Subject – Math(Standard Level) Topic - Algebra Year - Nov 2011 – Nov 2019

Question -1

[Maximum mark: 7]

Given that $\left(1 + \frac{2}{3}x\right)^n (3 + nx)^2 = 9 + 84x + \dots$, find the value of n.

Question -2

[Maximum mark: 7]

Find the value of

(a)
$$\log_2 40 - \log_2 5$$
;

[3 marks]

(b)
$$8^{\log_2 5}$$
.

[4 marks]

Question -3

[Maximum mark: 7]

Let $\log_3 p = 6$ and $\log_3 q = 7$.

(a) Find
$$\log_3 p^2$$
.

[2 marks]

(b) Find
$$\log_3\left(\frac{p}{q}\right)$$
.

[2 marks]

(c) Find
$$\log_3(9p)$$
.

[3 marks]

Question -4

[M]	aximun	n mark: 16]					
The	e first tl	hree terms of a infinite geometric sequence are $m-1$, 6, $m+4$, where $m \in \mathbb{Z}$.					
(a)	(i)	i) Write down an expression for the common ratio, r .					
	(ii)	Hence, show that m satisfies the equation $m^2 + 3m - 40 = 0$.	[4]				
(b)	(i)	Find the two possible values of m .					
	(ii)	Find the possible values of r .	[6]				
(c)	(c) The sequence has a finite sum.						
	(i)	State which value of r leads to this sum and justify your answer.					
	(ii)	Calculate the sum of the sequence.	[6]				
Ques	tion -5						
[Ma:	ximum	mark: 7]					
In ar	arithn	netic sequence, the third term is 10 and the fifth term is 16.					
(a)	Find	the common difference.	[2]				
(b)	(a) Find the common difference.(b) Find the first term.						
(c)	(c) Find the sum of the first 20 terms of the sequence.						

Question -6

[Maximum mark: 6]

- (a) Write down the value of
 - (i) $\log_3 27$;

(ii)
$$\log_8 \frac{1}{8}$$
;

(iii)
$$\log_{16} 4$$
.

(b) Hence, solve
$$\log_3 27 + \log_8 \frac{1}{8} - \log_{16} 4 = \log_4 x$$
. [3]

Question -7

[Maximum mark: 8]

The sums of the terms of a sequence follow the pattern

$$S_1 = 1 + k$$
, $S_2 = 5 + 3k$, $S_3 = 12 + 7k$, $S_4 = 22 + 15k$, ..., where $k \in \mathbb{Z}$.

(a) Given that
$$u_1 = 1 + k$$
, find u_2 , u_3 and u_4 . [4]

(b) Find a general expression for
$$u_n$$
. [4]

Question - 8

[Maximum mark: 6]

In an arithmetic sequence, the first term is 2 and the second term is 5.

Question -9

[Maximum mark: 6]

(a) Write the expression
$$3 \ln 2 - \ln 4$$
 in the form $\ln k$, where $k \in \mathbb{Z}$. [3]

(b) Hence or otherwise, solve
$$3 \ln 2 - \ln 4 = -\ln x$$
. [3]

Question -10

[Maximum mark: 6]

- (a) Given that $2^m = 8$ and $2^n = 16$, write down the value of m and of n.
- (b) Hence or otherwise solve $8^{2x+1} = 16^{2x-3}$. [4]

Question 11

[Maximum mark: 7]

In the expansion of $(3x+1)^n$, the coefficient of the term in x^2 is 135n, where $n \in \mathbb{Z}^+$. Find n.

Question 12

[Maximum mark: 6]

An arithmetic sequence has the first term $\ln a$ and a common difference $\ln 3$. The 13th term in the sequence is $8 \ln 9$. Find the value of a.

Question 13

[Maximum mark: 6]

Let $x = \ln 3$ and $y = \ln 5$. Write the following expressions in terms of x and y.

(a)
$$\ln\left(\frac{5}{3}\right)$$
. [2]

(b) $\ln 45$.

Question 14

[Maximum mark: 6]

Three consecutive terms of a geometric sequence are x-3, 6 and x+2. Find the possible values of x.

[Maximum mark: 13]

The first two terms of an infinite geometric sequence, in order, are

$$2\log_2 x$$
, $\log_2 x$, where $x > 0$.

(a) Find
$$r$$
. [2]

[2]

(b) Show that the sum of the infinite sequence is $4\log_2 x$.

The first three terms of an arithmetic sequence, in order, are

$$\log_2 x$$
, $\log_2 \left(\frac{x}{2}\right)$, $\log_2 \left(\frac{x}{4}\right)$, where $x > 0$.

(c) Find d, giving your answer as an integer. [4]

Let $S_{\rm 12}$ be the sum of the first 12 terms of the arithmetic sequence.

(d) Show that
$$S_{12} = 12 \log_2 x - 66$$
. [2]

(e) Given that S_{12} is equal to half the sum of the infinite geometric sequence, find x, giving your answer in the form 2^p , where $p \in \mathbb{Q}$.

