Subject - Math(Higher Level)
 Topic - Functions and Equations
 Year - Nov 2011 - Nov 2019

Question 1
(a)

(b) $(1+\sin x)^{2}=1+2 \sin x+\sin ^{2} x$

$$
\begin{aligned}
& =1+2 \sin x+\frac{1}{2}(1-\cos 2 x) \\
& =\frac{3}{2}+2 \sin x-\frac{1}{2} \cos 2 x
\end{aligned}
$$

Question 2
(a) for the equation to have real roots
$(y-1)^{2}-4 y(y-1) \geq 0$
$\Rightarrow 3 y^{2}-2 y-1 \leq 0$
(by sign diagram, or algebraic method) M1
$-\frac{1}{3} \leq y \leq 1 \quad$ A1A1
Note: Award first $\boldsymbol{A 1}$ for $-\frac{1}{3}$ and 1, and second $\boldsymbol{A} \boldsymbol{I}$ for inequalities. These are independent marks.
(b) $\quad f: x \rightarrow \frac{x+1}{x^{2}+x+1} \Rightarrow x+1=y x^{2}+y x+y$
$\Rightarrow 0=y x^{2}+(y-1) x+(y-1)$
hence, from (a) range is $-\frac{1}{3} \leq y \leq 1$
(c) a value for y would lead to 2 values for x from (a)

Note: Do not award RI if (b) has not been tackled.

Question 3

(a)

Note: Award $\boldsymbol{A 1}$ for correct asymptote with correct behaviour and $A 1$ for shape.
(b) intersect on $y=x$
$x+\ln x=x \Rightarrow \ln x=0$
intersect at $(1,1)$

Question 4
(a)

M1A1A1A1

Note: Award M1 for any of the three sections completely correct, A1 for each correct segment of the graph.
(b) (i) 0
(ii) 2
(iii) finding area of rectangle
-4
Note: Award M1A0 for the answer 4.

A1
A1

A1
[4 marks]
Total [8 marks]

Question 5
(a) $\mathrm{e}^{-x} \cos x=0$

$$
\Rightarrow x=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

(b)

Note: Accept any form of concavity for $x \in\left[0, \frac{\pi}{2}\right]$.
Note: Do not penalize unmarked zeros if given in part (a).
Note: Zeros written on diagram can be used to allow the mark in part (a) to be awarded retrospectively.

Question 6

(a) $\quad f(x) \geq \frac{1}{25}$

A1
$g(x) \in \mathbb{R}, g(x) \geq 0$
(b) $f \circ g(x)=\frac{2\left(\frac{3 x-4}{10}\right)^{2}+3}{75}$

$$
\begin{aligned}
& =\frac{\frac{2\left(9 x^{2}-24 x+16\right)}{100}+3}{75} \\
& =\frac{9 x^{2}-24 x+166}{3750}
\end{aligned}
$$

(c) (i) METHOD 1
$y=\frac{2 x^{2}+3}{75}$
$x^{2}=\frac{75 y-3}{2}$
M1
$x=\sqrt{\frac{75 y-3}{2}}$
(A1)
$\Rightarrow f^{-1}(x)=\sqrt{\frac{75 x-3}{2}}$
A1
Note: Accept \pm in line 3 for the (A1) but not in line 4 for the $\boldsymbol{A 1}$. Award the $\boldsymbol{A 1}$ only if written in the form $f^{-1}(x)=$.

METHOD 2

$y=\frac{2 x^{2}+3}{75}$
$x=\frac{2 y^{2}+3}{75}$
$y=\sqrt{\frac{75 x-3}{2}}$
$\Rightarrow f^{-1}(x)=\sqrt{\frac{75 x-3}{2}}$
(A1)

$$
A 1
$$

Note: Accept \pm in line 3 for the (A1) but not in line 4 for the $A 1$.
Award the $\boldsymbol{A 1}$ only if written in the form $f^{-1}(x)=$.
(ii) domain: $x \geq \frac{1}{25}$; range: $f^{-1}(x) \geq 0$

Question 7

$$
\begin{aligned}
& \text { let } f(x)=2 x^{3}+k x^{2}+6 x+32 \\
& \text { let } g(x)=x^{4}-6 x^{2}-k^{2} x+9 \\
& f(-1)=-2+k-6+32(=24+k) \\
& g(-1)=1-6+k^{2}+9\left(=4+k^{2}\right) \\
& \Rightarrow 24+k=4+k^{2} \\
& \Rightarrow k^{2}-k-20=0 \\
& \Rightarrow(k-5)(k+4)=0 \\
& \Rightarrow k=5,-4
\end{aligned}
$$

Question 8

(a) METHOD 1

$$
\begin{array}{lr}
f(x)=(x+1)(x-1)(x-2) & \text { M1 } \\
=x^{3}-2 x^{2}-x+2 & \text { A1A1A1 }
\end{array}
$$

$a=-2, b=-1$ and $c=2$

METHOD 2

from the graph or using $f(0)=2$
$\begin{aligned} & c=2 \\ & \text { setting up linear equations using } f(1)=0 \text { and } f(-1)=0(\text { or } f(2)=0)\end{aligned} \begin{array}{r}\text { A1 } \\ \text { M1 } \\ \text { obtain } a=-2, b=-1\end{array}$
A1A1
(i) $(1,0),(3,0)$ and $(4,0)$
(ii) $\quad g(0)$ occurs at $3 f(-2)$ $=-36$

