm{i} \\
& z_{2}+2 \mathrm{i}=6\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)=6\left(\frac{-\sqrt{3}}{2}+\frac{i}{2}\right)=-3 \sqrt{3}+3 \mathrm{i} \\
& z_{3}+2 \mathrm{i}=6\left(\cos \frac{3 \pi}{2}+\mathrm{i} \sin \frac{3 \pi}{2}\right)=-6 \mathrm{i}
\end{aligned}
$$

A1

!: Award A1A0 for one correct root.

so roots are $z_{1}=3 \sqrt{3}+\mathrm{i}, z_{2}=-3 \sqrt{3}+\mathrm{i}$ and $z_{3}=-8 \mathrm{i}$
M1A1
: Award $\boldsymbol{M 1}$ for subtracting 2 i from their three roots.
[7 marks]

METHOD 2

$$
\begin{aligned}
& (a \sqrt{3}+(b+2) \mathrm{i})^{3}=216 \mathrm{i} \\
& (a \sqrt{3})^{3}+3(a \sqrt{3})^{2}(b+2) \mathrm{i}-3(a \sqrt{3})(b+2)^{2}-\mathrm{i}(b+2)^{3}=216 \mathrm{i} \\
& (a \sqrt{3})^{3}-3(a \sqrt{3})(b+2)^{2}+\mathrm{i}\left(3(a \sqrt{3})^{2}(b+2)-(b+2)^{3}\right)=216 \mathrm{i} \\
& (a \sqrt{3})^{3}-3(a \sqrt{3})(b+2)^{2}=0 \text { and } 3(a \sqrt{3})^{2}(b+2)-(b+2)^{3}=216 \\
& a\left(a^{2}-(b+2)^{2}\right)=0 \text { and } 9 a^{2}(b+2)-(b+2)^{3}=216 \\
& a=0 \text { or } a^{2}=(b+2)^{2} \\
& \text { if } a=0,-(b+2)^{3}=216 \Rightarrow b+2=-6 \\
& \therefore b=-8 \\
& (a, b)=(0,-8) \\
& \text { if } a^{2}=(b+2)^{2}, 9(b+2)^{2}(b+2)-(b+2)^{3}=216 \\
& 8(b+2)^{3}=216 \\
& (b+2)^{3}=27 \\
& b+2=3 \\
& b=1 \\
& \therefore a^{2}=9 \Rightarrow a= \pm 3 \\
& \therefore(a, b)=(\pm 3,1) \\
& \text { so roots are } z_{1}=3 \sqrt{3}+\mathrm{i}, z_{2}=-3 \sqrt{3}+\mathrm{i} \text { and } z_{3}=-8 \mathrm{i}
\end{aligned}
$$

METHOD 3

$$
\begin{array}{lr}
(z+2 i)^{3}-(-6 i)^{3}=0 & \text { M1 } \\
\text { attempt to factorise: } & \text { A1 } \\
((z+2 i)-(-6 i))\left((z+2 i)^{2}+(z+2 i)(-6 i)+(-6 i)^{2}\right)=0 & \boldsymbol{A 1} \\
(z+8 i)\left(z^{2}-2 i z-28\right)=0 & \boldsymbol{A 1} \\
z+8 i=0 \Rightarrow z=-8 i & \boldsymbol{M 1} \\
z^{2}-2 i z-28=0 \Rightarrow z=\frac{2 i \pm \sqrt{-4-(4 \times 1 \times-28)}}{2} & \\
z=\frac{2 i \pm \sqrt{108}}{2} & \boldsymbol{A 1 A 1}
\end{array}
$$

Question 54
(a) METHOD 1
$\log _{r^{2}} x=\frac{\log _{r} x}{\log _{r} r^{2}}\left(=\frac{\log _{r} x}{2 \log _{r} r}\right)$
$=\frac{\log _{r} x}{2}$
M1A1
$A G$
[2 marks]
METHOD 2
$\log _{r^{2}} x=\frac{1}{\log _{x} r^{2}}$
$=\frac{1}{2 \log _{x} r}$
$=\frac{\log _{r} x}{2}$
AG
[2 marks]
(b) METHOD 1
$\log _{2} y+\log _{4} x+\log _{4} 2 x=0$
$\log _{2} y+\log _{4} 2 x^{2}=0$
M1
$\log _{2} y+\frac{1}{2} \log _{2} 2 x^{2}=0$ M1
$\log _{2} y=-\frac{1}{2} \log _{2} 2 x^{2}$
$\log _{2} y=\log _{2}\left(\frac{1}{\sqrt{2} x}\right)$
$y=\frac{1}{\sqrt{2}} x^{-1}$

