Subject - Math(Higher Level) Topic - Calculus
 Year - Nov 2011 - Nov 2019

Question 1

to find the points of intersection of the two curves

$$
\begin{array}{lr}
-x^{2}+2=x^{3}-x^{2}-b x+2 & \text { M1 } \\
x^{3}-b x=x\left(x^{2}-b\right)=0 & \text { A1A1 } \\
\Rightarrow x=0 ; x= \pm \sqrt{b} & \text { M1 } \\
A_{1}=\int_{-\sqrt{b}}^{0}\left[\left(x^{3}-x^{2}-b x+2\right)-\left(-x^{2}+2\right)\right] \mathrm{d} x\left(=\int_{-\sqrt{b}}^{0}\left(x^{3}-b x\right) \mathrm{d} x\right) & \\
\quad=\left[\frac{x^{4}}{4}-\frac{b x^{2}}{2}\right]_{-\sqrt{b}}^{0} & \text { AI } \\
\quad=-\left(\frac{(-\sqrt{b})^{4}}{4}-\frac{b(-\sqrt{b})^{2}}{2}\right)=-\frac{b^{2}}{4}+\frac{b^{2}}{2}=\frac{b^{2}}{4} & \text { M1 }
\end{array}
$$

$$
\begin{aligned}
& =\int_{0}^{\sqrt{b}}\left(-x^{3}+b x\right) \mathrm{d} x \\
& =\left[-\frac{x^{4}}{4}+\frac{b x^{2}}{2}\right]_{0}^{\sqrt{b}}=\frac{b^{2}}{4}
\end{aligned}
$$

therefore $A_{1}=A_{2}=\frac{b^{2}}{4}$

Question 2

(a) angle APB is a right angle

$$
\Rightarrow \cos \theta=\frac{\mathrm{AP}}{4} \Rightarrow \mathrm{AP}=4 \cos \theta
$$

Note: Allow correct use of cosine rule.

$$
\text { arc } \mathrm{PB}=2 \times 2 \theta=4 \theta
$$

$t=\frac{\mathrm{AP}}{3}+\frac{\mathrm{PB}}{6}$ M1

Note: Allow use of their AP and their PB for the M1.
$\Rightarrow t=\frac{4 \cos \theta}{3}+\frac{4 \theta}{6}=\frac{4 \cos \theta}{3}+\frac{2 \theta}{3}=\frac{2}{3}(2 \cos \theta+\theta)$ $A G$
(b) $\frac{\mathrm{d} t}{\mathrm{~d} \theta}=\frac{2}{3}(-2 \sin \theta+1)$
$\frac{2}{3}(-2 \sin \theta+1)=0 \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$ (or 30 degrees)
(c) $\frac{\mathrm{d}^{2} t}{\mathrm{~d} \theta^{2}}=-\frac{4}{3} \cos \theta<0 \quad\left(\right.$ at $\left.\theta=\frac{\pi}{6}\right)$
$\Rightarrow t$ is maximized at $\theta=\frac{\pi}{6}$
time needed to walk along arc AB is $\frac{2 \pi}{6}$ (≈ 1 hour) time needed to row from A to B is $\frac{4}{3}$ (≈ 1.33 hour) hence, time is minimized in walking from A to B

Question 3

(a)

$$
\begin{equation*}
s^{2}=(20 t)^{2}+(20-40 t)^{2} \tag{M1}
\end{equation*}
$$

$s^{2}=2000 t^{2}-1600 t+400$
to minimize s it is enough to minimize s^{2}
$f^{\prime}(t)=4000 t-1600$A1
setting $f^{\prime}(t)$ equal to $0 \quad$ M1
$4000 t-1600=0 \Rightarrow t=\frac{2}{5}$ or 24 minutesA1
$f^{\prime \prime}(t)=4000>0$
\Rightarrow at $t=\frac{2}{5}, f(t)$ is minimized
hence, the ships are closest at 12:24

Note: accept solution based on s.
[8 marks]
(b) $f\left(\frac{2}{5}\right)=\sqrt{80}$
since $\sqrt{80}<9$, the captains can see one another

R1
[3 marks]

Question 4

(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}}{\ln \mathrm{e}}(2+2)=4 \mathrm{e}$
at $(2, \mathrm{e})$ the tangent line is $y-\mathrm{e}=4 \mathrm{e}(x-2)$
hence $y=4 \mathrm{e} x-7 \mathrm{e}$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{\ln y}(x+2) \Rightarrow \frac{\ln y}{y} \mathrm{~d} y=(x+2) \mathrm{d} x$
$\int \frac{\ln y}{y} \mathrm{~d} y=\int(x+2) \mathrm{d} x$
using substitution $u=\ln y ; \mathrm{d} u=\frac{1}{y} \mathrm{~d} y$
$\Rightarrow \int \frac{\ln y}{y} \mathrm{~d} y=\int u \mathrm{~d} u=\frac{1}{2} u^{2}$
$\Rightarrow \frac{(\ln y)^{2}}{2}=\frac{x^{2}}{2}+2 x+c$
at $(2, \mathrm{e}), \frac{(\ln \mathrm{e})^{2}}{2}=6+c$
$\Rightarrow c=-\frac{11}{2}$
$\Rightarrow \frac{(\ln y)^{2}}{2}=\frac{x^{2}}{2}+2 x-\frac{11}{2} \Rightarrow(\ln y)^{2}=x^{2}+4 x-11$
$\ln y= \pm \sqrt{x^{2}+4 x-11} \Rightarrow y=\mathrm{e}^{ \pm \sqrt{x^{2}+4 x-11}}$
since $y>1, f(x)=\mathrm{e}^{\sqrt{x^{2}+4 x-11}}$
ste: M1 for attempt to make y the subject.
(c) EITHER

$$
x^{2}+4 x-11>0
$$

using the quadratic formula
A1
critical values are $\frac{-4 \pm \sqrt{60}}{2}(=-2 \pm \sqrt{15})$
M1
using a sign diagram or algebraic solution
A1
$x<-2-\sqrt{15} ; x>-2+\sqrt{15}$
M1

OR
$x^{2}+4 x-11>0$
A1
by methods of completing the square
M1
$(x+2)^{2}>15$
A1
$\Rightarrow x+2<-\sqrt{15}$ or $x+2>\sqrt{15}$
$x<-2-\sqrt{15} ; x>-2+\sqrt{15}$
[6 marks] continued ...
(d) $\quad f(x)=f^{\prime}(x) \Rightarrow f(x)=\frac{f(x)}{\ln f(x)}(x+2)$
$\Rightarrow \ln (f(x))=x+2 \quad\left(\Rightarrow x+2=\sqrt{x^{2}+4 x-11}\right)$
$\Rightarrow(x+2)^{2}=x^{2}+4 x-11 \Rightarrow x^{2}+4 x+4=x^{2}+4 x-11$
$\Rightarrow 4=-11$, hence $f(x) \neq f^{\prime}(x)$

Question 5

(a) $\int_{\frac{1}{6}}^{1} \frac{k}{x}-\frac{1}{x} \mathrm{~d} x=(k-1)[\ln x]_{\frac{1}{6}}^{1} \quad$ M1A1

Note: Award M1 for $\int \frac{k}{x}-\frac{1}{x} \mathrm{~d} x$ or $\int \frac{1}{x}-\frac{k}{x} \mathrm{~d} x$ and $A 1$ for $(k-1) \ln x$ seen in part (a) or later in part (b).

$$
=(1-k) \ln \frac{1}{6}
$$

(b) $\int_{1}^{\sqrt{6}} \frac{k}{x}-\frac{1}{x} \mathrm{~d} x=(k-1)[\ln x]_{1}^{\sqrt{6}}$

Note: Award $\boldsymbol{A 1}$ for correct change of limits.

$$
=(k-1) \ln \sqrt{6}
$$

(c) $\quad(1-k) \ln \frac{1}{6}=(k-1) \ln 6$
$(k-1) \ln \sqrt{6}=\frac{1}{2}(k-1) \ln 6$
Note: This simplification could have occurred earlier, and marks should still be awarded.
ratio is 2 (or $2: 1$)

Question 6

$$
4 x+2 y \frac{\mathrm{u} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{u} y}{\mathrm{~d} x}=-\frac{2 . \mathrm{s}}{y}
$$

Tote: Allow follow through on incorrect $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from this point.
gradient of normal at (a, b) is $\frac{b}{2 a}$
ste: No further A marks are available if a general point is not used
uation of normal at (a, b) is $y-b=\frac{b}{2 a}(x-a)\left(\Rightarrow y=\frac{b}{2 a} x+\frac{b}{2}\right)$
M1A1
substituting $(1,0)$ M1
$b=0$ or $a=-1$
four points are $(3,0),(-3,0),(-1,4),(-1,-4)$

Question 7

(a) EITHER
derivative of $\frac{x}{1-x}$ is $\frac{(1-x)-x(-1)}{(1-x)^{2}}$
M1A1
$f^{\prime}(x)=\frac{1}{2}\left(\frac{x}{1-x}\right)^{-\frac{1}{2}} \frac{1}{(1-x)^{2}}$
M1A1

$$
=\frac{1}{2} x^{\frac{1}{2}}(1-x)^{-\frac{3}{2}}
$$

$f^{\prime}(x)>0$ (for all $0<x<1$) so the function is increasing
OR
$f(x)=\frac{x^{\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}$
$f^{\prime}(x)=\frac{(1-x)^{\frac{1}{2}}\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-\frac{1}{2} x^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}(-1)}{1-x}$
M1A1
$=\frac{1}{2} x^{-\frac{1}{2}}(1-x)^{-\frac{1}{2}}+\frac{1}{2} x^{\frac{1}{2}}(1-x)^{-\frac{3}{2}}$
$=\frac{1}{2} x^{\frac{1}{2}}(1-x)^{\frac{3}{2}}[1-x+x]$
$=\frac{1}{2} x^{-\frac{1}{2}}(1-x)^{-\frac{3}{2}}$
$f^{\prime}(x)>0$ (for all $0<x<1$) so the function is increasing
(b) $f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}(1-x)^{-\frac{3}{2}}$
$\Rightarrow f^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}(1-x)^{-\frac{3}{2}}+\frac{3}{4} x^{-\frac{1}{2}}(1-x)^{-\frac{5}{2}}$

$$
=-\frac{1}{4} x^{-\frac{3}{2}}(1-x)^{-\frac{5}{2}}[1-4 x]
$$

$f^{\prime \prime}(x)=0 \Rightarrow x=\frac{1}{4}$
$f^{\prime \prime}(x)$ changes sign at $x=\frac{1}{4}$ hence there is a point of inflexion
$x=\frac{1}{4} \Rightarrow y=\frac{1}{\sqrt{3}}$
the coordinates are $\left(\frac{1}{4}, \frac{1}{\sqrt{3}}\right)$

$$
\begin{aligned}
& \text { (c) } x=\sin ^{2} \theta \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \sin \theta \cos \theta \quad \text { M1A1 } \\
& \int \sqrt{\frac{x}{1-x}} \mathrm{~d} x=\int \sqrt{\frac{\sin ^{2} \theta}{1-\sin ^{2} \theta}} 2 \sin \theta \cos \theta \mathrm{~d} \theta \quad \text { M1A1 } \\
& =\int 2 \sin ^{2} \theta \mathrm{~d} \theta \quad A 1 \\
& =\int 1-\cos 2 \theta \mathrm{~d} \theta \quad \text { M1A1 } \\
& =\theta-\frac{1}{2} \sin 2 \theta+c \quad A 1 \\
& \theta=\arcsin \sqrt{x} \quad \text { A1 } \\
& \frac{1}{2} \sin 2 \theta=\sin \theta \cos \theta=\sqrt{x} \sqrt{1-x}=\sqrt{x-x^{2}} \quad \text { M1A1 } \\
& \text { hence } \int \sqrt{\frac{x}{1-x}} \mathrm{~d} x=\arcsin \sqrt{x}-\sqrt{x-x^{2}}+c \quad A G
\end{aligned}
$$

Question 8

(a)

Note: Award A1 for correct shape.
Award $A 1$ for two correct asymptotes, $x=1$ and $x=3$.
Award $A 1$ for correct coordinates, $\mathrm{A}^{\prime}\left(-1, \frac{1}{4}\right), \mathrm{B}^{\prime}\left(0, \frac{1}{3}\right)$ and $\mathrm{D}^{\prime}\left(2,-\frac{1}{3}\right)$.

[3 marks]

(b)

A1A1A1
Note: Award $A 1$ for correct general shape including the horizontal asymptote. Award $A 1$ for recognition of 1 maximum point and 1 minimum point.
Award $A 1$ for correct coordinates, $\mathrm{A}^{\prime \prime}(-1,0)$ and $\mathrm{D}^{\prime \prime}(2,0)$.

[3 marks]

Question 9

$x^{3} y=a \sin n x$
attempt to differentiate implicitly M1
$\Rightarrow 3 x^{2} y+x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=a n \cos n x \quad \quad$ A2
te: Award $\boldsymbol{A 1}$ for two out of three correct, $\boldsymbol{A 0}$ otherwise.

$$
\Rightarrow 6 x y+3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-a n^{2} \sin n x
$$

te: Award $\boldsymbol{A 1}$ for three or four out of five correct, $\boldsymbol{A 0}$ otherwise.
$\Rightarrow 6 x y+6 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-a n^{2} \sin n x$
$\Rightarrow x^{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+6 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x y+n^{2} x^{3} y=0$
$\Rightarrow x^{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+6 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(n^{2} x^{2}+6\right) x y=0$

Question 10

(c) attempt at integration by parts

EITHER

$$
\begin{array}{ll}
I=\int \mathrm{e}^{-x} \cos x \mathrm{~d} x=-\mathrm{e}^{-x} \cos x \mathrm{~d} x-\int \mathrm{e}^{-x} \sin x \mathrm{~d} x & A 1 \\
\Rightarrow I=-\mathrm{e}^{-x} \cos x \mathrm{~d} x-\left[-\mathrm{e}^{-x} \sin x+\int \mathrm{e}^{-x} \cos x \mathrm{~d} x\right] \\
\Rightarrow I=\frac{\mathrm{e}^{-x}}{2}(\sin x-\cos x)+C & A 1
\end{array}
$$

Note: Do not penalize absence of C.
OR

$$
\begin{array}{ll}
I=\int \mathrm{e}^{-x} \cos x \mathrm{~d} x=\mathrm{e}^{-x} \sin x+\int \mathrm{e}^{-x} \sin x \mathrm{~d} x & A 1 \\
\Rightarrow I=\mathrm{e}^{-x} \sin x-\mathrm{e}^{-x} \cos x-\int \mathrm{e}^{-x} \cos x \mathrm{~d} x & A 1 \\
\Rightarrow I=\frac{\mathrm{e}^{-x}}{2}(\sin x-\cos x)+C & A 1
\end{array}
$$

Note: Do not penalize absence of C.
THEN

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{-x} \cos x \mathrm{~d} x=\left[\frac{\mathrm{e}^{-x}}{2}(\sin x-\cos x)\right]_{0}^{\frac{\pi}{2}}=\frac{\mathrm{e}^{-\frac{\pi}{2}}}{2}+\frac{1}{2} \tag{A1}\\
& \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \mathrm{e}^{-x} \cos x \mathrm{~d} x=\left[\frac{\mathrm{e}^{-x}}{2}(\sin x-\cos x)\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}=-\frac{\mathrm{e}^{-\frac{3 \pi}{2}}}{2}-\frac{\mathrm{e}^{-\frac{\pi}{2}}}{2} \\
& \text { ratio of } A: B \text { is } \frac{\frac{\mathrm{e}^{-\frac{\pi}{2}}}{2}+\frac{1}{2}}{\frac{\mathrm{e}^{\frac{3 \pi}{2}}}{2}+\frac{\mathrm{e}^{-\frac{\pi}{2}}}{2}} \\
& =\frac{\boldsymbol{e} 1}{\mathrm{e}^{\frac{3 \pi}{2}}\left(\mathrm{e}^{-\frac{\pi}{2}}+1\right)} \\
& =\frac{\mathrm{e}^{\pi}\left(\mathrm{e}^{-\frac{3 \pi}{2}}+\mathrm{e}^{\frac{\pi}{2}}+1\right)}{\mathrm{e}^{\pi}+1}
\end{align*}
$$

Question 11

(a) $\quad f^{\prime}(x)=(\ln x)^{2}+\frac{2 x \ln x}{x}\left(=(\ln x)^{2}+2 \ln x=\ln x(\ln x+2)\right)$
M1A1
$f^{\prime}(x)=0\left(\Rightarrow x=1, x=e^{-2}\right)$
M1

Note: Award $\boldsymbol{M} 1$ for an attempt to solve $f^{\prime}(x)=0$.
$A\left(e^{-2}, 4 e^{-2}\right)$ and $B(1,0)$ A1A1
Note: The final $A 1$ is independent of prior working.
(b) $\quad f^{\prime \prime}(x)=\frac{2}{x}(\ln x+1)$

A1
$f^{\prime \prime}(x)=0\left(\Rightarrow x=e^{-1}\right)$ (M1)
inflexion point $\left(e^{-1}, e^{-1}\right)$ A1

Note: $\quad \boldsymbol{M} 1$ for attempt to solve $f^{\prime \prime}(x)=0$.