Question 9

METHOD 1

(a) $\quad \operatorname{det}\left(\begin{array}{lll}1 & 3 & a-1 \\ 2 & 2 & a-2 \\ 3 & 1 & a-3\end{array}\right)$

M1
$=1(2(a-3)-(a-2))-3(2(a-3)-3(a-2))+(a-1)(2-6)$
(or equivalent)
A1
$=0$ (therefore there is no unique solution)
(b) $\quad\left(\begin{array}{lll|l}1 & 3 & a-1 & 1 \\ 2 & 2 & a-2 & 1 \\ 3 & 1 & a-3 & b\end{array}\right):\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & -8 & -2 a & b-3\end{array}\right)$
$:\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & 0 & 0 & b-1\end{array}\right)$
$b=1$
Note: Award M1 for an attempt to use row operations.

METHOD 2

$$
\begin{array}{rlrl}
\text { (a) } & \left(\begin{array}{lll|l}
1 & 3 & a-1 & 1 \\
2 & 2 & a-2 & 1 \\
3 & 1 & a-3 & b
\end{array}\right):\left(\begin{array}{ccc|c}
1 & 3 & a-1 & 1 \\
0 & -4 & -a & -1 \\
0 & -8 & -2 a & b-3
\end{array}\right) & \text { M1A1 } \\
& :\left(\begin{array}{ccc|c}
1 & 3 & a-1 & 1 \\
0 & -4 & -a & -1 \\
0 & 0 & 0 & b-1
\end{array}\right) \text { (and 3 zeros imply no unique solution) }
\end{array}
$$

[3 marks]
(b) $\quad b=1$

Question 10

(a) EITHER
$f(x)-1=\frac{1+3^{-x}}{3^{x}-3^{-x}}$
>0 as both numerator and denominator are positive
M1A1
R1
OR
$3^{x}+1>3^{x}>3^{x}-3^{-x}$
M1A1
Note: Accept a convincing valid argument the numerator is greater than the denominator.
numerator and denominator are positive \quad R1
hence $f(x)>1$
$A G$
[3 marks]

M1
attempt to solve a three-term equation

Note: Award $\boldsymbol{A O}$ if an extra solution for x is given.

Question 11

(a) $\quad 4(x-0.5)^{2}+4$

A1A1
Note: $\boldsymbol{A 1}$ for two correct parameters, $\boldsymbol{A} \mathbf{2}$ for all three correct.
(b) translation $\binom{0.5}{0}$ (allow " 0.5 to the right") stretch parallel to y-axis, scale factor 4 (allow vertical stretch or similar)
translation $\binom{0}{4}$ (allow "4 up")
Note: All transformations must state magnitude and direction.
Note: First two transformations can be in either order.
It could be a stretch followed by a single translation
of $\binom{0.5}{4}$. If the vertical translation is before the stretch it is $\binom{0}{1}$.
(c)

general shape (including asymptote and single maximum in first quadrant), intercept $\left(0, \frac{1}{5}\right)$ or maximum $\left(\frac{1}{2}, \frac{1}{4}\right)$ shown
[2 marks]
(d) $0<f(x) \leq \frac{1}{4}$

Note: $A 1$ for $\leq \frac{1}{4}, A 1$ for $0<$.

Question 12

$$
\begin{array}{ll}
f(-2)=0(\Rightarrow-24+4 p-2 q-2=0) & \text { M1 } \\
f(-1)=4(\Rightarrow-3+p-q-2=4) & \text { M1 }
\end{array}
$$

ote: In each case award the M marks if correct substitution attempted and right-hand side correct.
attempt to solve simultaneously $(2 p-q=13, p-q=9)$ M1
$p=4$ A1
$q=-5$ A1

Question 13

(a)

shape with y-axis intercept $(0,4)$
Note: Accept curve with an asymptote at $x=1$ suggested.
correct asymptote $y=1$
A1
[2 marks]
(b) range is $f^{-1}(x)>1$ (or $] 1, \infty[$)

Note: Also accept $] 1,10]$ or $] 1,10[$.
Note: Do not allow follow through from incorrect asymptote in (a).
(c) $(4,0) \Rightarrow \ln (4 a+b)=0$
M1

$$
\begin{aligned}
& \Rightarrow 4 a+b=1 \\
& \text { asymptote at } x=1 \Rightarrow a+b=0 \\
& \Rightarrow a=\frac{1}{3}, b=-\frac{1}{3}
\end{aligned}
$$

M1

[1 mark]

[4 marks]

Total [7 marks]

Question 14

$$
\begin{array}{ll}
P(2)=24+2 a+b=2, P(-1)=-3-a+b=5 & \text { M1A1A1 } \\
(2 a+b=-22,-a+b=8) &
\end{array}
$$

Note: Award M1 for substitution of 2 or -1 and equating to remainder, $\boldsymbol{A 1}$ for each correct equation.
attempt to solve simultaneously
M1
$a=-10, b=-2$