M1A1

A1

METHOD 2

$$
\begin{array}{ll}
\log _{2} y+\log _{4} x+\log _{4} 2 x=0 & \boldsymbol{M 1} \\
\log _{2} y+\frac{1}{2} \log _{2} x+\frac{1}{2} \log _{2} 2 x=0 & \boldsymbol{M 1} \\
\log _{2} y+\log _{2} x^{\frac{1}{2}}+\log _{2}(2 x)^{\frac{1}{2}}=0 & \boldsymbol{M 1} \\
\log _{2}(\sqrt{2} x y)=0 & \boldsymbol{A 1} \\
\sqrt{2} x y=1 & \boldsymbol{A 1} \\
y=\frac{1}{\sqrt{2}} x^{-1} & \boldsymbol{M}
\end{array}
$$

Note: For the final \boldsymbol{A} mark, y must be expressed in the form $p x^{q}$.

Question 55
(a) $\frac{z+w}{z-w}=\frac{(a+c)+\mathrm{i}(b+d)}{(a-c)+\mathrm{i}(b-d)}$

$$
\begin{aligned}
& =\frac{(a+c)+\mathrm{i}(b+d)}{(a-c)+\mathrm{i}(b-d)} \times \frac{(a-c)-\mathrm{i}(b-d)}{(a-c)-\mathrm{i}(b-d)} \\
& \text { real part }=\frac{(a+c)(a-c)+(b+d)(b-d)}{(a-c)^{2}+(b-d)^{2}}\left(=\frac{a^{2}-c^{2}+b^{2}-d^{2}}{(a-c)^{2}+(b-d)^{2}}\right)
\end{aligned}
$$

Note: Award A1 for numerator, A1 for denominator.

(b) $\quad|z|=|w| \Rightarrow a^{2}+b^{2}=c^{2}+d^{2}$
hence real part $=0$

Note: Do not award ROA1.

Total [6 marks]

Question 56

(a) METHOD 1
state that $u_{n}=u_{1} r^{n-1}$ (or equivalent)
attempt to consider a_{n} and use of at least one log rule M1
$\log _{2}\left|u_{n}\right|=\log _{2}\left|u_{1}\right|+(n-1) \log _{2}|r|$
(which is an AP) with $d=\log _{2}|r|$ (and $1^{\text {st }}$ term $\log _{2}\left|u_{1}\right|$)
so A is an arithmetic sequence
Note: Condone absence of modulus signs.
Note: The final \boldsymbol{A} mark may be awarded independently.
Note: Consideration of the first two or three terms only will score MO.

METHOD 2

consideration of $(d=) a_{n+1}-a_{n}$
$(d)=\log _{2}\left|u_{n+1}\right|-\log _{2}\left|u_{n}\right|$
(d) $=\log _{2}\left|\frac{u_{n+1}}{u_{n}}\right|$
$(d)=\log _{2}|r|$
M1
which is constant
A1

Note: Condone absence of modulus signs.
Note: the final \boldsymbol{A} mark may be awarded independently.
Note: Consideration of the first two or three terms only will score MO.
(b) attempting to solve $\frac{3}{1-r}=4 \quad$ M1

$$
\begin{aligned}
& r=\frac{1}{4} \\
& d=-2
\end{aligned}
$$

[3 marks]
Total [7 marks]

Question 57
(a) (i) $\quad w^{2}=4 \operatorname{cis}\left(\frac{2 \pi}{3}\right) ; w^{3}=8 \operatorname{cis}(\pi)$
(M1)A1A1

Note: Accept Euler form.
Note: M1 can be awarded for either both correct moduli or both correct arguments.
Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.
(ii)

A1A1
(b) use of area $=\frac{1}{2} a b \sin C$

$$
\frac{1}{2} \times 1 \times 2 \times \sin \frac{\pi}{3}+\frac{1}{2} \times 2 \times 4 \times \sin \frac{\pi}{3}+\frac{1}{2} \times 4 \times 8 \times \sin \frac{\pi}{3}
$$