Total [8 marks]

Question 12

(a) attempt to differentiate implicitly

M1
$2 x+\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y-x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ A1A1

Note: $\boldsymbol{A 1}$ for differentiating x^{2} and $\sin y ; \boldsymbol{A 1}$ for differentiating $x y$.
substitute x and y by π
$2 \pi-\frac{\mathrm{d} y}{\mathrm{~d} x}-\pi-\pi \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\pi}{1+\pi}$
M1A1
Note: \quad M1 for attempt to make $\mathrm{d} y / \mathrm{d} x$ the subject. This could be seen earlier.
(b) $\quad \theta=\frac{\pi}{4}-\arctan \frac{\pi}{1+\pi}$ (or seen the other way)

M1
$\tan \theta=\tan \left(\frac{\pi}{4}-\arctan \frac{\pi}{1+\pi}\right)=\frac{1-\frac{\pi}{1+\pi}}{1+\frac{\pi}{1+\pi}}$
$\tan \theta=\frac{1}{1+2 \pi}$
$A G$
[3 marks]

Total [9 marks]

Question 13
(a) $(f \circ f)(x)=f\left(\frac{x}{2-x}\right)=\frac{\frac{x}{2-x}}{2-\frac{x}{2-x}}$
$(f \circ f)(x)=\frac{x}{4-3 x}$
(b) $\quad P(n): \underbrace{(f \circ f \circ \ldots \circ f)}_{n \text { times }}(x)=F_{n}(x)$
$P(1): f(x)=F_{1}(x)$
LHS $=f(x)=\frac{x}{2-x}$ and $R H S=F_{1}(x)=\frac{x}{2^{1}-\left(2^{1}-1\right) x}=\frac{x}{2-x}$
$\therefore P(1)$ true
assume that $P(k)$ is true, i.e., $\underbrace{(f \circ f \circ \ldots \circ f)}_{\text {ktimes }}(x)=F_{k}(x)$
consider $P(k+1)$
EITHER
$\underbrace{(f \circ f \circ \ldots \circ f)}_{\mathrm{k}+1 \text { times }}(x)=(f \circ \underbrace{f \circ f \circ \ldots \circ f}_{\mathrm{k} \text { times }})(x)=f\left(F_{k}(x)\right)$ (M1)
$=f\left(\frac{x}{2^{k}-\left(2^{k}-1\right) x}\right)=\frac{\frac{x}{2^{k}-\left(2^{k}-1\right) x}}{2-\frac{x}{2^{k}-\left(2^{k}-1\right) x}}$
$=\frac{x}{2\left(2^{k}-\left(2^{k}-1\right) x\right)-x}=\frac{x}{2^{k+1}-\left(2^{k+1}-2\right) x-x}$
OR
$\underbrace{(f \circ f \circ \ldots \circ f)}_{\mathrm{k}+1 \text { times }}(x)=(f \circ \underbrace{f \circ f \circ \ldots \circ f}_{\mathrm{k} \text { times }})(x)=F_{k}(f(x))$
(M1)
$=F_{k}\left(\frac{x}{2-x}\right)=\frac{\frac{x}{2-x}}{2^{k}-\left(2^{k}-1\right) \frac{x}{2-x}}$
$=\frac{x}{2^{k+1}-2^{k} x-2^{k} x+x}$

THEN

$=\frac{x}{2^{k+1}-\left(2^{k+1}-1\right) x}=F_{k+1}(x)$
$P(k)$ true implies $P(k+1)$ true, $P(1)$ true so $P(n)$ true for all $n \in \mathbb{Z}^{+}$
(c) METHOD 1
$x=\frac{y}{2^{n}-\left(2^{n}-1\right) y} \Rightarrow 2^{n} x-\left(2^{n}-1\right) x y=y$
$F_{n}^{-1}(x)=\frac{2^{n} x}{\left(2^{n}-1\right) x+1}$
$F_{n}^{-1}(x)=\frac{x}{\frac{2^{n}-1}{2^{n}} x+\frac{1}{2^{n}}}$
$F_{n}^{-1}(x)=\frac{x}{\left(1-2^{-n}\right) x+2^{-n}}$
$F_{n}^{-1}(x)=\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}$

METHOD 2

attempt $F_{-n}\left(F_{n}(x)\right)$

$$
\begin{aligned}
& =F_{-n}\left(\frac{x}{2^{n}-\left(2^{n}-1\right) x}\right)=\frac{\frac{x}{2^{n}-\left(2^{n}-1\right) x}}{2^{-n}-\left(2^{-n}-1\right) \frac{x}{2^{n}-\left(2^{n}-1\right) x}} \\
& =\frac{x}{2^{-n}\left(2^{n}-\left(2^{n}-1\right) x\right)-\left(2^{-n}-1\right) x}
\end{aligned}
$$

Note: Award A1 marks for numerators and denominators.

$$
=\frac{x}{1}=x
$$

METHOD 3

attempt $F_{n}\left(F_{-n}(x)\right)$

$$
\begin{aligned}
& =F_{n}\left(\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}\right)=\frac{\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}}{2^{n}-\left(2^{n}-1\right) \frac{x}{2^{-n}-\left(2^{-n}-1\right) x}} \\
& =\frac{x}{2^{n}\left(2^{-n}-\left(2^{-n}-1\right) x\right)-\left(2^{n}-1\right) x}
\end{aligned}
$$

Note: Award A1 marks for numerators and denominators.

$$
=\frac{x}{1}=x
$$

(d) (i) $\quad F_{n}(0)=0, F_{n}(1)=1$
(ii) METHOD 1

$$
\begin{aligned}
& 2^{n}-\left(2^{n}-1\right) x-1=\left(2^{n}-1\right)(1-x) \\
& >0 \text { if } 0<x<1 \text { and } n \in \mathbb{Z}^{+} \\
& \text {so } 2^{n}-\left(2^{n}-1\right) x>1 \text { and } F_{n}(x)=\frac{x}{2^{n}-\left(2^{n}-1\right) x}<\frac{x}{1}(<x) \\
& F_{n}(x)=\frac{x}{2^{n}-\left(2^{n}-1\right) x}<x \text { for } 0<x<1 \text { and } n \in \mathbb{Z}^{+}
\end{aligned}
$$

METHOD 2

$\frac{x}{2^{n}-\left(2^{n}-1\right) x}<x \Leftrightarrow 2^{n}-\left(2^{n}-1\right) x>1$ (M1)
$\Leftrightarrow\left(2^{n}-1\right) x<2^{n}-1$ A1
$\Leftrightarrow x<\frac{2^{n}-1}{2^{n}-1}=1$ true in the interval $] 0,1[\square \quad R 1$
(iii) $\quad B_{n}=2\left(A_{n}-\frac{1}{2}\right)\left(=2 A_{n}-1\right)$
(M1)A1
[6 marks]
Total [23 marks]

Question 14

$V=0.5 \pi r^{2}$

EITHER

$\frac{d V}{d r}=\pi r \quad A 1$
$\frac{d V}{d t}=4$ (A1)
applying chain rule M1
for example $\frac{d r}{d t}=\frac{d V}{d t} \times \frac{d r}{d V}$
OR
$\frac{d V}{d t}=\pi r \frac{d r}{d t}$
$\frac{d V}{d t}=4$

THEN

$$
\frac{d r}{d t}=4 \times \frac{1}{\pi r}
$$

when $r=20, \frac{d r}{d t}=\frac{4}{20 \pi}$ or $\frac{1}{5 \pi}\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$
te: Allow h instead of 0.5 up until the final $\boldsymbol{A 1}$.

Question 15

$$
8 y \times \frac{1}{x}+8 \frac{\mathrm{~d} y}{\mathrm{~d} x} \ln x-4 x+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Note: $\boldsymbol{M 1}$ for attempt at implicit differentiation. $\boldsymbol{A 1}$ for differentiating $8 y \ln x, A 1$ for differentiating the rest.
when $x=1,8 y \times 0-2 \times 1+4 y^{2}=7$

$$
y^{2}=\frac{9}{4} \Rightarrow y=\frac{3}{2}(\text { as } y>0)
$$

at $\left(1, \frac{3}{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{3}$
$y-\frac{3}{2}=-\frac{2}{3}(x-1)$ or $y=-\frac{2}{3} x+\frac{13}{6}$

Question 16
(a) $\sin \left(\pi x^{-1}\right)=0 \frac{\pi}{x}=\pi, 2 \pi(\ldots)$
$x=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}$
(b) $\quad\left[\cos \left(\pi x^{-1}\right)\right]_{\frac{1}{n+1}}^{\frac{1}{n}}$
$=\cos (\pi n)-\cos (\pi(n+1))$ A1
$=2$ when n is even and $=-2$ when n is odd A1 [3 marks]
(c) $\quad \int_{0.1}^{1}\left|\pi x^{-2} \sin \left(\pi x^{-1}\right)\right| \mathrm{d} x=2+2+\ldots+2=18$
(M1)A1
[2 marks]
Total [7 marks]

Question 17

(e) let $u=x-\frac{1}{2}$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=1 \quad($ or $\mathrm{d} u=\mathrm{d} x)$
$\int \frac{1}{4 x^{2}-4 x+5} \mathrm{~d} x=\int \frac{1}{4\left(x-\frac{1}{2}\right)^{2}+4} \mathrm{~d} x$
$\int \frac{1}{4 u^{2}+4} \mathrm{~d} u=\frac{1}{4} \int \frac{1}{u^{2}+1} \mathrm{~d} u$
Note: If following through an incorrect answer to part (a), do not award final A1 mark.

[3 marks]

(f) $\int_{1}^{3.5} \frac{1}{4 x^{2}-4 x+5} \mathrm{~d} x=\frac{1}{4} \int_{0.5}^{3} \frac{1}{u^{2}+1} \mathrm{~d} u$

Note: $A 1$ for correct change of limits. Award also if they do not change limits but go back to x values when substituting the limit (even if there is an error in the integral).

$$
\begin{aligned}
& \frac{1}{4}[\arctan (u)]_{0.5}^{3} \\
& \frac{1}{4}\left(\arctan (3)-\arctan \left(\frac{1}{2}\right)\right)
\end{aligned}
$$

$$
\text { let the integral }=I
$$

$$
\tan 4 I=\tan \left(\arctan (3)-\arctan \left(\frac{1}{2}\right)\right)
$$

$$
\frac{3-0.5}{1+3 \times 0.5}=\frac{2.5}{2.5}=1
$$

$$
4 I=\frac{\pi}{4} \Rightarrow I=\frac{\pi}{16}
$$

A1AG

Question 18

$$
\left[\frac{1}{3}(x-2)^{3}+\ln x-\frac{1}{\pi} \cos \pi x\right]_{(1)}^{(2)}
$$

te: Accept $\frac{1}{3} x^{3}-2 x^{2}+4 x$ in place of $\frac{1}{3}(x-2)^{3}$.

$$
\begin{align*}
& =\left(0+\ln 2-\frac{1}{\pi} \cos 2 \pi\right)-\left(-\frac{1}{3}+\ln 1-\frac{1}{\pi} \cos \pi\right) \tag{M1}\\
& =\frac{1}{3}+\ln 2-\frac{2}{\pi}
\end{align*}
$$

$$
A 1 A 1
$$

Question 19
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+\cos x)(\cos x-x \sin x)-x \cos x(1-\sin x)}{(x+\cos x)^{2}}$

Note: Award M1 for attempt at differentiation of a quotient and a product condoning sign errors in the quotient formula and the trig differentiations, A1 for correct derivative of " u ", A1 for correct derivative of " v ".
$=\frac{x \cos x+\cos ^{2} x-x^{2} \sin x-x \cos x \sin x-x \cos x+x \cos x \sin x}{(x+\cos x)^{2}}$
$=\frac{\cos ^{2} x-x^{2} \sin x}{(x+\cos x)^{2}}$
A1
$A G$
[4 marks]
(b) the derivative has value -1
the equation of the tangent line is $(y-0)=(-1)\left(x-\frac{\pi}{2}\right)\left(y=\frac{\pi}{2}-x\right)$
(A1)
M1A1

Total [7 marks]

Question 20

(a) attempt at implicit differentiation

EITHER

$$
\frac{2 x}{y}-\frac{x^{2}}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2=\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

Note: Award $A 1$ for each side.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{2 x}{y}-2}{\frac{1}{y}+\frac{x^{2}}{y^{2}}}\left(=\frac{2 x y-2 y^{2}}{x^{2}+y}\right)
$$

OR
after multiplication by y

$$
2 x-2 y-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x} \ln y+y \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

A1A1

Note: Award A1 for each side.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(x-y)}{1+2 x+\ln y}
$$

[4 marks]

Question 21

$$
3 x^{2} y^{2}+2 x^{3} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 x^{2}-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

M1M1A1
ote: First M1 for attempt at implicit differentiation, second M1 for use of product rule.