Question 15

(a) $1-2(2)=-3$ and $\frac{3}{4}(2-2)^{2}-3=-3$ A1
both answers are the same, hence f is continuous (at $x=2$)
R1
Note: R1 may be awarded for justification using a graph or referring to limits. Do not award A0R1.
(b) reflection in the y-axis

$$
f(-x)=\left\{\begin{align*}
1+2 x, & x \geq-2 \tag{M1}\\
\frac{3}{4}(x+2)^{2}-3, & x<-2
\end{align*}\right.
$$

Note: Award M1 for evidence of reflecting a graph in y-axis.

$$
\text { translation }\binom{2}{0}
$$

$$
g(x)=\left\{\begin{aligned}
2 x-3, & x \geq 0 \\
\frac{3}{4} x^{2}-3, & x<0
\end{aligned}\right.
$$

(M1)A1A1

Note: Award (M1) for attempting to substitute $(x-2)$ for x, or translating a graph along positive x-axis.
Award A1 for the correct domains (this mark can be awarded independent of the M1).
Award $\boldsymbol{A 1}$ for the correct expressions.

Question 16

(a) using the formulae for the sum and product of roots:

$$
\begin{array}{ll}
\alpha+\beta=-2 & \boldsymbol{A 1} \\
\alpha \beta=-\frac{1}{2} & \boldsymbol{A 1} \\
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta & \boldsymbol{M 1} \\
=(-2)^{2}-2\left(-\frac{1}{2}\right) & \\
=5 & \boldsymbol{A 1}
\end{array}
$$

Note: Award $\boldsymbol{M} 0$ for attempt to solve quadratic equation.
(b) $\quad\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)=x^{2}-\left(\alpha^{2}+\beta^{2}\right) x+\alpha^{2} \beta^{2}$
$x^{2}-5 x+\left(-\frac{1}{2}\right)^{2}=0$
$x^{2}-5 x+\frac{1}{4}=0$

Note: Final answer must be an equation. Accept alternative correct forms.

Question 18
(a)

Note: Award $\boldsymbol{A 1}$ for correct shape and $\boldsymbol{A 1}$ for correct domain and range.
(b) $\quad\left|\cos \left(\frac{x}{4}\right)\right|=\frac{1}{2}$

$$
x=\frac{4 \pi}{3}
$$

A1 M1

Note: Award (M1) if at least one of the other solutions is correct (in radians or degrees) or clear use of symmetry is seen.
$x=8 \pi-\frac{4 \pi}{3}=\frac{20 \pi}{3}$
$x=4 \pi-\frac{4 \pi}{3}=\frac{8 \pi}{3}$
$x=4 \pi+\frac{4 \pi}{3}=\frac{16 \pi}{3}$
A1

Note: Award A1 for all other three solutions correct and no extra solutions.

Note: If working in degrees, then \max A0M1AO.

[3 marks]

Total [5 marks]
Question 19
(a) $g(x)=\frac{1}{x+3}+1$

Note: Award $\boldsymbol{A 1}$ for $x+3$ in the denominator and $\boldsymbol{A 1}$ for the " +1 ".
(b) $x=-3$
$y=1$
[2 marks]
A1
A1
[2 marks]

Question 20

(a) using the formulae for the sum and product of roots:
(i) $\alpha+\beta=4$ A1
(ii) $\alpha \beta=\frac{1}{2}$
te: Award $\boldsymbol{A 0 A O}$ if the above results are obtained by solving the original equation (except for the purpose of checking).

(b) METHOD 1

required quadratic is of the form $x^{2}-\left(\frac{2}{\alpha}+\frac{2}{\beta}\right) x+\left(\frac{2}{\alpha}\right)\left(\frac{2}{\beta}\right)$
$q=\frac{4}{\alpha \beta}$
$q=8$
$p=-\left(\frac{2}{\alpha}+\frac{2}{\beta}\right)$
$=-\frac{2(\alpha+\beta)}{\alpha \beta}$
M1
$=-\frac{2 \times 4}{\frac{1}{2}}$
$p=-16$

METHOD 2

replacing x with $\frac{2}{x}$
$2\left(\frac{2}{x}\right)^{2}-8\left(\frac{2}{x}\right)+1=0$
$\frac{8}{x^{2}}-\frac{16}{x}+1=0$
$x^{2}-16 x+8=0$
$p=-16$ and $q=8$
Note: Award A1A0 for $x^{2}-16 x+8=0$ ie, if $p=-16$ and $q=8$ are not explicitly stated.

Question 21

(a) EITHER

$$
\begin{aligned}
& f(-x)=f(x) \\
& \Rightarrow a x^{2}-b x+c=a x^{2}+b x+c \Rightarrow 2 b x=0,(\forall x \in \mathbb{R})
\end{aligned} \quad \text { M1 }
$$

OR

$$
\begin{array}{ll}
y \text {-axis is eqn of symmetry } & \text { M1 } \\
\text { so } \frac{-b}{2 a}=0 & \text { A1 }
\end{array}
$$

THEN

$\Rightarrow b=0$
(b) $\quad g(-x)=-g(x) \Rightarrow p \sin (-x)-q x+r=-p \sin x-q x-r$
$\Rightarrow-p \sin x-q x+r=-p \sin x-q x-r$
Note: M1 is for knowing properties of \sin.

$$
\Rightarrow 2 r=0 \Rightarrow r=0
$$

Note: $\ln (a)$ and (b) allow substitution of a particular value of x
(c) $\quad h(-x)=h(x)=-h(x) \Rightarrow 2 h(x)=0 \Rightarrow h(x)=0,(\forall x)$

M1A1

Note: Accept geometrical explanations.