Note: Award A1 for $C=\frac{\pi}{3}, \boldsymbol{A 1}$ for correct moduli.

$$
=\frac{21 \sqrt{3}}{2}
$$

AG
Note: Other methods of splitting the area may receive full marks.
(c) $\frac{1}{2} \times 2^{0} \times 2^{1} \times \sin \frac{\pi}{n}+\frac{1}{2} \times 2^{1} \times 2^{2} \times \sin \frac{\pi}{n}+\frac{1}{2} \times 2^{2} \times 2^{3} \times \sin \frac{\pi}{n}+\ldots+\frac{1}{2} \times 2^{n-1} \times 2^{n} \times \sin \frac{\pi}{n}$

Note: Award M1 for powers of 2, A1 for any correct expression including both the first and last term.
$=\sin \frac{\pi}{n} \times\left(2^{0}+2^{2}+2^{4}+\ldots+2^{2 n-2}\right)$
identifying a geometric series with common ratio $2^{2}(=4)$
(M1)A1
M1
$=\frac{1-2^{2 n}}{1-4} \times \sin \frac{\pi}{n}$
Note: Award M1 for use of formula for sum of geometric series.

$$
=\frac{1}{3}\left(4^{n}-1\right) \sin \frac{\pi}{n}
$$

Question 58
if $n=1$
$\mathrm{LHS}=1 ;$ RHS $=4-\frac{3}{2^{0}}=4-3=1$
hence true for $n=1$
assume true for $n=k$
:e: Assumption of truth must be present. Following marks are not dependent on the first two M1 marks.
so $1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3}+\ldots+k\left(\frac{1}{2}\right)^{k-1}=4-\frac{k+2}{2^{k-1}}$
if $n=k+1$
$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3}+\ldots+k\left(\frac{1}{2}\right)^{k-1}+(k+1)\left(\frac{1}{2}\right)^{k}$
$=4-\frac{k+2}{2^{k-1}}+(k+1)\left(\frac{1}{2}\right)^{k}$
$=4-\frac{2(k+2)}{2^{k}}+\frac{k+1}{2^{k}}$
$=4-\frac{2(k+2)-(k+1)}{2^{k}}=4-\frac{k+3}{2^{k}}\left(=4-\frac{(k+1)+2}{2^{(k+1)-1}}\right)$
hence if true for $n=k$ then also true for $n=k+1$, as true for $n=1$, so true (for all $n \in \mathbb{Z}^{+}$)
:e: Award the final R1 only if the first four marks have been awarded.

Question 59

$(\ln x)^{2}-(\ln 2)(\ln x)-2(\ln 2)^{2}(=0)$

EITHER

$\ln x=\frac{\ln 2 \pm \sqrt{(\ln 2)^{2}+8(\ln 2)^{2}}}{2}$
$=\frac{\ln 2 \pm 3 \ln 2}{2}$
OR
$(\ln x-2 \ln 2)(\ln x+\ln 2)(=0)$
M1A1

THEN

$\ln x=2 \ln 2$ or $-\ln 2$
$\Rightarrow x=4$ or $x=\frac{1}{2}$
te: (M1) is for an appropriate use of a log law in either case, dependent on the previous
M1 being awarded, A1 for both correct answers.
solution is $\frac{1}{2}<x<4$

Question 60

attempt to substitute $x=-1$ or $x=2$ or to divide polynomials
(M1)
A1A1
M1 A1
[5 marks]

Question 61

(a) $(r(\cos \theta+\mathrm{i} \sin \theta))^{24}=1(\cos 0+\mathrm{i} \sin 0)$
use of De Moivre's theorem
$r^{24}=1 \Rightarrow r=1$
$24 \theta=2 \pi n \Rightarrow \theta=\frac{\pi n}{12},(n \in \mathbb{Z})$
$0<\arg z<\frac{\pi}{2} \Rightarrow n=1,2,3,4,5$
$z=\mathrm{e}^{\frac{\pi i}{12}}$ or $\mathrm{e}^{\frac{2 \pi i}{12}}$ or $\mathrm{e}^{\frac{3 \pi i}{12}}$ or $\mathrm{e}^{\frac{4 \pi i}{12}}$ or $\mathrm{e}^{\frac{5 \pi i}{12}}$
Note: Award A1 if additional roots are given or if three correct roots are given with no incorrect (or additional) roots.
(b) (i) $\operatorname{Re} S=\cos \frac{\pi}{12}+\cos \frac{2 \pi}{12}+\cos \frac{3 \pi}{12}+\cos \frac{4 \pi}{12}+\cos \frac{5 \pi}{12}$

$$
\operatorname{Im} S=\sin \frac{\pi}{12}+\sin \frac{2 \pi}{12}+\sin \frac{3 \pi}{12}+\sin \frac{4 \pi}{12}+\sin \frac{5 \pi}{12}
$$