$$
\begin{aligned}
& \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2} y^{2}+3 x^{2}}{3 y^{2}-2 x^{3} y-9}\right) \\
& \Rightarrow 3 x^{2}+3 x^{2} y^{2}=0 \\
& \Rightarrow 3 x^{2}\left(1+y^{2}\right)=0 \\
& x=0
\end{aligned}
$$

$$
(A 1)
$$

$$
A 1
$$

ote: Do not award $A 1$ if extra solutions given eg $y= \pm 1$.
substituting $x=0$ into original equation
$y^{3}-9 y=0$
$y(y+3)(y-3)=0$
$y=0, y= \pm 3$
coordinates $(0,0),(0,3),(0,-3)$

Question 22
(a) (i) $f^{\prime}(x)=\mathrm{e}^{-x}-x \mathrm{e}^{-x}$
(b) $f^{\prime \prime}(x)=-\mathrm{e}^{-x}-\mathrm{e}^{-x}+x \mathrm{e}^{-x}\left(=-\mathrm{e}^{-x}(2-x)\right)$
substituting $x=1$ into $f^{\prime \prime}(x)$
$f^{\prime \prime}(1)\left(=-\mathrm{e}^{-1}\right)<0$ hence maximum
coordinates $\left(2,2 \mathrm{e}^{-2}\right)$
(d) (i) $g(x)=\frac{x}{2} \mathrm{e}^{-\frac{x}{2}}$
(ii) coordinates of maximum $\left(2, \mathrm{e}^{-1}\right)$
(iii) equating $f(x)=g(x)$ and attempting to solve $x \mathrm{e}^{-x}=\frac{x}{2} \mathrm{e}^{-\frac{x}{2}}$

$$
\begin{aligned}
& \Rightarrow x\left(2 \mathrm{e}^{\frac{x}{2}}-\mathrm{e}^{x}\right)=0 \\
& \Rightarrow x=0 \\
& \text { or } 2 \mathrm{e}^{\frac{x}{2}}=\mathrm{e}^{x} \\
& \Rightarrow \mathrm{e}^{\frac{x}{2}}=2 \\
& \Rightarrow x=2 \ln 2 \quad(\ln 4)
\end{aligned}
$$

M1A1

A1
[3 marks]
A1
M1
R1AG
[3 marks]

M1 A1
(e)

Note: Award A1 for shape of f, including domain extending beyond $x=2$. Ignore any graph shown for $x<0$.
Award $A 1$ for A and B correctly identified.
Award $A 1$ for shape of g, including domain extending beyond $x=2$. Ignore any graph shown for $x<0$. Allow follow through from f.
Award A1 for C, D and E correctly identified (D and E are interchangeable).
(f) $\quad \boldsymbol{A}=\int_{0}^{1} \frac{x}{2} \mathrm{e}^{-\frac{x}{2}} \mathrm{~d} x$

$$
=\left[-x \mathrm{e}^{-\frac{x}{2}}\right]_{0}^{1}-\int_{0}^{1}-\mathrm{e}^{-\frac{x}{2}} \mathrm{~d} x
$$

Question 23
(e) $\int_{0}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}}\left(\frac{1}{32} \cos 6 \theta+\frac{3}{16} \cos 4 \theta+\frac{15}{32} \cos 2 \theta+\frac{5}{16}\right) d \theta$

$$
\begin{aligned}
& =\left[\frac{1}{192} \sin 6 \theta+\frac{3}{64} \sin 4 \theta+\frac{15}{64} \sin 2 \theta+\frac{5}{16} \theta\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{5 \pi}{32}
\end{aligned} \quad \text { M1A1 }
$$

(f) $\mathrm{V}=\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{4} x \mathrm{~d} x$

$$
=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{4} x \mathrm{~d} x-\pi \int_{0}^{\frac{\pi}{2}} \cos ^{6} x \mathrm{~d} x \quad \text { M1 }
$$

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{4} x \mathrm{~d} x=\frac{3 \pi}{16}
$$

$$
A 1
$$

$$
\mathrm{V}=\frac{3 \pi^{2}}{16}-\frac{5 \pi^{2}}{32}=\frac{\pi^{2}}{32}
$$

(g) (i) constant term $=\binom{2 k}{k}=\frac{(2 k)!}{k!k!}=\frac{(2 k)!}{(k!)^{2}}\left(\right.$ accept $\left.C_{k}^{2 k}\right)$
(ii) $2^{2 k} \int_{0}^{\frac{\pi}{2}} \cos ^{2 k} \theta \mathrm{~d} \theta=\frac{(2 k)!}{(k!)^{2}} \frac{\pi}{2}$

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2 k} \theta \mathrm{~d} \theta=\frac{(2 k)!\pi}{2^{2 k+1}(k!)^{2}}\left(\text { or } \frac{\binom{2 k}{k} \pi}{2^{2 k+1}}\right)
$$

Question 24
(a) $\quad \cos x=2 \cos ^{2} \frac{1}{2} x-1$
$\cos \frac{1}{2} x= \pm \sqrt{\frac{1+\cos x}{2}}$
M1
positive as $0 \leq x \leq \pi$ R1
$\cos \frac{1}{2} x=\sqrt{\frac{1+\cos x}{2}}$ $A G$
[2 marks]
(b) $\cos 2 \theta=1-2 \sin ^{2} \theta$

(M1)

A1
[2 marks]
(c) $\sqrt{2} \int_{0}^{\frac{\pi}{2}} \cos \frac{1}{2} x+\sin \frac{1}{2} x d x$

$$
A 1
$$

$=\sqrt{2}\left[2 \sin \frac{1}{2} x-2 \cos \frac{1}{2} x\right]_{0}^{\frac{\pi}{2}}$
$=\sqrt{2}(0)-\sqrt{2}(0-2)$
$=2 \sqrt{2}$
(A1)
A1
[4 marks]
Total [8 marks]

Question 25
(a) $x=1 \quad$ A1 [1 mark]
(b) $A 1$ for point $(-4,0)$

A1 for $(0,-4)$
$A 1$ for min at $x=1$ in approximately the correct place A1 for (4, 0)
$A 1$ for shape including continuity at $x=0$

Question 26
$\frac{\mathrm{d} v}{\mathrm{~d} s}=2 s^{-3}$
Note: Award M1 for $2 s^{-3}$ and $\boldsymbol{A 1}$ for the whole expression.

$$
\begin{equation*}
a=v \frac{\mathrm{~d} v}{\mathrm{~d} s} \tag{M1}
\end{equation*}
$$

$a=-\frac{1}{s^{2}} \times \frac{2}{s^{3}}\left(=-\frac{2}{s^{5}}\right)$
when $s=\frac{1}{2}, a=-\frac{2}{(0.5)^{5}}(=-64)\left(\mathrm{ms}^{-2}\right)$

Question 27

(a) METHOD 1

$$
\frac{2 x}{1+x^{4}}+\frac{2 y}{1+y^{4}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Note: Award $\boldsymbol{M 1}$ for implicit differentiation, $\boldsymbol{A 1}$ for LHS and $\boldsymbol{A 1}$ for RHS.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x\left(1+y^{4}\right)}{y\left(1+x^{4}\right)}
$$

METHOD 2

$$
\begin{aligned}
& \begin{aligned}
& y^{2}=\tan \left(\frac{\pi}{4}-\arctan x^{2}\right) \\
&=\frac{\tan \frac{\pi}{4}-\tan \left(\arctan x^{2}\right)}{1+\left(\tan \frac{\pi}{4}\right)\left(\tan \left(\arctan x^{2}\right)\right)} \\
&=\frac{1-x^{2}}{1+x^{2}} \\
& 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-4 x}{\left(1+x^{2}\right)^{2}} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x}{y\left(1+x^{2}\right)^{2}} \\
&\left(\begin{array}{l}
= \\
\sqrt{1-x^{2}}\left(1+x^{2}\right)^{2}
\end{array}\right.
\end{aligned}+\frac{2 x \sqrt{1+x^{2}}}{\sqrt{2}}
\end{aligned}
$$

Question 28
(a) $f^{\prime}(x)=\frac{x \times \frac{1}{x}-\ln x}{x^{2}}$

M1A1
$=\frac{1-\ln x}{x^{2}}$
(b) $\frac{1-\ln x}{x^{2}}=0$ has solution $x=\mathrm{e}$
hence maximum at the point $\left(\mathrm{e}, \frac{1}{\mathrm{e}}\right)$
[3 marks]
(c) $f^{\prime \prime}(x)=\frac{x^{2}\left(-\frac{1}{x}\right)-2 x(1-\ln x)}{x^{4}}$
$=\frac{2 \ln x-3}{x^{3}}$
Note: The M1A1 should be awarded if the correct working appears in part (b).
point of inflexion where $f^{\prime \prime}(x)=0$
so $x=\mathrm{e}^{\frac{3}{2}}, y=\frac{3}{2} \mathrm{e}^{\frac{-3}{2}}$
C has coordinates $\left(e^{\frac{3}{2}}, \frac{3}{2} e^{\frac{-3}{2}}\right)$
(d) $f(1)=0$

$$
f^{\prime}(1)=1
$$

$y=x+c$
through $(1,0)$
equation is $y=x-1$

A1A1
[5 marks]
M1A1
A1AI

$$
A 1
$$

(A1)
(M1)

A1
(e) METHOD 1
area $=\int_{1}^{e} x-1-\frac{\ln x}{x} \mathrm{~d} x$
Note: Award M1 for integration of difference between line and curve, $\boldsymbol{A 1}$ for correct limits, $\boldsymbol{A 1}$ for correct expressions in either order.
$\int \frac{\ln x}{x} \mathrm{~d} x=\frac{(\ln x)^{2}}{2}(+c)$
$\int(x-1) \mathrm{d} x=\frac{x^{2}}{2}-x(+c)$
$=\left[\frac{1}{2} x^{2}-x-\frac{1}{2}(\ln x)^{2}\right]_{1}^{e}$
$=\left(\frac{1}{2} \mathrm{e}^{2}-\mathrm{e}-\frac{1}{2}\right)-\left(\frac{1}{2}-1\right)$
$=\frac{1}{2} \mathrm{e}^{2}-\mathrm{e}$
METHOD 2
area $=$ area of triangle $-\int_{1}^{e} \frac{\ln x}{x} \mathrm{~d} x$
Note: $\boldsymbol{A 1}$ is for correct integral with limits and is dependent on the $\boldsymbol{M 1}$.

$$
\begin{aligned}
& \int \frac{\ln x}{x} \mathrm{~d} x=\frac{(\ln x)^{2}}{2}(+c) \\
& \text { area of triangle }=\frac{1}{2}(e-1)(e-1) \\
& \frac{1}{2}(e-1)(e-1)-\left(\frac{1}{2}\right)=\frac{1}{2} \mathrm{e}^{2}-\mathrm{e}
\end{aligned}
$$

(M1)A1

M1A1
(b) $y^{2}=\tan \left(\frac{\pi}{4}-\arctan \frac{1}{2}\right)$

$$
=\frac{\tan \frac{\pi}{4}-\tan \left(\arctan \frac{1}{2}\right)}{1+\left(\tan \frac{\pi}{4}\right)\left(\tan \left(\arctan \frac{1}{2}\right)\right)}
$$

Note: The two M1s may be awarded for working in part (a).
$=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}$
A1
substitution into $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$=\frac{4 \sqrt{6}}{9}$
Note: Accept $\frac{8 \sqrt{3}}{9 \sqrt{2}}$ etc.

Question 29
(a)

A1A1
Note: $\boldsymbol{A 1}$ for correct shape, $\boldsymbol{A 1}$ for asymptotic behaviour at $y= \pm \frac{\pi}{2}$.
[2 marks]

A1
A1
[2 marks]
(c) (i) $f(x)=\arctan (x)+\arctan \left(\frac{1}{x}\right)$
$f^{\prime}(x)=\frac{1}{1+x^{2}}+\frac{1}{1+\frac{1}{x^{2}}} \times-\frac{1}{x^{2}}$
$f^{\prime}(x)=\frac{1}{1+x^{2}}+\frac{-\frac{1}{x^{2}}}{\frac{x^{2}+1}{x^{2}}}$
$=\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}$
$=0$
M1A1
(A1)
(ii) METHOD 1
f is a constant
when $x>0$
$f(1)=\frac{\pi}{4}+\frac{\pi}{4}$
M1A1
$=\frac{\pi}{2}$

METHOD 2

from diagram
$\theta=\arctan \frac{1}{x}$
$\alpha=\arctan x$
$\theta+\alpha=\frac{\pi}{2}$
hence $f(x)=\frac{\pi}{2}$

METHOD 3
$\tan (f(x))=\tan \left(\arctan (x)+\arctan \left(\frac{1}{x}\right)\right)$
$=\frac{x+\frac{1}{x}}{1-x\left(\frac{1}{x}\right)}$
denominator $=0$, so $f(x)=\frac{\pi}{2}($ for $x>0)$
(d) (i) Nigel is correct.

METHOD 1

$\arctan (x)$ is an odd function and $\frac{1}{x}$ is an odd function
composition of two odd functions is an odd function and sum of two odd functions is an odd function

METHOD 2

$f(-x)=\arctan (-x)+\arctan \left(-\frac{1}{x}\right)=-\arctan (x)-\arctan \left(\frac{1}{x}\right)=-f(x)$
therefore f is an odd function.
R1
(ii) $f(x)=-\frac{\pi}{2} \quad A 1$

Question 30
$x=a \sec \theta$
$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=a \sec \theta \tan \theta$
(A1)
new limits:
$x=a \sqrt{2} \Rightarrow \theta=\frac{\pi}{4}$ and $x=2 a \Rightarrow \theta=\frac{\pi}{3}$
(A1)
$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{a \sec \theta \tan \theta}{a^{3} \sec ^{3} \theta \sqrt{a^{2} \sec ^{2} \theta-a^{2}}} \mathrm{~d} \theta$
M1
$=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos ^{2} \theta}{a^{3}} \mathrm{~d} \theta$
using $\cos ^{2} \theta=\frac{1}{2}(\cos 2 \theta+1)$
$\frac{1}{2 a^{3}}\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$ or equivalent
$=\frac{1}{4 a^{3}}\left(\frac{\sqrt{3}}{2}+\frac{2 \pi}{3}-1-\frac{\pi}{2}\right)$ or equivalent
$=\frac{1}{24 a^{3}}(3 \sqrt{3}+\pi-6)$
$A G$

Question 31
(a) $f^{\prime}(x)=\frac{\left(x^{2}+1\right)-2 x(x+1)}{\left(x^{2}+1\right)^{2}}\left(=\frac{-x^{2}-2 x+1}{\left(x^{2}+1\right)^{2}}\right)$
(b) $\frac{-x^{2}-2 x+1}{\left(x^{2}+1\right)^{2}}=0$

$$
x=-1 \pm \sqrt{2} \quad \text { A1 }
$$

(c) $f^{\prime \prime}(x)=\frac{(-2 x-2)\left(x^{2}+1\right)^{2}-2(2 x)\left(x^{2}+1\right)\left(-x^{2}-2 x+1\right)}{\left(x^{2}+1\right)^{4}}$

Note: Award A1 for $(-2 x-2)\left(x^{2}+1\right)^{2}$ or equivalent.