Question 23
(a) $f: x \rightarrow y=\frac{3 x-2}{2 x-1} f^{-1}: y \rightarrow x$
$y=\frac{3 x-2}{2 x-1} \Rightarrow 3 x-2=2 x y-y$
$\Rightarrow 3 x-2 x y=-y+2$
$x(3-2 y)=2-y$
$x=\frac{2-y}{3-2 y}$
$\left(f^{-1}(y)=\frac{2-y}{3-2 y}\right)$
$f^{-1}(x)=\frac{2-x}{3-2 x} \quad\left(x \neq \frac{3}{2}\right)$
Note: x and y might be interchanged earlier.
Note: First M1 is for interchange of variables second M1 for manipulation

Note: Final answer must be a function of x
(b) $\frac{3 x-2}{2 x-1}=A+\frac{B}{2 x-1} \Rightarrow 3 x-2=A(2 x-1)+B$
equating coefficients $3=2 A$ and $-2=-A+B$
$A=\frac{3}{2}$ and $B=-\frac{1}{2}$
Note: Could also be done by division or substitution of values.
(c) $\quad \int f(x) \mathrm{d} x=\frac{3}{2} x-\frac{1}{4} \ln |2 x-1|+c$

Note: accept equivalent e.g. In $|4 x-2|$

Question 23

(a) EITHER

$$
\begin{array}{ll}
f(-x)=f(x) & \text { M1 } \\
\Rightarrow a x^{2}-b x+c=a x^{2}+b x+c \Rightarrow 2 b x=0,(\forall x \in \mathbb{R}) & \text { A1 }
\end{array}
$$

OR
y-axis is eqn of symmetry M1
so $\frac{-b}{2 a}=0$
A1

THEN

$$
\Rightarrow b=0
$$

AG
[2 marks]
(b) $g(-x)=-g(x) \Rightarrow p \sin (-x)-q x+r=-p \sin x-q x-r$ $\Rightarrow-p \sin x-q x+r=-p \sin x-q x-r$

M1
Note: M1 is for knowing properties of sin.

$$
\Rightarrow 2 r=0 \Rightarrow r=0
$$

A1
Note: $\ln (\mathrm{a})$ and (b) allow substitution of a particular value of x
(c) $\quad h(-x)=h(x)=-h(x) \Rightarrow 2 h(x)=0 \Rightarrow h(x)=0,(\forall x)$

Note: Accept geometrical explanations.

Question 24

$$
\begin{array}{ll}
\text { (a) } & g \circ f(x)=g(f(x)) \\
& g\left(2 x+\frac{\pi}{5}\right) \\
& =3 \sin \left(2 x+\frac{\pi}{5}\right)+4
\end{array} \quad \text { M1 }
$$

[1 mark]
(R1)A1
[2 marks]
(c) $3 \sin \left(2 x+\frac{\pi}{5}\right)+4=7 \Rightarrow 2 x+\frac{\pi}{5}=\frac{\pi}{2}+2 n \pi \Rightarrow x=\frac{3 \pi}{20}+n \pi$ so next biggest value is $\frac{23 \pi}{20}$

Note: Allow use of period.
(d) Note: Transformations can be in any order but see notes below.
stretch scale factor 3 parallel to y axis (vertically)
A1
vertical translation of 4 up
A1
Note: Vertical translation is $\frac{4}{3}$ up if it occurs before stretch parallel to y axis.
stretch scale factor $\frac{1}{2}$ parallel to x axis (horizontally)
horizontal translation of $\frac{\pi}{10}$ to the left
Note: Horizontal translation is $\frac{\pi}{5}$ to the left if it occurs before stretch parallel to x axis.

Note: Award A1 for magnitude and direction in each case. Accept any correct terminology provided that the meaning is clear eg shift for translation.

Question 25
(a) $\quad a>0$
A1
$a \neq 1$
A1
[2 marks]
(b) METHOD 1

$$
\log _{x} y=\frac{\ln y}{\ln x} \text { and } \log _{y} x=\frac{\ln x}{\ln y}
$$

Note: Use of any base is permissible here, not just "e".

$$
\left(\frac{\ln y}{\ln x}\right)^{2}=4
$$

$\ln y= \pm 2 \ln x$ A1
$y=x^{2}$ or $\frac{1}{x^{2}}$

METHOD 2

$\log _{y} x=\frac{\log _{x} x}{\log _{x} y}=\frac{1}{\log _{x} y}$
$\left(\log _{x} y\right)^{2}=4$
$\log _{x} y= \pm 2$
$y=x^{2}$ or $y=\frac{1}{x^{2}}$
A1A1

Note: The final two \boldsymbol{A} marks are independent of the one coming before.