Note: Award A1 for both parts correct.
but $\sin \frac{5 \pi}{12}=\cos \frac{\pi}{12}, \sin \frac{4 \pi}{12}=\cos \frac{2 \pi}{12}, \sin \frac{3 \pi}{12}=\cos \frac{3 \pi}{12}$,
$\sin \frac{2 \pi}{12}=\cos \frac{4 \pi}{12}$ and $\sin \frac{\pi}{12}=\cos \frac{5 \pi}{12}$
$\Rightarrow \operatorname{Re} S=\operatorname{Im} S$

Note: Accept a geometrical method.

(ii) $\quad \cos \frac{\pi}{12}=\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\cos \frac{\pi}{4} \cos \frac{\pi}{6}+\sin \frac{\pi}{4} \sin \frac{\pi}{6}$

$$
\begin{aligned}
& =\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \frac{1}{2} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

(iii) $\cos \frac{5 \pi}{12}=\cos \left(\frac{\pi}{6}+\frac{\pi}{4}\right)=\cos \frac{\pi}{6} \cos \frac{\pi}{4}-\sin \frac{\pi}{6} \sin \frac{\pi}{4}$

Note: Allow alternative methods eg $\cos \frac{5 \pi}{12}=\sin \frac{\pi}{12}=\sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$.
$=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}-\frac{1}{2} \frac{\sqrt{2}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
(A1)
$\operatorname{Re} S=\cos \frac{\pi}{12}+\cos \frac{2 \pi}{12}+\cos \frac{3 \pi}{12}+\cos \frac{4 \pi}{12}+\cos \frac{5 \pi}{12}$
$\operatorname{Re} S=\frac{\sqrt{2}+\sqrt{6}}{4}+\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}+\frac{\sqrt{6}-\sqrt{2}}{4}$
$=\frac{1}{2}(\sqrt{6}+1+\sqrt{2}+\sqrt{3})$
$=\frac{1}{2}(1+\sqrt{2})(1+\sqrt{3})$
$S=\operatorname{Re}(S)(1+\mathrm{i})$ since $\operatorname{Re} S=\operatorname{Im} S$,
$S=\frac{1}{2}(1+\sqrt{2})(1+\sqrt{3})(1+\mathrm{i})$

Question 62
$-i \sqrt{3}$ is a root
$3+\log _{2} 3-\log _{2} 6\left(=3+\log _{2} \frac{1}{2}=3-1=2\right)$ is a root
sum of roots: $-a=3+\log _{2} 3 \Rightarrow a=-3-\log _{2} 3$
: Award $\boldsymbol{M} 1$ for use of $-a$ is equal to the sum of the roots, do not award if minus is missing.
: If expanding the factored form of the equation, award $\boldsymbol{M} 1$ for equating a to the coefficient of z^{3}.
product of roots: $(-1)^{4} d=2\left(\log _{2} 6\right)(\mathrm{i} \sqrt{3})(-\mathrm{i} \sqrt{3})$
M1
$=6 \log _{2} 6$
: Award M1AO for $d=-6 \log _{2} 6$.
$6 a+d+12=-18-6 \log _{2} 3+6 \log _{2} 6+12$

EITHER

$=-6+6 \log _{2} 2=0$

M1A1AG

:M1 is for a correct use of one of the log laws.
OR
$=-6-6 \log _{2} 3+6 \log _{2} 3+6 \log _{2} 2=0$