Note: Award A1 for $-2(2 x)\left(x^{2}+1\right)\left(-x^{2}-2 x+1\right)$ or equivalent.
$=\frac{(-2 x-2)\left(x^{2}+1\right)-4 x\left(-x^{2}-2 x+1\right)}{\left(x^{2}+1\right)^{3}}$
$=\frac{2 x^{3}+6 x^{2}-6 x-2}{\left(x^{2}+1\right)^{3}}$
$\left(=\frac{2\left(x^{3}+3 x^{2}-3 x-1\right)}{\left(x^{2}+1\right)^{3}}\right)$
(d) recognition that $(x-1)$ is a factor
$(x-1)\left(x^{2}+b x+c\right)=\left(x^{3}+3 x^{2}-3 x-1\right)$
$\Rightarrow x^{2}+4 x+1=0$
$x=-2 \pm \sqrt{3}$
Note: Allow long division / synthetic division.
[4 marks]
(e) $\int_{-1}^{0} \frac{x+1}{x^{2}+1} \mathrm{~d} x$
$\int \frac{x+1}{x^{2}+1} \mathrm{~d} x=\int \frac{x}{x^{2}+1} \mathrm{~d} x+\int \frac{1}{x^{2}+1} \mathrm{~d} x$
$=\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan (x)$
$=\left[\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan (x)\right]_{-1}^{0}=\frac{1}{2} \ln 1+\arctan 0-\frac{1}{2} \ln 2-\arctan (-1) \quad$ M1
$=\frac{\pi}{4}-\ln \sqrt{2}$

Question 32

use of the quotient rule or the product rule
$C^{\prime}(t)=\frac{\left(3+t^{2}\right) \times 2-2 t \times 2 t}{\left(3+t^{2}\right)^{2}}\left(=\frac{6-2 t^{2}}{\left(3+t^{2}\right)^{2}}\right)$ or $\frac{2}{3+t^{2}}-\frac{4 t^{2}}{\left(3+t^{2}\right)^{2}}$
Note: Award $\boldsymbol{A 1}$ for a correct numerator and $\boldsymbol{A 1}$ for a correct denominator in the quotient rule, and $\boldsymbol{A 1}$ for each correct term in the product rule.
attempting to solve $C^{\prime}(t)=0$ for t
$t= \pm \sqrt{3}$ (minutes)
$C(\sqrt{3})=\frac{\sqrt{3}}{3}\left(\mathrm{mg}^{-1}\right)$ or equivalent.

Question 33

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}
$$

$\mathrm{d} x=2(u-1) \mathrm{d} u$
ote: Award the $\boldsymbol{A 1}$ for any correct relationship between $\mathrm{d} x$ and $\mathrm{d} u$.
$\int \frac{\sqrt{x}}{1+\sqrt{x}} \mathrm{~d} x=2 \int \frac{(u-1)^{2}}{u} \mathrm{~d} u$
ote: Award the M1 for an attempt at substitution resulting in an integral only involving u.

$$
\begin{aligned}
& =2 \int u-2+\frac{1}{u} \mathrm{~d} u \\
& =u^{2}-4 u+2 \ln u(+C) \\
& =x-2 \sqrt{x}-3+2 \ln (1+\sqrt{x})(+C)
\end{aligned}
$$

ote: Award the $\boldsymbol{A 1}$ for a correct expression in x, but not necessarily fully expanded/simplified.

Question 34
(a) $p^{\prime}(3)=f^{\prime}(3) g(3)+g^{\prime}(3) f(3)$
(M1)
te: Award $\boldsymbol{M} \mathbf{1}$ if the derivative is in terms of x or 3 .

$$
\begin{aligned}
& =2 \times 4+3 \times 1 \\
& =11
\end{aligned}
$$

A1
[2 marks]
(M1)(A1)
A1

A1
[4 marks]
Total [6 marks]

Question 35
(a) (i) $x=\mathrm{e}^{3 y+1}$

M1
Note: The M1 is for switching variables and can be awarded at any stage. Further marks do not rely on this mark being awarded.
taking the natural logarithm of both sides and attempting to transpose
$\left(f^{-1}(x)\right)=\frac{1}{3}(\ln x-1)$
(ii) $x \in \mathbb{R}^{+}$or equivalent, for example $x>0$.

A1
[4 marks]
(b) $\ln x=\frac{1}{3}(\ln x-1) \Rightarrow \ln x-\frac{1}{3} \ln x=-\frac{1}{3}$ (or equivalent)
$\ln x=-\frac{1}{2}$ (or equivalent)
$x=\mathrm{e}^{-\frac{1}{2}}$
coordinates of P are $\left(\mathrm{e}^{-\frac{1}{2}},-\frac{1}{2}\right)$
(c) coordinates of Q are $(1,0)$ seen anywhere
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
at $\mathrm{Q}, \frac{\mathrm{d} y}{\mathrm{~d} x}=1$
A1
$y=x-1$
$\boldsymbol{A} \boldsymbol{G}$
(d) let the required area be A

$$
A=\int_{1}^{e} x-\operatorname{ld} x-\int_{1}^{e} \ln x \mathrm{~d} x
$$

Note: The $\boldsymbol{M 1}$ is for a difference of integrals. Condone absence of limits here.

$$
\begin{aligned}
& \text { attempting to use integration by parts to find } \int \ln x \mathrm{~d} x \\
& =\left[\frac{x^{2}}{2}-x\right]_{1}^{e}-[x \ln x-x]_{1}^{e}
\end{aligned}
$$

Note: Award $A 1$ for $\frac{x^{2}}{2}-x$ and $A 1$ for $x \ln x-x$.
Note: The second $\boldsymbol{M 1}$ and second $\boldsymbol{A 1}$ are independent of the first $\boldsymbol{M 1}$ and the first $\boldsymbol{A 1}$.

$$
=\frac{\mathrm{e}^{2}}{2}-\mathrm{e}-\frac{1}{2}\left(=\frac{\mathrm{e}^{2}-2 \mathrm{e}-1}{2}\right)
$$

(e) (i) METHOD 1
consider for example $h(x)=x-1-\ln x$
$h(1)=0$ and $h^{\prime}(x)=1-\frac{1}{x}$
as $h^{\prime}(x) \geq 0$ for $x \geq 1$, then $h(x) \geq 0$ for $x \geq 1$
as $h^{\prime}(x) \leq 0$ for $0<x \leq 1$, then $h(x) \geq 0$ for $0<x \leq 1$
so $g(x) \leq x-1, x \in \mathbb{R}^{+}$
METHOD 2
$g^{\prime \prime}(x)=-\frac{1}{x^{2}}$
$g^{\prime \prime}(x)<0$ (concave down) for $x \in \mathbb{R}^{+}$
the graph of $y=g(x)$ is below its tangent $(y=x-1$ at $x=1)$
so $g(x) \leq x-1, x \in \mathbb{R}^{+}$
Note: The reasoning may be supported by drawn graphical arguments.

METHOD 3

clear correct graphs of $y=x-1$ and $\ln x$ for $x>0$
statement to the effect that the graph of $\ln x$ is below the graph of its tangent at $x=1$

R1AG M1
(A1)
$A G$
[6 marks]
Total [23 marks]

Question 36
(b) (i) $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$
(M1)
$t=-1 \pm \sqrt{2}$
$\frac{\pi}{8}$ is a first quadrant angle and \tan is positive in this quadrant, so
$\tan \frac{\pi}{8}>0$

$$
\tan \frac{\pi}{8}=\sqrt{2}-1
$$

(ii) $\cos 4 x=2 \cos ^{2} 2 x-1$

$$
\begin{aligned}
& \quad=2\left(2 \cos ^{2} x-1\right)^{2}-1 \\
& =2\left(4 \cos ^{4} x-4 \cos ^{2} x+1\right)-1 \\
& =8 \cos ^{4} x-8 \cos ^{2} x+1
\end{aligned}
$$

(iii) $\int_{0}^{\frac{\pi}{8}} \frac{2 \cos 4 x}{\cos ^{2} x} \mathrm{~d} x=2 \int_{0}^{\frac{\pi}{8}} \frac{8 \cos ^{4} x-8 \cos ^{2} x+1}{\cos ^{2} x} \mathrm{~d} x$

$$
=2 \int_{0}^{\frac{\pi}{8}} 8 \cos ^{2} x-8+\sec ^{2} x \mathrm{~d} x
$$

[he $\boldsymbol{M 1}$ is for an integrand involving no fractions.

$$
\begin{aligned}
\text { use of } \cos ^{2} x & =\frac{1}{2}(\cos 2 x+1) & & \text { M1 } \\
& =2 \int_{0}^{\frac{\pi}{8}} 4 \cos 2 x-4+\sec ^{2} x \mathrm{~d} x & & \boldsymbol{A 1} \\
& =[4 \sin 2 x-8 x+2 \tan x]_{0}^{\frac{\pi}{8}} & & \boldsymbol{A 1} \\
& =4 \sqrt{2}-\pi-2 \text { (or equivalent) } & & \text { A1 } \\
& & & \text { [13 marks] }
\end{aligned}
$$

Total [23 marks]
Question 37
(a) $\quad \int\left(1+\tan ^{2} x\right) \mathrm{d} x=\int \sec ^{2} x \mathrm{~d} x=\tan x(+c)$ M1A1 [2 marks]
(b) $\int \sin ^{2} x \mathrm{~d} x=\int \frac{1-\cos 2 x}{2} \mathrm{~d} x$ M1A1

$$
=\frac{x}{2}-\frac{\sin 2 x}{4}(+c)
$$

Question 38

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x} \tag{A1}
\end{equation*}
$$

EITHER
integral is $\int \frac{e^{x}}{\left(e^{x}+3\right)^{2}+2^{2}} d x$
$=\int \frac{1}{u^{2}+2^{2}} \mathrm{~d} u$
ote: Award M1 only if the integral has completely changed to one in u.
ote: $\mathrm{d} u$ needed for final $\boldsymbol{A 1}$

OR
$\mathrm{e}^{x}=u-3$
integral is $\int \frac{1}{(u-3)^{2}+6(u-3)+13} \mathrm{~d} u$
ote: Award M1 only if the integral has completely changed to one in u.

$$
=\int \frac{1}{u^{2}+2^{2}} \mathrm{~d} u
$$

ote: In both solutions the two method marks are independent.

THEN

$$
\begin{aligned}
& =\frac{1}{2} \arctan \left(\frac{u}{2}\right)(+c) \\
& =\frac{1}{2} \arctan \left(\frac{\mathrm{e}^{x}+3}{2}\right)(+c)
\end{aligned}
$$

Question 39

(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1 \times \mathrm{e}^{3 x}+x \times 3 \mathrm{e}^{3 x}=\left(\mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}\right)$
(b) let $P(n)$ be the statement $\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=n 3^{n-1} \mathrm{e}^{3 x}+x 3^{n} \mathrm{e}^{3 x}$
prove for $n=1$
M1
LHS of $P(1)$ is $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is $1 \times \mathrm{e}^{3 x}+x \times 3 \mathrm{e}^{3 x}$ and RHS is $3^{0} \mathrm{e}^{3 x}+x 3^{1} \mathrm{e}^{3 x}$ R1
as LHS = RHS, $P(1)$ is true
assume $P(k)$ is true and attempt to prove $P(k+1)$ is true
M1
assuming $\frac{\mathrm{d}^{k} y}{\mathrm{~d} x^{k}}=k 3^{k-1} \mathrm{e}^{3 x}+x 3^{k} \mathrm{e}^{3 x}$
$\frac{\mathrm{d}^{k+1} y}{\mathrm{~d} x^{k+1}}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}^{k} y}{\mathrm{~d} x^{k}}\right)$
$=k 3^{k-1} \times 3 \mathrm{e}^{3 x}+1 \times 3^{k} \mathrm{e}^{3 x}+x 3^{k} \times 3 \mathrm{e}^{3 x}$
A1
$=(k+1) 3^{k} \mathrm{e}^{3 x}+x 3^{k+1} \mathrm{e}^{3 x}$ (as required)
Note: Can award the \boldsymbol{A} marks independent of the \boldsymbol{M} marks
since $P(1)$ is true and $P(k)$ is true $\Rightarrow P(k+1)$ is true then (by PMI), $P(n)$ is true ($\forall n \in \mathbb{Z}^{+}$)R1

Note: To gain last R1 at least four of the above marks must have been gained.
(c) $\mathrm{e}^{3 x}+x \times 3 \mathrm{e}^{3 x}=0 \Rightarrow 1+3 x=0 \Rightarrow x=-\frac{1}{3}$
point is $\left(-\frac{1}{3},-\frac{1}{3 \mathrm{e}}\right)$

EITHER

$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \times 3 \mathrm{e}^{3 x}+x \times 3^{2} \mathrm{e}^{3 x}$
when $x=-\frac{1}{3}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$ therefore the point is a minimum
OR

x	$-\frac{1}{3}$
$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	$-v e \quad 0 \quad+v e$

nature table shows point is a minimum

M1A1

[5 marks]

(d) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \times 3 \mathrm{e}^{3 x}+x \times 3^{2} \mathrm{e}^{3 x}$
$2 \times 3 \mathrm{e}^{3 x}+x \times 3^{2} \mathrm{e}^{3 x}=0 \Rightarrow 2+3 x=0 \Rightarrow x=-\frac{2}{3}$
point is $\left(-\frac{2}{3},-\frac{2}{3 \mathrm{e}^{2}}\right)$

M1A1

x	$-\frac{2}{3}$	
$\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$	$-v \mathrm{e}$	0

since the curvature does change (concave down to concave up) it is a point of inflection
Note: Allow $3^{\text {rd }}$ derivative is not zero at $-\frac{2}{3}$

Question 40
(a) attempt to differentiate $f(x)=x^{3}-3 x^{2}+4$
$f^{\prime}(x)=3 x^{2}-6 x$
$=3 x(x-2)$
(Critical values occur at) $x=0, x=2$ (A1)
so f decreasing on $x \in] 0,2[($ or $0<x<2)$
(b) $\quad f^{\prime \prime}(x)=6 x-6$
setting $f^{\prime \prime}(x)=0$
(A1)
$\Rightarrow x=1$
coordinate is $(1,2)$
A1

Question 41

any attempt at integration by parts
M1
$u=\ln x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x}$
(A1)
$\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{3} \Rightarrow v=\frac{x^{4}}{4}$
$=\left[\frac{x^{4}}{4} \ln x\right]_{1}^{2}-\int_{1}^{2} \frac{x^{3}}{4} \mathrm{~d} x$
(A1)

A1

A1

Note: Condone absence of limits at this stage.

$$
\begin{aligned}
& =4 \ln 2-\left(1-\frac{1}{16}\right) \\
& =4 \ln 2-\frac{15}{16}
\end{aligned}
$$

$A G$
[6 marks]

Question 42
(a) any attempt to use sine rule M1

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\sin \frac{\pi}{3}}=\frac{\sqrt{3}}{\sin \left(\frac{2 \pi}{3}-\theta\right)} \\
& =\frac{\sqrt{3}}{\sin \frac{2 \pi}{3} \cos \theta-\cos \frac{2 \pi}{3} \sin \theta}
\end{aligned}
$$

Note: Condone use of degrees.