Question 26
(a)

Note: In the diagram, points marked A and B refer to part (d) and do not need to be seen in part (a).
shape of curve
Note: This mark can only be awarded if there appear to be both horizontal and vertical asymptotes.
intersection at $(0,0)$
horizontal asymptote at $y=3$
vertical asymptote at $x=2$
[4 marks]
(b) $y=\frac{3 x}{x-2}$
$x y-2 y=3 x$
$x y-3 x=2 y$
$x=\frac{2 y}{y-3}$
$\left(f^{-1}(x)\right)=\frac{2 x}{x-3}$
(c) METHOD 1
attempt to solve $\frac{2 x}{x-3}=\frac{3 x}{x-2}$
$2 x(x-2)=3 x(x-3)$
$x[2(x-2)-3(x-3)]=0$
$x(5-x)=0$
$x=0$ or $x=5$

METHOD 2

$x=\frac{3 x}{x-2}$ or $x=\frac{2 x}{x-3}$
$x=0$ or $x=5$
(d) METHOD 1
at $\mathrm{A}: \frac{3 x}{x-2}=\frac{3}{2}$ AND at $\mathrm{B}: \frac{3 x}{x-2}=-\frac{3}{2}$
M1
$6 x=3 x-6$
$x=-2$
A1
$6 x=6-3 x$
$x=\frac{2}{3}$
solution is $-2<x<\frac{2}{3}$

METHOD 2
$\left(\frac{3 x}{x-2}\right)^{2}<\left(\frac{3}{2}\right)^{2}$
$9 x^{2}<\frac{9}{4}(x-2)^{2}$
$3 x^{2}+4 x-4<0$
$(3 x-2)(x+2)<0$
$x=-2$
(A1)
$x=\frac{2}{3}$
solution is $-2<x<\frac{2}{3}$

PDF Merger Mac - Unregistered

(e) $-2<x<2$

A1A1
Note: A1 for correct end points, A1 for correct inequalities.
Note: If working is shown, then \boldsymbol{A} marks may only be awarded following correct working.

Question 27
(a) $g \circ f(x)=\frac{\tan x+1}{\tan x-1}$
$x \neq \frac{\pi}{4}, 0 \leq x<\frac{\pi}{2}$
(b) $\frac{\tan x+1}{\tan x-1}=\frac{\frac{\sin x}{\cos x}+1}{\frac{\sin x}{\cos x}-1}$

M1A1

$=\frac{\sin x+\cos x}{\sin x-\cos x}$

AG
[2 marks]
(c) METHOD 1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \quad$ M1(A1)
$\frac{d y}{d x}=\frac{\left(2 \sin x \cos x-\cos ^{2} x-\sin ^{2} x\right)-\left(2 \sin x \cos x+\cos ^{2} x+\sin ^{2} x\right)}{\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x}$
$=\frac{-2}{1-\sin 2 x}$
Substitute $\frac{\pi}{6}$ into any formula for $\frac{d y}{d x}$
$\frac{-2}{1-\sin \frac{\pi}{3}}$
$=\frac{-2}{1-\frac{\sqrt{3}}{2}}$
$=\frac{-4}{2-\sqrt{3}}$
$=\frac{-4}{2-\sqrt{3}}\left(\frac{2+\sqrt{3}}{2+\sqrt{3}}\right)$
$=\frac{-8-4 \sqrt{3}}{1}=-8-4 \sqrt{3}$
(d) Area $=\left|\int_{0}^{\frac{\pi}{6}} \frac{\sin x+\cos x}{\sin x-\cos x} \mathrm{~d} x\right|$

$$
=\left|[\ln |\sin x-\cos x|]_{0}^{\frac{\pi}{6}}\right|
$$

Note: Condone absence of limits and absence of modulus signs at this stage.

$$
\begin{aligned}
& =|\ln | \sin \frac{\pi}{6}-\cos \frac{\pi}{6}|-\ln | \sin 0-\cos 0| | \\
& =|\ln | \frac{1}{2}-\frac{\sqrt{3}}{2}|-0| \\
& =\left|\ln \left(\frac{\sqrt{3}-1}{2}\right)\right| \\
& =-\ln \left(\frac{\sqrt{3}-1}{2}\right)=\ln \left(\frac{2}{\sqrt{3}-1}\right) \\
& =\ln \left(\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\right) \\
& =\ln (\sqrt{3}+1)
\end{aligned}
$$

Question 28

(a) (i)-(iii) given the three roots α, β, γ, we have

$$
\begin{array}{ll}
x^{3}+p x^{2}+q x+c=(x-\alpha)(x-\beta)(x-\gamma) & \text { M1 } \\
=\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)(x-\gamma) & \boldsymbol{A 1} \\
=x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma & \boldsymbol{A 1}
\end{array}
$$

comparing coefficients:
$p=-(\alpha+\beta+\gamma)$ AG
$q=(\alpha \beta+\beta \gamma+\gamma \alpha)$ $A G$
$c=-\alpha \beta \gamma$