M1A1AG

: M1 is for a correct use of one of the log laws.
[7 marks]
Question 63
consider $n=1.1(1!)=1$ and $2!-1=1$ therefore true for $n=1$
R1
: There must be evidence that $n=1$ has been substituted into both expressions, or an expression such LHS $=$ RHS $=1$ is used. "therefore true for $n=1$ " or an equivalent statement must be seen.
assume true for $n=k$, (so that $\sum_{r=1}^{k} r(r!)=(k+1)!-1$)
Assumption of truth must be present.
consider $n=k+1$
$\sum_{r=1}^{k+1} r(r!)=\sum_{r=1}^{k} r(r!)+(k+1)(k+1)$!
$=(k+1)!-1+(k+1)(k+1)!$
$=(k+2)(k+1)!-1$
M1 is for factorising $(k+1)$!
$=(k+2)!-1$
$=((k+1)+1)!-1$
so if true for $n=k$, then also true for $n=k+1$, and as true for $n=1$ then true for
all $n\left(\in \mathbb{Z}^{+}\right)$
R1
3: Only award final $\boldsymbol{R 1}$ if all three method marks have been awarded.
Award $\boldsymbol{R 0}$ if the proof is developed from both LHS and RHS.

Question 64

(a) an attempt at a valid method eg by inspection or row reduction
$2 \times R_{2}=R_{1} \Rightarrow 2 a=-1$
$\Rightarrow a=-\frac{1}{2}$
(b) using elimination or row reduction to eliminate one variable
correct pair of equations in 2 variables, such as
$\left.\begin{array}{c}5 x+10 y=25 \\ 5 x+12 y=4\end{array}\right\}$
Note: Award A1 for $z=0$ and one other equation in two variables.
attempting to solve for these two variables
$x=26, y=-10.5, z=0$
A1A1
Note: Award A1AO for only two correct values, and A0AO for only one.
Note: Award marks in part (b) for equivalent steps seen in part (a).

Total [7 marks]

Question 65
(a) METHOD 1
$\binom{8}{4}$
(A1)
$=\frac{8!}{4!4!}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=7 \times 2 \times 5$
$=70$
(M1)

METHOD 2

recognition that they need to count the teams with 0 boys, 1 boy... 4 boys
$1+\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}+1$
$=1+(4 \times 4)+(6 \times 6)+(4 \times 4)+1$
$=70$
(b) EITHER
recognition that the answer is the total number of teams minus the number of teams with all girls or all boys
$70-2$
OR
recognition that the answer is the total of the number of teams with 1 boy, 2 boys, 3 boys
$\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}=(4 \times 4)+(6 \times 6)+(4 \times 4)$

THEN

$=68$

Question 65
(a) METHOD 1
$\binom{8}{4}$
$=\frac{8!}{4!4!}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=7 \times 2 \times 5$
$=70$

METHOD 2

recognition that they need to count the teams with 0 boys, 1 boy... 4 boys
$1+\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}+1$
$=1+(4 \times 4)+(6 \times 6)+(4 \times 4)+1$
$=70$
(b) EITHER
recognition that the answer is the total number of teams minus the number of teams with all girls or all boys
$70-2$

OR
recognition that the answer is the total of the number of teams with 1 boy, 2 boys, 3 boys

$$
\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}=(4 \times 4)+(6 \times 6)+(4 \times 4)
$$

THEN

$=68$

A1
[2 marks]
Total [5 marks]

Question 66
use of at least one "log rule" applied correctly for the first equation
$\log _{2} 6 x=\log _{2} 2+2 \log _{2} y$
$=\log _{2} 2+\log _{2} y^{2}$
$=\log _{2}\left(2 y^{2}\right)$
$\Rightarrow 6 x=2 y^{2}$
A1
use of at least one "log rule" applied correctly for the second equation
$\log _{6}(15 y-25)=1+\log _{6} x$
$=\log _{6} 6+\log _{6} x$
$=\log _{6} 6 x$
$\Rightarrow 15 y-25=6 x$
attempt to eliminate x (or y) from their two equations
$2 y^{2}=15 y-25$
$2 y^{2}-15 y+25=0$
$(2 y-5)(y-5)=0$
$x=\frac{25}{12}, y=\frac{5}{2}$,
A1
or $x=\frac{25}{3}, y=5$
te: x, y values do not have to be "paired" to gain either of the final two A marks.