$$
\begin{aligned}
& =\frac{\sqrt{3}}{\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta} \\
& \frac{\mathrm{AB}}{\frac{\sqrt{3}}{2}}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta} \\
& \therefore \mathrm{AB}=\frac{3}{\sqrt{3} \cos \theta+\sin \theta}
\end{aligned}
$$

(b) METHOD 1
$(A B)^{\prime}=\frac{-3(-\sqrt{3} \sin \theta+\cos \theta)}{(\sqrt{3} \cos \theta+\sin \theta)^{2}}$
setting $(\mathrm{AB})^{\prime}=0$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\theta=\frac{\pi}{6}$

METHOD 2

$\mathrm{AB}=\frac{\sqrt{3} \sin \frac{\pi}{3}}{\sin \left(\frac{2 \pi}{3}-\theta\right)}$
AB minimum when $\sin \left(\frac{2 \pi}{3}-\theta\right)$ is maximum M1
$\sin \left(\frac{2 \pi}{3}-\theta\right)=1$
$\frac{2 \pi}{3}-\theta=\frac{\pi}{2}$
$\theta=\frac{\pi}{6}$
A1

METHOD 3

shortest distance from B to AC is perpendicular to AC R1
$\theta=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}$

Question 43

EITHER

$$
\begin{aligned}
& x=\arctan t \\
& \quad \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{1}{1+t^{2}}
\end{aligned}
$$

OR
$t=\tan x$
$\frac{d t}{d x}=\sec ^{2} x$
$=1+\tan ^{2} x$
$=1+t^{2}$
THEN
$\sin x=\frac{t}{\sqrt{1+t^{2}}}$
Note: This A1 is independent of the first two marks
$\int \frac{\mathrm{d} x}{1+\sin ^{2} x}=\int \frac{\frac{\mathrm{d} t}{1+t^{2}}}{1+\left(\frac{t}{\sqrt{1+t^{2}}}\right)^{2}}$
Note: Award M1 for attempting to obtain integral in terms of t and $\mathrm{d} t$
$=\int \frac{\mathrm{d} t}{\left(1+t^{2}\right)+t^{2}}=\int \frac{\mathrm{d} t}{1+2 t^{2}}$
$=\frac{1}{2} \int \frac{\mathrm{~d} t}{\frac{1}{2}+t^{2}}=\frac{1}{2} \times \frac{1}{\frac{1}{\sqrt{2}}} \arctan \left(\frac{t}{\frac{1}{\sqrt{2}}}\right)$
$=\frac{\sqrt{2}}{2} \arctan (\sqrt{2} \tan x)(+c)$

Question 44
(a) $g \circ f(x)=\frac{\tan x+1}{\tan x-1}$

A1
$x \neq \frac{\pi}{4}, 0 \leq x<\frac{\pi}{2}$
(b) $\frac{\tan x+1}{\tan x-1}=\frac{\frac{\sin x}{\cos x}+1}{\frac{\sin x}{\cos x}-1}$
$=\frac{\sin x+\cos x}{\sin x-\cos x}$
(c) METHOD 1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \quad$ M1(A1)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2 \sin x \cos x-\cos ^{2} x-\sin ^{2} x\right)-\left(2 \sin x \cos x+\cos ^{2} x+\sin ^{2} x\right)}{\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x}$
$=\frac{-2}{1-\sin 2 x}$
Substitute $\frac{\pi}{6}$ into any formula for $\frac{d y}{d x}$
$\frac{-2}{1-\sin \frac{\pi}{3}}$
$=\frac{-2}{1-\frac{\sqrt{3}}{2}}$
$=\frac{-4}{2-\sqrt{3}}$
$=\frac{-4}{2-\sqrt{3}}\left(\frac{2+\sqrt{3}}{2+\sqrt{3}}\right)$
$=\frac{-8-4 \sqrt{3}}{1}=-8-4 \sqrt{3}$
(d) Area $=\left|\int_{0}^{\frac{\pi}{6}} \frac{\sin x+\cos x}{\sin x-\cos x} \mathrm{~d} x\right|$

$$
=\left|[\ln |\sin x-\cos x|]_{0}^{\frac{\pi}{6}}\right|
$$

Note: Condone absence of limits and absence of modulus signs at this stage.

$$
\begin{aligned}
& =|\ln | \sin \frac{\pi}{6}-\cos \frac{\pi}{6}|-\ln | \sin 0-\cos 0| | \\
& =|\ln | \frac{1}{2}-\frac{\sqrt{3}}{2}|-0| \\
& =\left|\ln \left(\frac{\sqrt{3}-1}{2}\right)\right|
\end{aligned}
$$

$$
=-\ln \left(\frac{\sqrt{3}-1}{2}\right)=\ln \left(\frac{2}{\sqrt{3}-1}\right)
$$

$$
=\ln \left(\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\right)
$$

$$
=\ln (\sqrt{3}+1)
$$

M1

A1 A1
M1

Question 45

attempt to integrate one factor and differentiate the other, leading to a sum of two terms

M1
$\int x \sin x \mathrm{~d} x=x(-\cos x)+\int \cos x \mathrm{~d} x$
(A1)(A1)
$=-x \cos x+\sin x+c$
A1
Note: Only award final $\boldsymbol{A 1}$ if $+c$ is seen.

Question 46
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=(1-x)^{-2}\left(=\frac{1}{(1-x)^{2}}\right)$
(M1)A1
(b) gradient of Tangent $=\frac{1}{4}$
(A1)
gradient of Normal $=-4$
(M1)
$y+\frac{1}{2}=-4(x-3)$ or attempt to find c in $y=m x+c$
M1
$8 x+2 y-23=0$

Question 47

METHOD 1

$$
\begin{align*}
& \int_{\mathrm{e}}^{\mathrm{e}^{2}} \frac{\mathrm{~d} x}{x \ln x}=[\ln (\ln x)]_{\mathrm{e}}^{\mathrm{e}^{2}} \\
& =\ln \left(\ln \mathrm{e}^{2}\right)-\ln (\ln \mathrm{e})(=\ln 2-\ln 1) \tag{A1}\\
& =\ln 2
\end{align*}
$$

(M1)A1

A1
[4 marks]

METHOD 2

$$
\begin{aligned}
& u=\ln x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\
& =\int_{1}^{2} \frac{\mathrm{~d} u}{u} \\
& =[\ln u]_{1}^{2} \text { or equivalent in } x(=\ln 2-\ln 1) \\
& =\ln 2
\end{aligned}
$$

[4 marks]

Question 48
(a) $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
a horizontal tangent occurs if $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ so $y=0$
M1A1
we can see from the equation of the curve that this solution is not possible $(0=4)$ and so there is not a horizontal tangent

R1
[4 marks]
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{2 y-x}$ or equivalent with $\frac{\mathrm{d} x}{\mathrm{~d} y}$
the tangent is vertical when $2 y=x$
M1
substitute into the equation to give $2 y^{2}=y^{2}+4$
M1
$y= \pm 2$
coordinates are $(4,2),(-4,-2)$
A1
A1
[4 marks]
Total [8 marks]

Question 49

(a) $\sin \left(\theta+\frac{\pi}{2}\right)=\sin \theta \cos \frac{\pi}{2}+\cos \theta \sin \frac{\pi}{2}$
$=\cos \theta$

Note: Accept a transformation/graphical based approach.

(b) consider $n=1, f^{\prime}(x)=a \cos (a x)$
since $\sin \left(a x+\frac{\pi}{2}\right)=\cos a x$ then the proposition is true for $n=1$
assume that the proposition is true for $n=k$ so $f^{(k)}(x)=a^{k} \sin \left(a x+\frac{k \pi}{2}\right)$
M1 $f^{(k+1)}(x)=\frac{\mathrm{d}\left(f^{(k)}(x)\right)}{\mathrm{d} x}\left(=a\left(a^{k} \cos \left(a x+\frac{k \pi}{2}\right)\right)\right)$
$=a^{k+1} \sin \left(a x+\frac{k \pi}{2}+\frac{\pi}{2}\right)$ (using part (a))
$=a^{k+1} \sin \left(a x+\frac{(k+1) \pi}{2}\right)$
given that the proposition is true for $n=k$ then we have shown that the proposition is true for $n=k+1$. Since we have shown that the proposition is true for $n=1$ then the proposition is true for all $n \in \mathbb{Z}^{+}$

Note: Award final R1 only if all prior M and R marks have been awarded.

Question 50
$\begin{array}{rlr}\text { (a) } & f(-x)=(-x) \sqrt{1-(-x)^{2}} & \text { M1 } \\ =-x \sqrt{1-x^{2}} & \\ =-f(x) & \text { R1 } \\ & \text { hence } f \text { is odd } & \text { AG }\end{array}$
(b) $\quad f^{\prime}(x)=x \cdot \frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot-2 x+\left(1-x^{2}\right)^{\frac{1}{2}}$

M1A1A1
[3 marks]
(c) $f^{\prime}(x)=\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}\left(=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right)$

Note: This may be seen in part (b).
$f^{\prime}(x)=0 \Rightarrow 1-2 x^{2}=0$
M1
$x= \pm \frac{1}{\sqrt{2}}$ A1
[3 marks]

M1A1
so range of $f(x)$ is $\left[-\frac{1}{2}, 1 \begin{array}{ll}2\end{array}\right]$
A1

Note: Allow FT from (c) if values of x, within the domain, are used.
(e)

Shape: The graph of an odd function, on the given domain, s-shaped, where the $\max (\mathrm{min})$ is the right(left) of $0.5(-0.5)$
x-intercepts
turning points
(f) \quad area $=\int_{0}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x$
attempt at "backwards chain rule" or substitution
$=-\frac{1}{2} \int_{0}^{1}(-2 x) \sqrt{1-x^{2}} \mathrm{~d} x$
$=\left[\frac{2}{3}\left(1-x^{2}\right)^{\frac{3}{2}} \cdot-\frac{1}{2}\right]_{0}^{1}$
$=\left[-\frac{1}{3}\left(1-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}$
$=0-\left(-\frac{1}{3}\right)=\frac{1}{3}$
A1
[4 marks]
(g) $\int_{-1}^{1}\left|x \sqrt{1-x^{2}}\right| \mathrm{d} x>0$

R1
$\left|\int_{-1}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x\right|=0$
R1
so $\int_{-1}^{1}\left|x \sqrt{1-x^{2}}\right| \mathrm{d} x>\left|\int_{-1}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x\right|=0$
AG

Question 51

$$
\frac{d y}{d x}=-\cos (\pi \cos x) \times \pi \sin x
$$

ote: Award follow through marks below if their answer is a multiple of the correct answer.

$$
\begin{aligned}
& \text { considering either } \sin x=0 \text { or } \cos (\pi \cos x)=0 \\
& x=0, \pi \\
& \pi \cos x=\frac{\pi}{2},-\frac{\pi}{2}\left(\Rightarrow \cos x=\frac{1}{2},-\frac{1}{2}\right)
\end{aligned}
$$

ote: Condone absence of $-\frac{\pi}{2}$.

$$
\Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}
$$

$(0,0),\left(\frac{\pi}{3}, 1\right),(\pi, 0)$

$$
\left(\frac{2 \pi}{3},-1\right)
$$

Question 52

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=8 x^{3}+18 x^{2}+7 x-5 \\
& \text { when } x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 \\
& 8 x^{3}+18 x^{2}+7 x-5=-2 \\
& 8 x^{3}+18 x^{2}+7 x-3=0 \\
& (x+1) \text { is a factor } \\
& 8 x^{3}+18 x^{2}+7 x-3=(x+1)\left(8 x^{2}+10 x-3\right)
\end{aligned}
$$

Note: $\boldsymbol{M 1}$ is for attempting to find the quadratic factor.
$(x+1)(4 x-1)(2 x+3)=0$
$(x=-1), x=0.25, x=-1.5$
(M1)A1
Note: M1 is for an attempt to solve their quadratic factor.

Question 53
(a) $a=1$
(b) $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}$
(A1)

$$
\int \frac{(\ln x)^{2}}{x} \mathrm{~d} x=\int u^{2} \mathrm{~d} u
$$

M1A1
area $=\left[\frac{1}{3} u^{3}\right]_{0}^{1}$ or $\left[\frac{1}{3}(\ln x)^{3}\right]_{1}^{e} \quad$ A1
$=\frac{1}{3}$
A1
[5 marks]
(c) (i) $I_{0}=\left[-\frac{1}{x}\right]_{1}^{e}$

$$
=1-\frac{1}{\mathrm{e}}
$$

(A1)
(ii) use of integration by parts

M1

$$
\begin{aligned}
& I_{n}=\left[-\frac{1}{x}(\ln x)^{n}\right]_{1}^{\mathrm{e}}+\int_{1}^{\mathrm{e}} \frac{n(\ln x)^{n-1}}{x^{2}} \mathrm{~d} x \\
& =-\frac{1}{\mathrm{e}}+n I_{n-1}
\end{aligned}
$$

A1A1
$A G$

Question 54
(a) EITHER
use of a diagram and trig ratios
eg,
A

$\tan \alpha=\frac{O}{A} \Rightarrow \cot \alpha=\frac{A}{O}$
from diagram, $\tan \left(\frac{\pi}{2}-\alpha\right)=\frac{A}{O}$
OR
use of $\tan \left(\frac{\pi}{2}-\alpha\right)=\frac{\sin \left(\frac{\pi}{2}-\alpha\right)}{\cos \left(\frac{\pi}{2}-\alpha\right)}=\frac{\cos \alpha}{\sin \alpha}$
THEN
$\cot \alpha=\tan \left(\frac{\pi}{2}-\alpha\right)$
AG
[1 mark]
(b) $\int_{\tan \alpha}^{\cot \alpha} \frac{1}{1+x^{2}} \mathrm{~d} x=[\arctan x]_{\tan \alpha}^{\cot \alpha}$

Note: Limits (or absence of such) may be ignored at this stage.
$=\arctan (\cot \alpha)-\arctan (\tan \alpha)$
$=\frac{\pi}{2}-\alpha-\alpha$
$=\frac{\pi}{2}-2 \alpha$
(M1)
(iii) $I_{1}=-\frac{1}{\mathrm{e}}+1 \times I_{0}$

$$
=1-\frac{2}{\mathrm{e}}
$$

(d) volume $=\pi \int_{1}^{e} \frac{(\ln x)^{4}}{x^{2}} \mathrm{~d} x\left(=\pi I_{4}\right)$

EITHER

$I_{4}=-\frac{1}{\mathrm{e}}+4 I_{3}$
M1A1
$=-\frac{1}{\mathrm{e}}+4\left(-\frac{1}{\mathrm{e}}+3 I_{2}\right)$
$=-\frac{5}{\mathrm{e}}+12 I_{2}=-\frac{5}{\mathrm{e}}+12\left(-\frac{1}{\mathrm{e}}+2 I_{1}\right)$

OR
using parts $\int_{1}^{e} \frac{(\ln x)^{4}}{x^{2}} \mathrm{~d} x=-\frac{1}{e}+4 \int_{1}^{e} \frac{(\ln x)^{3}}{x^{2}} \mathrm{~d} x$
M1A1
$=-\frac{1}{e}+4\left(-\frac{1}{e}+3 \int_{1}^{e} \frac{(\ln x)^{2}}{x^{2}} \mathrm{~d} x\right)$
THEN
$=-\frac{17}{e}+24\left(1-\frac{2}{e}\right)=24-\frac{65}{e}$
A1
volume $=\pi\left(24-\frac{65}{e}\right)$