AG
[3 marks]
(b) METHOD 1
i) Given $-\alpha-\beta-\gamma=-6$

And $\alpha \beta+\beta \gamma+\gamma \alpha=18$
Let the three roots be α, β, γ.
So $\beta-\alpha=\gamma-\beta$
or $2 \beta=\alpha+\gamma$
Attempt to solve simultaneous equations:
$\beta+2 \beta=6$
$\beta=2$
ii) $\quad \alpha+\gamma=4$
$2 \alpha+2 \gamma+\alpha \gamma=18$
$\Rightarrow \gamma^{2}-4 \gamma+10=0$
$\Rightarrow \gamma=\frac{4 \pm \mathrm{i} \sqrt{24}}{2}$
Therefore $c=-\alpha \beta \gamma=-\left(\frac{4+\mathrm{i} \sqrt{24}}{2}\right)\left(\frac{4-\mathrm{i} \sqrt{24}}{2}\right) 2=-20$

METHOD 2

$\begin{array}{lr}\text { (i) let the three roots be } \alpha, \alpha-d, \alpha+d & \text { M1 } \\ \text { adding roots } & \text { M1 } \\ \text { to give } 3 \alpha=6 & \boldsymbol{A 1} \\ \alpha=2 & \boldsymbol{A} \text { G } \\ \text { (ii) } \alpha \text { is a root, so } 2^{3}-6 \times 2^{2}+18 \times 2+c=0 & \text { M1 } \\ 8-24+36+c=0 & \\ c=-20 & \text { A1 }\end{array}$

METHOD 3

METHOD 1

Given $-\alpha-\beta-\gamma=-6$
And $\alpha \beta+\beta \gamma+\gamma \alpha=18$

Let the three roots be α, β, γ.
So $\frac{\beta}{\alpha}=\frac{\gamma}{\beta}$
or $\beta^{2}=\alpha \gamma$

Attempt to solve simultaneous equations:
M1
$\alpha \beta+\gamma \beta+\beta^{2}=18$
$\beta(\alpha+\beta+\gamma)=18$
$6 \beta=18$
$\beta=3$
$\alpha+\gamma=3, \alpha=\frac{9}{\gamma}$
$\Rightarrow \gamma^{2}-3 \gamma+9=0$
$\Rightarrow \gamma=\frac{3 \pm \mathrm{i} \sqrt{27}}{2}$
(A1)(A1)
Therefore $c=-\alpha \beta \gamma=-\left(\frac{3+\mathrm{i} \sqrt{27}}{2}\right)\left(\frac{3-\mathrm{i} \sqrt{27}}{2}\right) 3=-27$
A1
[6 marks]

METHOD 2

let the three roots be $a, a r, a r^{2} \quad$ M1
attempt at substitution of $a, a r, a r^{2}$ and p and q into equations from (a) M1
$6=a+a r+a r^{2}\left(=a\left(1+r+r^{2}\right)\right) \quad$ A1
$18=a^{2} r+a^{2} r^{3}+a^{2} r^{2}\left(=a^{2} r\left(1+r+r^{2}\right)\right) \quad$ A1
therefore 3 $=a r \quad$ A1
therefore $c=-a^{3} r^{3}=-3^{3}=-27 \quad$ A1
PDF Merger Mac - Unregistered ${ }_{\text {Total }[\text { [} 14 \text { mames }]}^{[\text {mars }]}$

Question 29

(a)

A1 for vertical asymptote and for the y-intercept $\frac{7}{4}$
A1 for general shape of $y=\left|\frac{7}{x-4}\right|$ including the x-axis as asymptote A1 for straight line with y-intercept 2 and x-intercept of -2

(b) METHOD 1

for $x>4$

$$
\begin{equation*}
(x+2)(x-4)=7 \tag{M1}
\end{equation*}
$$

$x^{2}-2 x-8=7 \Rightarrow x^{2}-2 x-15=0$
$(x-5)(x+3)=0$
(as $x>4$ then) $x=5$
Note: Award AO if $x=-3$ is also given as a solution.
for $x<4$
$(x+2)(x-4)=-7$
$\Rightarrow x^{2}-2 x-1=0$
$x=\frac{2 \pm \sqrt{4+4}}{2}=1 \pm \sqrt{2}$
(M1)A1

Note: Second $\boldsymbol{M} 1$ is dependent on first $\boldsymbol{M 1}$.

METHOD 2

$(x+2)^{2}=\frac{49}{(x-4)^{2}}$
M1
$x^{4}-4 x^{3}-12 x^{2}+32 x+15=0$
A1
$(x+3)(x-5)\left(x^{2}-2 x-1\right)=0$
$x=5$
A1
Note: Award AO if $x=-3$ is also given as a solution.

$$
x=\frac{2 \pm \sqrt{4+4}}{2}=1 \pm \sqrt{2}
$$

(M1)A1
[5 marks]
Total [8 marks]

Question 30

A1A1A1A1A1
Award A1 for correct shape, A1 for $x=-1$ clearly stated and asymptote shown,

Question 31

$$
\begin{aligned}
& \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{a x_{2}^{2}+b x_{2}+c-\left(a x_{1}^{2}+b x_{1}+c\right)}{x_{2}-x_{1}} \\
& =\frac{a\left(x_{2}^{2}-x_{1}^{2}\right)+b\left(x_{2}-x_{1}\right)}{x_{2}-x_{1}} \\
& =\frac{a\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right)+b\left(x_{2}-x_{1}\right)}{x_{2}-x_{1}} \\
& =a\left(x_{2}+x_{1}\right)+b \\
& \frac{f^{\prime}\left(x_{2}\right)+f^{\prime}\left(x_{1}\right)}{2}=\frac{\left(2 a x_{2}+b\right)+\left(2 a x_{1}+b\right)}{2} \\
& =\frac{2 a\left(x_{2}+x_{1}\right)+2 b}{2} \\
& =a\left(x_{2}+x_{1}\right)+b
\end{aligned}
$$