[7 marks]

Question 67

$$
g(x)=f(x+2)\left(=(x+2)^{4}-6(x+2)^{2}-2(x+2)+4\right)
$$

attempt to expand $(x+2)^{4}$
M1
$=x^{4}+8 x^{3}+24 x^{2}+32 x+16$
$g(x)=x^{4}+8 x^{3}+24 x^{2}+32 x+16-6\left(x^{2}+4 x+4\right)-2 x-4+4$
$=x^{4}+8 x^{3}+18 x^{2}+6 x-8$

3: For correct expansion of $f(x-2)=x^{4}-8 x^{3}+18 x^{2}-10 x$ award max MOM1(A1)AOA1.

Question 68
attempting to form two equations involving u_{1} and d

M1

$\left(u_{1}+2 d\right)+\left(u_{1}+7 d\right)=1$ and $\frac{7}{2}\left[2 u_{1}+6 d\right]=35$
$2 u_{1}+9 d=1$
$14 u_{1}+42 d=70\left(2 u_{1}+6 d=10\right)$
e: Award A1 for any two correct equations
attempting to solve their equations:
M1
$u_{1}=14, d=-3$

A1
[4 marks]
(a) (i) $p(2)=8-12+16-24$
(M1)

Note: Award M1 for a valid attempt at remainder theorem or polynomial division.
$=-12$
A1
remainder $=-12$
(ii) $p(3)=27-27+24-24=0$
remainder $=0$
[3 marks]
(b) $x=3$ (is a zero)

A1
Note: Can be seen anywhere.
EITHER
factorise to get $(x-3)\left(x^{2}+8\right)$

(M1)A1

$R 1$
Note: Award R1 if correct two complex roots are given.
OR

$$
p^{\prime}(x)=3 x^{2}-6 x+8
$$A1

attempting to show $p^{\prime}(x) \neq 0 \quad$ M1
eg discriminant $=36-96<0$, completing the square
no turning points
R1
THEN
only one real zero (as the curve is continuous)
(c) new graph is $y=p(2 x)$
stretch parallel to the x-axis (with $x=0$ invariant), scale factor 0.5

Question 70

attempt at binomial expansion $1+\binom{11}{1}(-2 x)+\binom{11}{2}(-2 x)^{2}+\ldots$ $\binom{11}{2}=55$	M1
$1-22 x+220 x^{2}$	(A1)
te: $\boldsymbol{A 1}$ for first two terms, $\boldsymbol{A 1}$ for final term.	A1A1
te: Award M1(A1)A0A0 for $(-2 x)^{11}+\binom{11}{10}(-2 x)^{10}+\binom{11}{9}(-2 x)^{9}+\ldots$,	

Question 71
(a) METHOD 1

$$
\begin{aligned}
& |z|=\sqrt[4]{4}(=\sqrt{2}) \\
& \arg \left(z_{1}\right)=\frac{\pi}{4}
\end{aligned}
$$

first solution is $1+i$
valid attempt to find all roots (De Moivre or $+/-$ their components) other solutions are $-1+\mathrm{i},-1-\mathrm{i}, 1-\mathrm{i}$

METHOD 2

$z^{4}=-4$
$(a+\mathrm{i} b)^{4}=-4$
attempt to expand and equate both reals and imaginaries.
$a^{4}+4 a^{3} b i-6 a^{2} b^{2}-4 a b^{3} i+b^{4}=-4$
$\left(a^{4}-6 a^{4}+a^{4}=-4 \Rightarrow\right) a= \pm 1$ and $\left(4 a^{3} b-4 a b^{3}=0 \Rightarrow\right) a= \pm b$
first solution is $1+\mathrm{i}$
valid attempt to find all roots (De Moivre or $+/$ - their components)
other solutions are $-1+\mathrm{i},-1-\mathrm{i}, 1-\mathrm{i}$
A1
[5 marks]
$\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 1 & 3 & -1 & 4 \\ 3 & -5 & a & b\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & 7 & -3 & 3 \\ 0 & -14 & a+3 & b-12\end{array}\right)$ (or $\left.\operatorname{det} A=14(a-3)\right)$
(or two correct equations in two variables)
A1
$\rightarrow\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & 7 & -3 & 3 \\ 0 & 0 & a-3 & b-6\end{array}\right) \quad$ (or solving $\operatorname{det} A=0$)
(or attempting to reduce to one variable, e.g. $(a-3) z=b-6$)
$a=3, b \neq 6$
A1A1