Question 55

(a) use of $\pi \int_{a}^{b} x^{2} \mathrm{~d} y$

Note: Condone any or missing limits.

$$
\begin{align*}
& V=\pi \int_{0}^{\pi}(3 \cos 2 y+4)^{2} \mathrm{~d} y \tag{A1}\\
& =\pi \int_{0}^{\pi}\left(9 \cos ^{2} 2 y+24 \cos 2 y+16\right) \mathrm{d} y \\
& 9 \cos ^{2} 2 y=\frac{9}{2}(1+\cos 4 y) \\
& =\pi\left[\frac{9 y}{2}+\frac{9}{8} \sin 4 y+12 \sin 2 y+16 y\right]_{0}^{\pi} \\
& =\pi\left(\frac{9 \pi}{2}+16 \pi\right) \\
& =\frac{41 \pi^{2}}{2}\left(\mathrm{~cm}^{3}\right)
\end{align*}
$$

te: If the coefficient " π " is absent, or eg, " 2π " is used, only \boldsymbol{M} marks are available.
(b) (i) attempting to use $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} h}{\mathrm{~d} V}$ with $\frac{\mathrm{d} V}{\mathrm{~d} t}=2$

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{2}{\pi(3 \cos 2 h+4)^{2}}
$$

(ii) substituting $h=\frac{\pi}{4}$ into $\frac{\mathrm{d} h}{\mathrm{~d} t}$

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{8 \pi}\left(\mathrm{~cm} \mathrm{~min}{ }^{-1}\right)
$$

Note: Do not allow FT marks for (b)(ii).
(c) (i) $\frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{~d} h}{\mathrm{~d} t}\right)=\frac{\mathrm{d} h}{\mathrm{~d} t} \times \frac{\mathrm{d}}{\mathrm{d} h}\left(\frac{\mathrm{~d} h}{\mathrm{~d} t}\right)$

$$
=\frac{2}{\pi(3 \cos 2 h+4)^{2}} \times \frac{24 \sin 2 h}{\pi(3 \cos 2 h+4)^{3}}
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for attempting to find $\frac{\mathrm{d}}{\mathrm{d} h}\left(\frac{\mathrm{~d} h}{\mathrm{~d} t}\right)$.

 A1

(ii) $\sin 2 h=0 \Rightarrow h=0, \frac{\pi}{2}, \pi$

Note: Award $\boldsymbol{A} 1$ for $\sin 2 h=0 \Rightarrow h=0, \frac{\pi}{2}, \pi$ from an incorrect $\frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}$.
(iii) METHOD 1
$\frac{\mathrm{d} h}{\mathrm{~d} t}$ is a minimum at $h=0, \pi$ and the container is widest at these values
R1
$\frac{\mathrm{d} h}{\mathrm{~d} t}$ is a maximum at $h=\frac{\pi}{2}$ and the container is narrowest at this value

Question 56
(a) attempt to differentiate implicitly

$$
3-\left(4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y^{2}\right) \mathrm{e}^{x-1}=0
$$

Note: Award A1 for correctly differentiating each term.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 \cdot \mathrm{e}^{1-x}-2 y^{2}}{4 y}
$$

(b) $3-2 y^{2}=2 \Rightarrow y^{2}=\frac{1}{2} \Rightarrow y= \pm \sqrt{\frac{1}{2}}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3-2 \cdot \frac{1}{2}}{ \pm 4 \sqrt{\frac{1}{2}}}= \pm \frac{\sqrt{2}}{2}
$$

at $\left(1, \sqrt{\frac{1}{2}}\right)$ the tangent is $y-\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}(x-1)$ and
at $\left(1,-\sqrt{\frac{1}{2}}\right)$ the tangent is $y+\sqrt{\frac{1}{2}}=-\frac{\sqrt{2}}{2}(x-1)$

Question 57
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x\left(=\mathrm{e}^{x}(\sin x+\cos x)\right)$

M1A1
[2 marks]
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{x}(\sin x+\cos x)+\mathrm{e}^{x}(\cos x-\sin x)$

$$
=2 \mathrm{e}^{x} \cos x
$$

M1A1
AG [2 marks]
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{\frac{3 \pi}{4}}\left(\sin \frac{3 \pi}{4}+\cos \frac{3 \pi}{4}\right)=0$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \mathrm{e}^{\frac{3 \pi}{4}} \cos \frac{3 \pi}{4}<0$
R1
hence maximum at $x=\frac{3 \pi}{4}$
(d) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Rightarrow 2 \mathrm{e}^{x} \cos x=0$
$\Rightarrow x=\frac{\pi}{2}$
A1

Note: Award M1A0 if extra zeros are seen.
(e)

correct shape and correct domain A1
\max at $x=\frac{3 \pi}{4}$, point of inflexion at $x=\frac{\pi}{2}$
zeros at $x=0$ and $x=\pi$ \squareA1
(f) EITHER

$$
\begin{aligned}
& \int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\left[\mathrm{e}^{x} \sin x\right]_{0}^{\pi}-\int_{0}^{\pi} \mathrm{e}^{x} \cos x \mathrm{~d} x \\
& \int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\left[\mathrm{e}^{x} \sin x\right]_{0}^{\pi}-\left(\left[\mathrm{e}^{x} \cos x\right]_{0}^{\pi}+\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x\right)
\end{aligned}
$$

OR
$\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\left[-\mathrm{e}^{x} \cos x\right]_{0}^{\pi}+\int_{0}^{\pi} \mathrm{e}^{x} \cos x \mathrm{~d} x$
$\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\left[-\mathrm{e}^{x} \cos x\right]_{0}^{\pi}+\left(\left[\mathrm{e}^{x} \sin x\right]_{0}^{\pi}-\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x\right)$
THEN
$\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\frac{1}{2}\left(\left[\mathrm{e}^{x} \sin x\right]_{0}^{\pi}-\left[\mathrm{e}^{x} \cos x\right]_{0}^{\pi}\right)$
M1A1
$\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x=\frac{1}{2}\left(\mathrm{e}^{\pi}+1\right)$
A1
[6 marks]
(A1)
(A1)

A1
[3 marks]

A1
 R1
 [2 marks]

Total [22 marks]

Question 58
attempt at integration by parts with $u=\arcsin x$ and $v^{\prime}=1$
M1
$\int \arcsin x \mathrm{~d} x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x$
Note: Award A1 for $x \arcsin x$ and $\boldsymbol{A 1}$ for $-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x$.
solving $\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x$ by substitution with $u=1-x^{2}$ or inspection
$\int \arcsin x \mathrm{~d} x=x \arcsin x+\sqrt{1-x^{2}}+c$
(M1)

A1
[5 marks]

Question 59
(a) (i) $x^{2}+3 x+2=\left(x+\frac{3}{2}\right)^{2}-\frac{1}{4}$
(ii) $x^{2}+3 x+2=(x+2)(x+1)$
A1
(b)

> Vertical Asymptote

$$
x=-1
$$

A1 for the shape
A1 for the equation $y=0$
$\boldsymbol{A 1}$ for asymptotes $x=-2$ and $x=-1$
A1 for coordinates $\left(-\frac{3}{2},-4\right)$
A1 y-intercept $\left(0, \frac{1}{2}\right)$
(c) $\frac{1}{x+1}-\frac{1}{x+2}=\frac{(x+2)-(x+1)}{(x+1)(x+2)}$
$=\frac{1}{x^{2}+3 x+2}$
(d) $\int_{0}^{1} \frac{1}{x+1}-\frac{1}{x+2} \mathrm{~d} x$

$$
\begin{aligned}
& =[\ln (x+1)-\ln (x+2)]_{0}^{1} \\
& =\ln 2-\ln 3-\ln 1+\ln 2 \\
& =\ln \left(\frac{4}{3}\right) \\
& \therefore p=\frac{41}{3}
\end{aligned}
$$

(e)

$$
\text { symmetry about the } y \text {-axis }
$$ correct shape

Note: Allow FT from part (b).
(f) $\quad 2 \int_{0}^{1} f(x) \mathrm{d} x$

$$
=2 \ln \left(\frac{4}{3}\right)
$$

Note: Do not award FT from part (e).
[3 marks]
Total [17 marks]

Question 60

(a) $s=t+\cos 2 t$

$$
\begin{aligned}
& \frac{\mathrm{d} s}{\mathrm{~d} t}=1-2 \sin 2 t \\
& =0 \\
& \Rightarrow \sin 2 t=\frac{1}{2} \\
& t_{1}=\frac{\pi}{12}(s), t_{2}=\frac{5 \pi}{12}(s)
\end{aligned}
$$

(b) $\quad s=\frac{\pi}{12}+\cos \frac{\pi}{6}\left(s=\frac{\pi}{12}+\frac{\sqrt{3}}{2}(m)\right)$

A1A1

Question 61

(a) let $x=\tan \theta$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sec ^{2} \theta \\
& \int \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int \frac{\sec ^{2} \theta}{\left(\tan ^{2} \theta+1\right)^{2}} \mathrm{~d} \theta
\end{aligned}
$$

Note: The method mark is for an attempt to substitute for both x and $\mathrm{d} x$.
$=\int \frac{1}{\sec ^{2} \theta} \mathrm{~d} \theta$ (or equivalent)
when $x=0, \theta=0$ and when $x=1, \theta=\frac{\pi}{4}$
(b) $\left(\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta \mathrm{~d} \theta\right)=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(1+\cos 2 \theta) \mathrm{d} \theta$

$$
=\frac{1}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{4}}
$$

$$
=\frac{\pi}{8}+\frac{1}{4}
$$

Question 62

(a) (i)

A1 for correct shape
A1 for correct x and y intercepts and minimum point
(ii)

(iii)

$\boldsymbol{A 1}$ for reflecting negative branch from (ii) in the x-axis A1 for correctly labelled minimum point
(b) EITHER
attempt at integration by parts
$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\left(x^{2}-a^{2}\right) \sin x-\int 2 x \sin x \mathrm{~d} x$
$=\left(x^{2}-a^{2}\right) \sin x-2\left[-x \cos x+\int \cos x \mathrm{~d} x\right]$
$=\left(x^{2}-a^{2}\right) \sin x+2 x \cos x-2 \sin x+c$
OR
$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\int x^{2} \cos x \mathrm{~d} x-\int a^{2} \cos x \mathrm{~d} x$
attempt at integration by parts
$\int x^{2} \cos x \mathrm{~d} x=x^{2} \sin x-\int 2 x \sin x \mathrm{~d} x$
$=x^{2} \sin x-2\left[-x \cos x+\int \cos x \mathrm{~d} x\right]$
$=x^{2} \sin x+2 x \cos x-2 \sin x$
$-\int a^{2} \cos x \mathrm{~d} x=-a^{2} \sin x$
$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\left(x^{2}-a^{2}\right) \sin x+2 x \cos x-2 \sin x+c$
(c) $\quad g(x)=x\left(x^{2}-a^{2}\right)^{\frac{1}{2}}$

$$
g^{\prime}(x)=\left(x^{2}-a^{2}\right)^{\frac{1}{2}}+\frac{1}{2} x\left(x^{2}-a^{2}\right)^{-\frac{1}{2}}(2 x)
$$

Note: Method mark is for differentiating the product. Award A1 for each correct term.
$g^{\prime}(x)=\left(x^{2}-a^{2}\right)^{\frac{1}{2}}+x^{2}\left(x^{2}-a^{2}\right)^{-\frac{1}{2}}$
both parts of the expression are positive hence $g^{\prime}(x)$ is positive
R1
and therefore g is an increasing function (for $|x|>a$)
AG

Question 63
(a) (i) the width of the rectangle is $2 r$ and let the height of the rectangle be h

$$
\begin{align*}
& \mathrm{P}=2 r+2 h+\pi r \tag{P}\\
& A=2 r h+\frac{\pi r^{2}}{2} \tag{A1}\\
& h=\frac{\mathrm{P}-2 r-\pi r}{2} \\
& A=2 r\left(\frac{\mathrm{P}-2 r-\pi r}{2}\right)+\frac{\pi r^{2}}{2}\left(=\mathrm{P} r-2 r^{2}-\frac{\pi r^{2}}{2}\right)
\end{align*}
$$

(A1)
(ii) $\frac{\mathrm{d} A}{\mathrm{~d} r}=\mathrm{P}-4 r-\pi r$
$\frac{\mathrm{d} A}{\mathrm{~d} r}=0$ M1
$\Rightarrow r=\frac{\mathrm{P}}{4+\pi}$
hence the width is $\frac{2 \mathrm{P}}{4+\pi}$
$\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=-4-\pi<0$ $R 1$
hence maximum
$A G$
[9 marks]

OR
$h=\frac{\mathrm{P}-2 r-\pi r}{2}$

$$
\begin{equation*}
P=r(4+\pi) \tag{M1}
\end{equation*}
$$

$h=\frac{\mathrm{r}(4+\pi)-2 r-\pi r}{2}$ A1
$h=\frac{4 \mathrm{r}+\pi r-2 r-\pi r}{2}=r$ AG

Question 64

$$
\begin{aligned}
& s=\int_{0}^{\frac{1}{2}} 10 t \mathrm{e}^{-2 t} \mathrm{~d} t \\
& \text { attempt at integration by parts } \\
& =\left[-5 t \mathrm{e}^{-2 t}\right]_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}}-5 \mathrm{e}^{-2 t} \mathrm{~d} t \\
& =\left[-5 t \mathrm{e}^{-2 t}-\frac{5}{2} \mathrm{e}^{-2 t}\right]_{0}^{\frac{1}{2}}
\end{aligned}
$$

:e: Condone absence of limits (or incorrect limits) and missing factor of 10 up to this point.

$$
\begin{aligned}
& s=\int_{0}^{\frac{1}{2}} 10 t \mathrm{e}^{-2 t} \mathrm{~d} t \\
& =-5 e^{-1}+\frac{5}{2}\left(=\frac{-5}{\mathrm{e}}+\frac{5}{2}\right)\left(=\frac{5 \mathrm{e}-10}{2 \mathrm{e}}\right)
\end{aligned}
$$

Question 65

$$
\begin{aligned}
& x^{3}+y^{3}-3 x y=0 \\
& 3 x^{2}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=0
\end{aligned}
$$

e: Differentiation wrt y is also acceptable.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y-3 x^{2}}{3 y^{2}-3 x}\left(=\frac{y-x^{2}}{y^{2}-x}\right)$
e: All following marks may be awarded if the ominator is correct, but the numerator incorrect.
$y^{2}-x=0$

EITHER

$x=y^{2}$
$y^{6}+y^{3}-3 y^{3}=0$
$y^{6}-2 y^{3}=0$
$y^{3}\left(y^{3}-2\right)=0$
$(y \neq 0) \quad \therefore y=\sqrt[3]{2}$
$x=(\sqrt[3]{2})^{2}(=\sqrt[3]{4})$