A1
so Hayley's conjecture is correct

Question 32

$$
\text { (a) } \quad \begin{aligned}
& a=1 \\
& c=3
\end{aligned}
$$

(b) use the coordinates of $(1,0)$ on the graph

$$
f(1)=0 \Rightarrow 1+\frac{b}{1-3}=0 \Rightarrow b=2
$$

Question 33

Question 34
(a)

graphs sketched correctly (condone missing b)
(b) $\frac{b^{2}}{2}=18$ $b=6$

A1A1
[2 marks]
(M1)A1
A1
[3 marks]
Total [5 marks]

Question 35

(a) sum $=0 \quad$ A1
product $=6$
[2 marks]
(b) $\quad P(1)=1-10+15-6=0$

M1A1
$\Rightarrow(z-1)$ is a factor of $P(z)$
Note: Accept use of division to show remainder is zero.
[2 marks]
(c) METHOD 1
$(z-1)^{3}\left(z^{2}+b z+c\right)=z^{5}-10 z^{2}+15 z-6$
by inspection $c=6 \quad$ A1
$\left(z^{3}-3 z^{2}+3 z-1\right)\left(z^{2}+b z+6\right)=z^{5}-10 z^{2}+15 z-6 \quad$ (M1)(A1)
$b=3$
A1
METHOD 2
α, β are two roots of the quadratic
$b=-(\alpha+\beta), c=\alpha \beta$
(A1)
from part (a) $1+1+1+\alpha+\beta=0$
(M1)
$\Rightarrow b=3$
$1 \times 1 \times 1 \times \alpha \beta=6$
(M1)
$\Rightarrow c=6$
Note: Award $\boldsymbol{F T}$ if $b=-7$ following through from their sum $=10$.

METHOD 3

$$
\left(z^{5}-10 z^{2}+15 z-6\right) \div(z-1)=z^{4}+z^{3}+z^{2}-9 z+6
$$

Note: This may have been seen in part (b).

$$
\begin{aligned}
& z^{4}+z^{3}+z^{2}-9 z+6 \div(z-1)=z^{3}+2 z^{2}+3 z-6 \\
& z^{3}+2 z^{2}+3 z-6 \div(z-1)=z^{2}+3 z+6
\end{aligned}
$$

(d) $z^{2}+3 z+6=0$
$z=\frac{-3 \pm \sqrt{9-4 \cdot 6}}{2}$
$=\frac{-3 \pm \sqrt{-15}}{2}$
$z=-\frac{3}{2} \pm \frac{\mathrm{i} \sqrt{15}}{2}$
A1
(or $z=1$)
Notes: Award the second $\boldsymbol{M} \mathbf{1}$ for an attempt to use the quadratic formula or to complete the square. Do not award FT from (c).
(e) (i) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}}=20 x^{3}-20 \quad$ M1A1

$$
\text { for } x>1,20 x^{3}-20>0 \Rightarrow \text { concave up }
$$

R1AG
(ii)

x-intercept at $(1,0)$
y-intercept at $(0,-6)$
stationary point of inflexion at $(1,0)$ with correct curvature either side

A1
A1

Question 36

(a) $-11 \leq f(x) \leq 21$
(b) $f^{-1}(x)=\sqrt[3]{\frac{x-5}{2}}$
(c) $-11 \leq x \leq 21,-2 \leq f^{-1}(x) \leq 2$

(M1)A1

[2 marks]
A1A1
[2 marks]
Total [6 marks]

Question 37
(a) $\quad q(4)=0$
(M1)
$192-176+4 k+8=0(24+4 k=0)$
A1
$k=-6$
A1
(b) $3 x^{3}-11 x^{2}-6 x+8=(x-4)\left(3 x^{2}+p x-2\right)$
equate coefficients of x^{2} :
(M1)
$-12+p=-11$
$p=1$
$(x-4)\left(3 x^{2}+x-2\right)$
(A1)
$(x-4)(3 x-2)(x+1)$
A1
[3 marks]

Note: Allow part (b) marks if any of this work is seen in part (a).
Note: Allow equivalent methods (eg, synthetic division) for the \boldsymbol{M} marks in each part.