OR

$$
\begin{array}{ll}
x^{3}+x y-3 x y=0 & \text { M1 } \\
x\left(x^{2}-2 y\right)=0 & \\
x \neq 0 \Rightarrow y=\frac{x^{2}}{2} & \text { A1 } \\
y^{2}=\frac{x^{4}}{4} & \\
x=\frac{x^{4}}{4} & \text { A1 } \\
x\left(x^{3}-4\right)=0 & \boldsymbol{A 1} \\
(x \neq 0) \therefore x=\sqrt[3]{4} & \\
y=\frac{(\sqrt[3]{4})^{2}}{2}=\sqrt[3]{2} & \\
x & \\
x
\end{array}
$$

Question 66

(a) even function

A1
R1

A1
R1

$$
\text { since }(\cos 2 x)(\cos 4 x) \ldots=(\cos (-2 x))(\cos (-4 x))
$$

(b) consider the case $n=1$

$$
\begin{aligned}
& \frac{\sin 4 x}{2 \sin 2 x}=\frac{2 \sin 2 x \cos 2 x}{2 \sin 2 x}=\cos 2 x \\
& \text { hence true for } n=1 \\
& \text { assume true for } n=k, \text { ie, }(\cos 2 x)(\cos 4 x) \ldots\left(\cos 2^{k} x\right)=\frac{\sin 2^{k+1} x}{2^{k} \sin 2 x}
\end{aligned}
$$

```
R1
```

```
R1
```

Note: Do not award $\boldsymbol{M} 1$ for "let $n=k$ " or "assume $n=k$ " or equivalent.
consider $n=k+1$:

$$
\begin{aligned}
& f_{k+1}(x)=f_{k}(x)\left(\cos 2^{k+1} x\right) \\
& =\frac{\sin 2^{k+1} x}{2^{k} \sin 2 x} \cos 2^{k+1} x \\
& =\frac{2 \sin 2^{k+1} x \cos 2^{k+1} x}{2^{k+1} \sin 2 x} \\
& =\frac{\sin 2^{k+2} x}{2^{k+1} \sin 2 x} \\
& \text { so } n=1 \text { true and } n=k \text { true } \Rightarrow n=k+1 \text { true. Hence true for all } n \in \mathbb{Z}^{+}
\end{aligned} \text {A1 } \begin{aligned}
& \text { R1 }
\end{aligned}
$$

(c) attempt to use $f^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ (or correct product rule)

$$
f_{n}^{\prime}(x)=\frac{\left(2^{n} \sin 2 x\right)\left(2^{n+1} \cos 2^{n+1} x\right)-\left(\sin 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^{n} \sin 2 x\right)^{2}}
$$

A1A1

Note: Award $\boldsymbol{A 1}$ for correct numerator and $\mathbf{A 1}$ for correct denominator.

(d) $f_{n}^{\prime}\left(\frac{\pi}{4}\right)=\frac{\left(2^{n} \sin \frac{\pi}{2}\right)\left(2^{n+1} \cos 2^{n+1} \frac{\pi}{4}\right)-\left(\sin 2^{n+1} \frac{\pi}{4}\right)\left(2^{n+1} \cos \frac{\pi}{2}\right)}{\left(2^{n} \sin \frac{\pi}{2}\right)^{2}}$

$$
\begin{align*}
& f_{n}^{\prime}\left(\frac{\pi}{4}\right)=\frac{\left(2^{n}\right)\left(2^{n+1} \cos 2^{n+1} \frac{\pi}{4}\right)}{\left(2^{n}\right)^{2}} \tag{A1}\\
& =2 \cos 2^{n+1} \frac{\pi}{4}\left(=2 \cos 2^{n-1} \pi\right) \tag{A1}\\
& f_{n}^{\prime}\left(\frac{\pi}{4}\right)=2 \\
& f_{n}\left(\frac{\pi}{4}\right)=0
\end{align*}
$$

Note: This \boldsymbol{A} mark is independent from the previous marks.

$$
\begin{aligned}
& y=2\left(x-\frac{\pi}{4}\right) \\
& 4 x-2 y-\pi=0
\end{aligned}
$$

M1A1
 AG

[8 marks]

Total [21 marks]
Question 67
(a)

$$
\begin{aligned}
& \log _{r^{2}} x=\frac{\log _{r} x}{\log _{r} r^{2}}\left(=\frac{\log _{r} x}{2 \log _{r} r}\right) \\
& =\frac{\log _{r} x}{2}
\end{aligned}
$$

(b)
$\log _{2} y+\log _{4} x+\log _{4} 2 x=0$
$\log _{2} y+\log _{4} 2 x^{2}=0$
$\log _{2} y+\frac{1}{2} \log _{2} 2 x^{2}=0$
$y=\frac{1}{\sqrt{2}} x^{-1}$
(c) the area of R is $\int_{1}^{\alpha} \frac{1}{\sqrt{2}} x^{-1} \mathrm{~d} x$

M1
$=\left[\frac{1}{\sqrt{2}} \ln x\right]_{1}^{\alpha}$
$=\frac{1}{\sqrt{2}} \ln \alpha$
$\frac{1}{\sqrt{2}} \ln \alpha=\sqrt{2}$ $\alpha=\mathrm{e}^{2}$

Note: Only follow through from part (b) if y is in the form $y=p x^{q}$.

Question 68
(a) $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ (accept $\mathrm{d} u=\frac{1}{2} x^{-\frac{1}{2}} \mathrm{~d} x$ or equivalent)

A1
substitution, leading to an integrand in terms of u
M1
$\int \frac{2 u \mathrm{~d} u}{u^{3}+u}$ or equivalent
$=2 \arctan (\sqrt{x})(+c)$
A1
[4 marks]
(b) $\frac{1}{2} \int_{1}^{9} \frac{\mathrm{~d} x}{x^{\frac{3}{2}}+x^{\frac{1}{2}}}=\arctan 3-\arctan 1$
$\tan (\arctan 3-\arctan 1)=\frac{3-1}{1+3 \times 1}$
(M1)
$\tan (\arctan 3-\arctan 1)=\frac{1}{2}$
$\arctan 3-\arctan 1=\arctan \frac{1}{2}$
A1

A1

Question 69

(a) (i) attempt at product rule M1

$$
f^{\prime}(x)=-\mathrm{e}^{-x} \sin x+\mathrm{e}^{-x} \cos x
$$

(ii) $\quad g^{\prime}(x)=-\mathrm{e}^{-x} \cos x-\mathrm{e}^{-x} \sin x$

A1
[3 marks]
$I=\int \mathrm{e}^{-x} \sin x \mathrm{~d} x$
$=-\mathrm{e}^{-x} \cos x-\int \mathrm{e}^{-x} \cos x \mathrm{~d} x \mathbf{O R}=-\mathrm{e}^{-x} \sin x+\int \mathrm{e}^{-x} \cos x \mathrm{~d} x$
$=-\mathrm{e}^{-x} \sin x-\mathrm{e}^{-x} \cos x-\int \mathrm{e}^{-x} \sin x \mathrm{~d} x$
$I=-\frac{1}{2} \mathrm{e}^{-x}(\sin x+\cos x)$
$\int_{0}^{\pi} \mathrm{e}^{-x} \sin x \mathrm{~d} x=\frac{1}{2}\left(1+\mathrm{e}^{-\pi}\right)$
M1A1

A1

A1
[4 marks]
Total [7 marks]
(b)

Question 70
valid attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{(1-x)^{2}}-\frac{4}{(x-4)^{2}}$
A1A1
attempt to solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1
$x=2, x=-2$

Question 71

(a) attempt to differentiate

$$
f^{\prime}(x)=-3 x^{-4}-3 x
$$

e: Award M1 for using quotient or product rule award $\boldsymbol{A 1}$ if correct derivative seen even in unsimplified form, for example $f^{\prime}(x)=\frac{-15 x^{4} \times 2 x^{3}-6 x^{2}\left(2-3 x^{5}\right)}{\left(2 x^{3}\right)^{2}}$.

$$
\begin{array}{ll}
-\frac{3}{x^{4}}-3 x=0 & \text { M1 } \\
\Rightarrow x^{5}=-1 \Rightarrow x=-1 & \text { A1 } \\
\text { A }\left(-1,-\frac{5}{2}\right) & \boldsymbol{A 1}
\end{array}
$$

(b) (i) $f^{\prime \prime}(x)=0 \quad$ M1

Note: Award A1 for correct derivative seen even if not simplified.

$$
\Rightarrow x=\sqrt[5]{4}\left(=2^{\frac{2}{5}}\right)
$$

hence (at most) one point of inflexion
Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.
$f^{\prime \prime}(x)$ changes sign at $x=\sqrt[5]{4}\left(=2^{\frac{2}{5}}\right)$
so exactly one point of inflexion
(ii) $\quad x=\sqrt[5]{4}=2^{\frac{2}{5}}\left(\Rightarrow a=\frac{2}{5}\right)$

$$
f\left(2^{\frac{2}{5}}\right)=\frac{2-3 \times 2^{2}}{2 \times 2^{\frac{6}{5}}}=-5 \times 2^{-\frac{6}{5}}(\Rightarrow b=-5)
$$

(M1)A1
[8 marks]
Note: Award $\boldsymbol{M} \mathbf{1}$ for the substitution of their value for x into $f(x)$.
(c)

A1 for shape for $x<0$
A1 for shape for $x>0$
A1 for maximum at A
A1 for POI at B.
Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.
(a) $y=\arccos \left(\frac{x}{2}\right) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}}\left(=-\frac{1}{\sqrt{4-x^{2}}}\right)$

Note: M1 is for use of the chain rule.
(b) attempt at integration by parts

M1
(A1)
A1

Note: Award A1 for $-\left(4-x^{2}\right)^{\frac{1}{2}}$ or equivalent.
Note: Condone lack of limits to this point.
attempt to substitute limits into their integral

$$
=\frac{\pi}{3}-\sqrt{3}+2
$$

M1
A1
[7 marks]
Total [9 marks]
Question 73
(a) $\int_{-2}^{0} f(x) \mathrm{d} x=10-12=-2$

$$
\begin{aligned}
& \int_{-2}^{0} 2 \mathrm{~d} x=[2 x]_{-2}^{0}=4 \\
& \int_{-2}^{0}(f(x)+2) \mathrm{d} x=2
\end{aligned}
$$

(b) $\quad \int_{-2}^{0} f(x+2) \mathrm{d} x=\int_{0}^{2} f(x) \mathrm{d} x$ $=12$
(M1)
A1
(a) attempt at chain rule or product rule
(b) $2 \sin \theta \cos \theta=2 \sin ^{2} \theta$

$$
\sin \theta=0
$$

$\theta=0, \pi$
obtaining $\cos \theta=\sin \theta$
$\tan \theta=1$
$\theta=\frac{\pi}{4}$

Question 75
(a) attempt at integration by parts with $u=\cos 2 x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{x}$
$\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\mathrm{e}^{x} \cos 2 x+2 \int \mathrm{e}^{x} \sin 2 x \mathrm{~d} x$
$=\mathrm{e}^{x} \cos 2 x+2\left(\mathrm{e}^{x} \sin 2 x-2 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x\right)$
$=\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x-4 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x$
$\therefore 5 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x$
$\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{2 \mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{5} \cos 2 x(+c)$
M1A1

M1
$A G$
[5 marks]

M1A1

A1

AG
Note: Do not accept solutions where the RHS is differentiated.
(c) $\quad f^{\prime}(x)=\mathrm{e}^{x} \cos ^{2} x-2 \mathrm{e}^{x} \sin x \cos x$

Note: Award M1 for an attempt at both the product rule and the chain rule.
$\mathrm{e}^{x} \cos x(\cos x-2 \sin x)=0$
Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt to factorise $\cos x$ or divide by $\cos x(\cos x \neq 0)$.
discount $\cos x=0$ (as this would also be a zero of the function)
$\Rightarrow \cos x-2 \sin x=0$
$\Rightarrow \tan x=\frac{1}{2}$
(M1)
$\Rightarrow x=\arctan \left(\frac{1}{2}\right)$ (at A) and $x=\pi+\arctan \left(\frac{1}{2}\right)$ (at C)
(d) $\cos x=0 \Rightarrow x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$

Note: The A1 may be awarded for work seen in part (c).

$$
\begin{align*}
& \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(\mathrm{e}^{x} \cos ^{2} x\right) \mathrm{d} x=\left[\frac{\mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{10} \cos 2 x+\frac{\mathrm{e}^{x}}{2}\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \tag{M1}\\
& =\left(-\frac{\mathrm{e}^{\frac{3 \pi}{2}}}{10}+\frac{\mathrm{e}^{\frac{3 \pi}{2}}}{2}\right)-\left(-\frac{\mathrm{e}^{\frac{\pi}{2}}}{10}+\frac{\mathrm{e}^{\frac{\pi}{2}}}{2}\right)\left(=\frac{2 \mathrm{e}^{\frac{3 \pi}{2}}}{5}-\frac{2 \mathrm{e}^{\frac{\pi}{2}}}{5}\right)^{2}
\end{align*}
$$

e: Award $\boldsymbol{M} 1$ for substitution of the end points and subtracting, (A1) for $\sin 3 \pi=\sin \pi=0$ and $\cos 3 \pi=\cos \pi=-1$ and $\boldsymbol{A 1}$ for a completely correct answer.

Question 76

(a) $C_{1}: y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$

Note: M1 is for use of both product rule and implicit differentiation.

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{y}{x} \tag{A1}
\end{equation*}
$$

Note: Accept $-\frac{4}{x^{2}}$.

$$
\begin{align*}
& C_{2}: 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 x=0 \tag{M1}\\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{y} \tag{A1}
\end{align*}
$$

Note: Accept $\pm \frac{x}{\sqrt{2+x^{2}}}$.
(b) substituting a and b for x and y

M1
product of gradients at P is $\left(-\frac{b}{a}\right)\left(\frac{a}{b}\right)=-1$ or equivalent reasoning

Note: The R1 is dependent on the previous M1.
so tangents are perpendicular
AG

Question 77

(a) attempt to use Pythagoras in triangle OXB

M1

$$
\Rightarrow r^{2}=R^{2}-(h-R)^{2}
$$

A1
substitution of their r^{2} into formula for volume of cone $V=\frac{\pi r^{2} h}{3}$

$$
\begin{aligned}
& =\frac{\pi h}{3}\left(R^{2}-(h-R)^{2}\right) \\
& =\frac{\pi h}{3}\left(R^{2}-\left(h^{2}+R^{2}-2 h R\right)\right)
\end{aligned}
$$

A1
e: This A mark is independent and may be seen anywhere for the correct expansion of $(h-R)^{2}$.

$$
\begin{aligned}
& =\frac{\pi h}{3}\left(2 h R-h^{2}\right) \\
& =\frac{\pi}{3}\left(2 R h^{2}-h^{3}\right)
\end{aligned}
$$

continued...