Question 38

(a)

correct vertical asymptote
shape including correct horizontal asymptote

$$
\left(0,-\frac{1}{2}\right)
$$

Note: Accept $x=\frac{1}{3}$ and $y=-\frac{1}{2}$ marked on the axes.
(b) METHOD 1

$\frac{1-3 x}{x-2}=2$
(M1)
$\Rightarrow x=1$
A1
$-\left(\frac{1-3 x}{x-2}\right)=2$
(M1)
Note: Award this $\boldsymbol{M 1}$ for the line above or a correct sketch identifying a second critical value.

$$
\begin{aligned}
& \Rightarrow x=-3 \\
& \text { solution is }-3<x<1
\end{aligned}
$$

A1
A1
[5 marks]
METHOD 2
$|1-3 x|<2|x-2|, x \neq 2$
$1-6 x+9 x^{2}<4\left(x^{2}-4 x+4\right)$
(M1)A1
$1-6 x+9 x^{2}<4 x^{2}-16 x+16$
$5 x^{2}+10 x-15<0$
$x^{2}+2 x-3<0$
A1
$(x+3)(x-1)<0$
(M1)
solution is $-3<x<1$

A1
[5 marks]

Question 39

(a) attempt to make x the subject of $y=\frac{a x+b}{c x+d}$
$y(c x+d)=a x+b$
$x=\frac{d y-b}{a-c y}$
$f^{-1}(x)=\frac{d x-b}{a-c x}$,
Note: Do not allow $y=$ in place of $f^{-1}(x)$.
$x \neq \frac{a}{c}, \quad(x \in \mathbb{R})$
A1
Note: The final \boldsymbol{A} mark is independent.
(b) (i) $g(x)=2+\frac{1}{x-2}$

A1A1
(ii)

hyperbola shape, with single curves in second and fourth quadrants and third quadrant blank, including vertical asymptote $x=2$ horizontal asymptote $y=2$
intercepts $\left(\frac{3}{2}, 0\right),\left(0, \frac{3}{2}\right)$ A1
(c) the domain of $h \circ g$ is $x \leq \frac{3}{2}, x>2$
the range of $h \circ g$ is $y \geq 0, y \neq \sqrt{2}$

Question 40
(a)

straight line graph with correct axis intercepts
A1
modulus graph: V shape in upper half plane
A1
modulus graph having correct vertex and y-intercept
A1
(b) $\left(\frac{x}{2}+1\right)^{2}=(x-2)^{2}$
$\frac{x^{2}}{4}+x+1=x^{2}-4 x+4$
$0=\frac{3 x^{2}}{4}-5 x+3$
$3 x^{2}-20 x+12=0$
attempt to factorise (or equivalent)
M1
$(3 x-2)(x-6)=0$
$x=\frac{2}{3}$
A1
$x=6$
A1
[4 marks]

Question 41

(a)

concave down and symmetrical over correct domain
indication of maximum and minimum values of the function (correct range)
(b) $\quad a=0$

A1
Note: Award A1 for $a=0$ only if consistent with their graph.
(c) \quad (i) $1 \leq x \leq 5$

A1
Note: Allow FT from their graph.

$$
\text { (ii) } \begin{aligned}
y & =4 \cos x+1 \\
x & =4 \cos y+1 \\
\frac{x-1}{4} & =\cos y \\
\Rightarrow y & =\arccos \left(\frac{x-1}{4}\right) \\
\Rightarrow g^{-1}(x) & =\arccos \left(\frac{x-1}{4}\right)
\end{aligned}
$$

Question 42
(a) translation k units to the left (or equivalent)

A1
[1 mark]
(b) range is $(g(x) \in) \mathbb{R}$

A1
[1 mark]
continued...
(c)

their $f(x)$ translated k units to left (possibly shown by $x=-k$ marked on x-axis)
asymptote included and marked as $x=-k$A1
$f(x)$ intersects x-axis at $x=-1, x=1 \quad$ A1
$g(x)$ intersects x-axis at $x=-k-1, x=-k+1 \quad$ A1
$g(x)$ intersects y-axis at $y=\ln k$
te: Do not penalise candidates if their graphs "cross" as $x \rightarrow \pm \infty$.
te: Do not award FT marks from the candidate's part (a) to part (c).
(d) at $\mathrm{P} \ln (x+k)=\ln (-x)$
attempt to solve $x+k=-x$ (or equivalent)
$x=-\frac{k}{2} \Rightarrow y=\ln \left(\frac{k}{2}\right)\left(\right.$ or $y=\ln \left|\frac{k}{2}\right|$)
$\mathrm{P}\left(-\frac{k}{2}, \ln \frac{k}{2}\right)\left(\right.$ or $\left.\mathrm{P}\left(-\frac{k}{2}, \ln \left|\frac{k}{2}\right|\right)\right)$
(e) attempt to differentiate $\ln (-x)$ or $\ln |x|$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
A1
at $\mathrm{P}, \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{k}$
A1
recognition that tangent passes through origin $\Rightarrow \frac{y}{x}=\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\ln \left(\frac{k}{2}\right)}{-\frac{k}{2}}=\frac{-2}{k}$
$\ln \left(\frac{k}{2}\right)=1$
$\Rightarrow k=2 \mathrm{e}$

A1

Question 43
(a)

correct shape: two branches in correct quadrants with asymptotic behaviour
crosses at $(4,0)$ and $\left(0, \frac{4}{5}\right)$
asymptotes at $x=\frac{5}{2}$ and $y=\frac{1}{2}$
A1A1
[5 marks]
(b) (i) $x<\frac{5}{2}, x \geq 4$

A1A1
(ii) $\quad f(x) \geq 0, f(x) \neq \frac{1}{\sqrt{2}}(f(x) \in \mathbb{R})$

Note: Follow through from their graph, as long as it is a rectangular hyperbola.
Note: Allow range expressed in terms of y.