OR
$r^{2}=R^{2}-\left(\frac{4 R}{3}-R\right)^{2}$
$r^{2}=R^{2}-\frac{R^{2}}{9}=\frac{8 R^{2}}{9}$
$\Rightarrow V_{\max }=\frac{\pi r^{2}}{3}\left(\frac{4 R}{3}\right)$
$=\frac{4 \pi R}{9}\left(\frac{8 R^{2}}{9}\right)$

THEN
$=\frac{32 \pi R^{3}}{81}$

Total [8 marks]

Question 78

(a) attempt to differentiate implicitly

M1

$\frac{\mathrm{d} y}{\mathrm{~d} x}=x \sec ^{2}\left(\frac{\pi x y}{4}\right)\left[\frac{\pi}{4} x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\pi}{4} y\right]+\tan \left(\frac{\pi x y}{4}\right)$

Note: Award A1 for each term.

attempt to substitute $x=1, y=1$ into their equation for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\pi}{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\pi}{2}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}\left(1-\frac{\pi}{2}\right)=\frac{\pi}{2}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+\pi}{2-\pi}$
(b) attempt to use gradient of normal $=\frac{-1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}$
$=\frac{\pi-2}{\pi+2}$
so equation of normal is $y-1=\frac{\pi-2}{\pi+2}(x-1)$ or $y=\frac{\pi-2}{\pi+2} x+\frac{4}{\pi+2}$ A1
[2 marks]
Total [7 marks]

Question 79
$u=\sin x \Rightarrow \mathrm{~d} u=\cos x \mathrm{~d} x$
(A1)
valid attempt to write integral in terms of u and $\mathrm{d} u$
$\int \frac{\cos ^{3} x \mathrm{~d} x}{\sqrt{\sin x}}=\int \frac{\left(1-u^{2}\right) \mathrm{d} u}{\sqrt{u}}$
$=\int\left(u^{\frac{1}{2}}-u^{\frac{3}{2}}\right) \mathrm{d} u$
$=2 u^{\frac{1}{2}}-\frac{2 u^{\frac{5}{2}}}{5}(+c)$
$=2 \sqrt{\sin x}-\frac{2(\sqrt{\sin x})^{5}}{5}(+c)$ or equivalent

Question 80
(a) $(\sin x+\cos x)^{2}=\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x$

Note: Do not award the M1 for just $\sin ^{2} x+\cos ^{2} x$.
Note: Do not award $\boldsymbol{A 1}$ if correct expression is followed by incorrect working.

$$
=1+\sin 2 x
$$

AG
[2 marks]
(b) $\sec 2 x+\tan 2 x=\frac{1}{\cos 2 x}+\frac{\sin 2 x}{\cos 2 x}$

M1
3: M1 is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of $\tan x$.

$$
\begin{aligned}
& =\frac{1+\sin 2 x}{\cos 2 x} \\
& =\frac{(\sin x+\cos x)^{2}}{\cos ^{2} x-\sin ^{2} x}
\end{aligned}
$$

Note: Award $\boldsymbol{A 1}$ for numerator, A1 for denominator.

$$
\begin{aligned}
& =\frac{(\sin x+\cos x)^{2}}{(\cos x-\sin x)(\cos x+\sin x)} \\
& =\frac{\cos x+\sin x}{\cos x-\sin x}
\end{aligned}
$$

Note: Apply MS in reverse if candidates have worked from RHS to LHS.
Note: Alternative method using $\tan 2 x$ and $\sec 2 x$ in terms of $\tan x$.
(c) METHOD 1

$$
\int_{0}^{\frac{\pi}{6}}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right) d x
$$

Note: Award A1 for correct expression with or without limits.

EITHER

$$
=[-\ln (\cos x-\sin x)]_{0}^{\frac{\pi}{6}} \text { or }[\ln (\cos x-\sin x)]_{\frac{\pi}{6}}^{0}
$$

(M1)A1A1

Note: Award $\boldsymbol{M 1}$ for integration by inspection or substitution, $\boldsymbol{A 1}$ for $\ln (\cos x-\sin x)$, A1 for completely correct expression including limits.

$$
\begin{equation*}
=-\ln \left(\cos \frac{\pi}{6}-\sin \frac{\pi}{6}\right)+\ln (\cos 0-\sin 0) \tag{M1}
\end{equation*}
$$

Note: Award $\boldsymbol{M 1}$ for substitution of limits into their integral and subtraction.

$$
\begin{equation*}
=-\ln \left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right) \tag{A1}
\end{equation*}
$$

continued..
OR
let $u=\cos x-\sin x$

M1

$\frac{\mathrm{d} u}{\mathrm{~d} x}=-\sin x-\cos x=-(\sin x+\cos x)$
$-\int_{1}^{\frac{\sqrt{3}}{2}-\frac{1}{2}}\left(\frac{1}{u}\right) \mathrm{d} u$
A1A1

Note: Award $\boldsymbol{A 1}$ for correct limits even if seen later, A1 for integral.

$$
\begin{aligned}
& =[-\ln u]_{1}^{\frac{\sqrt{3}}{2}-\frac{1}{2}} \text { or }[\ln u]_{\frac{\sqrt{3}}{2} \frac{1}{2}}^{1} \\
& =-\ln \left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)(+\ln 1)
\end{aligned}
$$

THEN

$$
=\ln \left(\frac{2}{\sqrt{3}-1}\right)
$$

Award M1 for both putting the expression over a common denominator and for correct use of law of logarithms.

$$
\begin{equation*}
=\ln (1+\sqrt{3}) \tag{M1}
\end{equation*}
$$

METHOD 2

$$
\begin{aligned}
& {\left[\frac{1}{2} \ln (\tan 2 x+\sec 2 x)-\frac{1}{2} \ln (\cos 2 x)\right]_{0}^{\frac{\pi}{6}}} \\
& =\frac{1}{2} \ln (\sqrt{3}+2)-\frac{1}{2} \ln \left(\frac{1}{2}\right)-0 \\
& =\frac{1}{2} \ln (4+2 \sqrt{3}) \\
& =\frac{1}{2} \ln \left((1+\sqrt{3})^{2}\right) \\
& =\ln (1+\sqrt{3})
\end{aligned}
$$

A1A1

A1A1(A1)

M1
M1A1
A1
[9 marks]
Total [15 marks]
Question 81
(a) 3

A1
[1 mark]
(M1)
$\int_{0}^{1} f^{\prime}(x) \mathrm{d} x=0.5$
$f(1)-f(0)=0.5$
$f(1)=0.5+3$

$$
=3.5
$$

(c) $\int_{1}^{4} f^{\prime}(x) \mathrm{d} x=-2.5$

Note: (A1) is for -2.5 .
$f(4)-f(1)=-2.5$
$f(4)=3.5-2.5$
$=1$
A1
[2 marks]
(d)

A1 for correct shape over approximately the correct domain $\boldsymbol{A 1}$ for maximum and minimum (coordinates or horizontal lines from 3.5 and 1 are required), $\boldsymbol{A 1}$ for y-intercept at 3 [$\mathbf{3}$ marks] Total [9 marks]

Question 82
attempt at implicit differentiation
M1
$3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y^{2}+6 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 x^{2}=0$
A1A1
e: Award $\boldsymbol{A 1}$ for the second \& third terms, $\boldsymbol{A 1}$ for the first term, fourth term \& RHS equal to zero.
substitution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1
$3 y^{2}-3 x^{2}=0$
$\Rightarrow y= \pm x$
A1
substitute either variable into original equation M1
$y=x \Rightarrow x^{3}=9 \Rightarrow x=\sqrt[3]{9}$ (or $y^{3}=9 \Rightarrow y=\sqrt[3]{9}$)
A1
$y=-x \Rightarrow x^{3}=27 \Rightarrow x=3$ (or $y^{3}=-27 \Rightarrow y=-3$)
A1
$(\sqrt[3]{9}, \sqrt[3]{9}),(3,-3)$

Question 83
let $\mathrm{OX}=x$
METHOD 1
$\frac{\mathrm{d} x}{\mathrm{~d} t}=24 \quad$ (or -24)
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \times \frac{\mathrm{d} \theta}{\mathrm{d} x}$
$3 \tan \theta=x$
EITHER
$3 \sec ^{2} \theta=\frac{\mathrm{d} x}{\mathrm{~d} \theta}$
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{24}{3 \sec ^{2} \theta}$
attempt to substitute for $\theta=0$ into their differential equation
OR
$\theta=\arctan \left(\frac{x}{3}\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{1}{3} \times \frac{1}{1+\frac{x^{2}}{9}}$
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=24 \times \frac{1}{3\left(1+\frac{x^{2}}{9}\right)}$
attempt to substitute for $x=0$ into their differential equation

THEN

$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{24}{3}=8\left(\mathrm{rad} \mathrm{s}^{-1}\right)$

METHOD 2

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=24 \quad(\text { or }-24) \tag{A1}
\end{equation*}
$$

$3 \tan \theta=x$
attempt to differentiate implicitly with respect to $t \quad$ M1
$3 \sec ^{2} \theta \times \frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t}$
A1
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{24}{3 \sec ^{2} \theta}$
attempt to substitute for $\theta=0$ into their differential equation
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{24}{3}=8\left(\mathrm{rad} \mathrm{s}^{-1}\right)$
Vote: Accept $-8 \mathrm{rad}^{-1}$.
vote: Can be done by consideration of CX, use of Pythagoras.

METHOD 3

let the position of the car be at time t be $d-24 t$ from O

$$
\tan \theta=\frac{d-24 t}{3}\left(=\frac{d}{3}-8 t\right)
$$

Vote: For $\tan \theta=\frac{24 t}{3}$ award AOM1 and follow through.

EITHER

attempt to differentiate implicitly with respect to t
$\sec ^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-8$
attempt to substitute for $\theta=0$ into their differential equation
OR
$\theta=\arctan \left(\frac{d}{3}-8 t\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-\frac{8}{1+\left(\frac{d}{3}-8 t\right)^{2}}$
at $\mathrm{O}, t=\frac{d}{24}$

THEN

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-8
$$

Question 84
(a) (i) attempt to use quotient rule (or equivalent)
$f^{\prime}(x)=\frac{\left(x^{2}-1\right)(2)-(2 x-4)(2 x)}{\left(x^{2}-1\right)^{2}}$
$=\frac{-2 x^{2}+8 x-2}{\left(x^{2}-1\right)^{2}}$
(ii) $\quad f^{\prime}(x)=0$
simplifying numerator (may be seen in part (i))
$\Rightarrow x^{2}-4 x+1=0$ or equivalent quadratic equation
EITHER
use of quadratic formula
$\Rightarrow x=\frac{4 \pm \sqrt{12}}{2}$
OR
use of completing the square
$(x-2)^{2}=3$
A1

THEN

$x=2-\sqrt{3}$ (since $2+\sqrt{3}$ is outside the domain)
Note: Do not condone verification that $x=2-\sqrt{3} \Rightarrow f^{\prime}(x)=0$.
Do not award the final A1 as follow through from part (i).
(b) (i) $(0,4)$
(ii) $2 x-4=0 \Rightarrow x=2$ A1 outside the domain R1
continued...
(iii)

A1A1
award $\boldsymbol{A 1}$ for concave up curve over correct domain with one minimum point in the first quadrant
award $\boldsymbol{A} 1$ for approaching $x= \pm 1$ asymptotically
[5 marks]
(c) valid attempt to combine fractions (using common denominator)

M1
A1
$\frac{3(x-1)-(x+1)}{(x+1)(x-1)}$
$=\frac{3 x-3-x-1}{x^{2}-1}$
$=\frac{2 x-4}{x^{2}-1}$
AG
[2 marks]
continued...
(d)

$$
\begin{gathered}
f(x)=4 \Rightarrow 2 x-4=4 x^{2}-4 \\
\left(x=0 \quad \text { or) } x=\frac{1}{2}\right.
\end{gathered}
$$

M1
area under the curve is $\int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x$ M1

$$
=\int_{0}^{\frac{1}{2}} \frac{3}{x+1}-\frac{1}{x-1} \mathrm{~d} x
$$

Note: Ignore absence of, or incorrect limits up to this point.

$$
\begin{aligned}
& =\left[3 \ln |x+1|-\ln |x-1|_{0}^{\frac{1}{2}}\right. \\
& =3 \ln \frac{3}{2}-\ln \frac{1}{2}(-0) \\
& =\ln \frac{27}{4} \\
& \text { area is } 2-\int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x \text { or } \int_{0}^{\frac{1}{2}} 4 \mathrm{~d} x-\int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x \\
& =2-\ln \frac{27}{4} \\
& =\ln \frac{4 \mathrm{e}^{2}}{27} \\
& \left(\Rightarrow v=\frac{\boldsymbol{4} \mathrm{e}^{2}}{27}\right)
\end{aligned}
$$

Question 85
(a) attempt to complete the square or multiplication and equating coefficients

$$
\begin{aligned}
& 2 x-x^{2}=-(x-1)^{2}+1 \\
& a=-1, h=1, k=1
\end{aligned}
$$

(b) use of their identity from part (a) $\left(\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\sqrt{1-(x-1)^{2}}} \mathrm{~d} x\right)$

$$
=[\arcsin (x-1)]_{\frac{1}{2}}^{\frac{3}{2}} \text { or }[\arcsin (u)]_{-\frac{1}{2}}^{\frac{1}{2}}
$$

Note: Condone lack of, or incorrect limits up to this point.

$$
\begin{aligned}
& =\arcsin \left(\frac{1}{2}\right)-\arcsin \left(-\frac{1}{2}\right) \\
& =\frac{\pi}{6}-\left(-\frac{\pi}{6}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

Question 86
$f^{\prime}(x)=\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
$f^{(k)}(x)=\left(2^{k} x+k 2^{k-1}\right) \mathrm{e}^{2 x}$
3: Award $\boldsymbol{M} 1$ if truth is assumed. Do not allow "let $n=k$ ".
consider $n=k+1$:
$f^{(k+1)}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\left(2^{k} x+k 2^{k-1}\right) \mathrm{e}^{2 x}\right)$
attempt to differentiate $f^{(k)}(x)$
$f^{(k+1)}(x)=2^{k} \mathrm{e}^{2 x}+2\left(2^{k} x+k 2^{k-1}\right) \mathrm{e}^{2 x}$
$f^{(k+1)}(x)=\left(2^{k}+2^{k+1} x+k 2^{k}\right) \mathrm{e}^{2 x}$
$f^{(k+1)}(x)=\left(2^{k+1} x+(k+1) 2^{k}\right) \mathrm{e}^{2 x}$

$$
=\left(2^{k+1} x+(k+1) 2^{(k+1)-1}\right) \mathrm{e}^{2 x}
$$

Question 87
$\frac{1}{2} \mathrm{e}^{2 x}$ seen
attempt at using limits in an integrated expression $\left(\left[\frac{1}{2} \mathrm{e}^{2 x}\right]_{0}^{\ln k}=\frac{1}{2} \mathrm{e}^{2 \ln k}-\frac{1}{2} \mathrm{e}^{0}\right)$
$=\frac{1}{2} \mathrm{e}^{\ln k^{2}}-\frac{1}{2} \mathrm{e}^{0}$
Setting their equation $=12$
z: their equation must be an integrated expression with limits substituted.
$\frac{1}{2} k^{2}-\frac{1}{2}=12$
A1
$\left(k^{2}=25 \Rightarrow\right) k=5$ A1

[^0]
[^0]: 3: Do not award final $\boldsymbol{A 1}$ for $k= \pm 5$.