Question 16

[Maximum mark: 8]

The first three terms of a geometric sequence are $\ln x^{16}$, $\ln x^{8}$, $\ln x^{4}$, for x > 0.

(a) Find the common ratio. [3]

(b) Solve
$$\sum_{k=1}^{\infty} 2^{5-k} \ln x = 64$$
. [5]

Question 17

[Maximum mark: 6]

In an arithmetic sequence, the first term is 3 and the second term is 7.

- (a) Find the common difference. [2]
- (b) Find the tenth term. [2]
- (c) Find the sum of the first ten terms of the sequence. [2]

[Maximum mark: 6]

The following figures consist of rows and columns of squares. The figures form a continuing pattern.

Figure 1 has two rows and one column. Figure 2 has three rows and two columns.

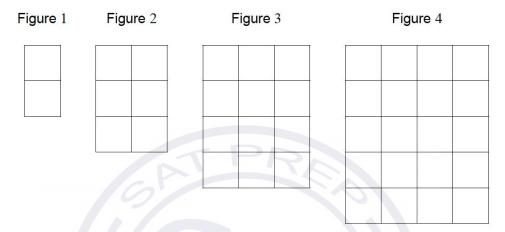


Figure 5 has p rows and q columns.

- Write down the value of
 - (i)

(ii)

[2]

Each small square has an area of $1\,\mathrm{cm}^2$. Let A_n be the total area of Figure n. The following table gives the first five values of A_n .

n	1	5020	103	4	5
$A_n (cm^2)$	2	6	12	20	k

Find the value of k. (b)

[2]

(c) Find an expression for A_n in terms of n. [2]

Question 19

[Maximum mark: 7]

Solve
$$\log_2(2\sin x) + \log_2(\cos x) = -1$$
, for $2\pi < x < \frac{5\pi}{2}$.

[Maximum mark: 6]

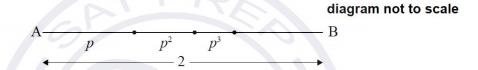
In an arithmetic sequence, the first term is 8 and the second term is 5.

- (a) Find the common difference. [2]
- (b) Find the tenth term. [2]
- (c) Find the sum of the first ten terms. [2]

Question 21

[Maximum mark: 14]

(a) The following diagram shows [AB], with length 2 cm. The line is divided into an infinite number of line segments. The diagram shows the first three segments.



The length of the line segments are p cm, p^2 cm, p^3 cm, ..., where 0 .

Show that
$$p = \frac{2}{3}$$
. [5]

(b) The following diagram shows [CD], with length $b \, \mathrm{cm}$, where b > 1. Squares with side lengths $k \, \mathrm{cm}$, $k^2 \, \mathrm{cm}$, $k^3 \, \mathrm{cm}$, ..., where 0 < k < 1, are drawn along [CD]. This process is carried on indefinitely. The diagram shows the first three squares.

The **total** sum of the areas of all the squares is $\frac{9}{16}$. Find the value of b. [9]

[Maximum mark: 7]

Consider $f(x) = \log_k (6x - 3x^2)$, for 0 < x < 2, where k > 0. The equation f(x) = 2 has exactly one solution. Find the value of k.

Question 23

[Maximum mark: 15]

The first two terms of an infinite geometric sequence are $u_1=18$ and $u_2=12\sin^2\theta$, where $0<\theta<2\pi$, and $\theta\neq\pi$.

- (a) (i) Find an expression for r in terms of θ .
 - (ii) Find the possible values of r.
- (b) Show that the sum of the infinite sequence is $\frac{54}{2 + \cos(2\theta)}$. [4]

[5]

(c) Find the values of θ which give the greatest value of the sum. [6]

Question 24

[Maximum mark: 7]

Let $f(x) = px^2 + qx - 4p$, where $p \neq 0$. Find the number of roots for the equation f(x) = 0. Justify your answer.

Question 25

[Maximum mark: 8]

An arithmetic sequence has $u_1 = \log_c(p)$ and $u_2 = \log_c(pq)$, where c > 1 and p, q > 0.

(a) Show that
$$d = \log_c(q)$$
. [2]

(b) Let
$$p=c^2$$
 and $q=c^3$. Find the value of $\sum_{n=1}^{20}u_n$. [6]

[Maximum mark: 15]

The first two terms of an infinite geometric sequence are $u_1=18$ and $u_2=12\sin^2\theta$, where $0<\theta<2\pi$, and $\theta\neq\pi$.

- (a) (i) Find an expression for r in terms of θ .
 - (ii) Find the possible values of r.

[5]

(b) Show that the sum of the infinite sequence is $\frac{54}{2 + \cos(2\theta)}$.

[6]

[4]

(c) Find the values of θ which give the greatest value of the sum.

Question 27

[Maximum mark: 7]

Let $f(x) = ax^2 - 4x - c$. A horizontal line, L, intersects the graph of f at x = -1 and x = 3.

- (a) (i) The equation of the axis of symmetry is x = p. Find p.
 - (ii) Hence, show that a = 2.

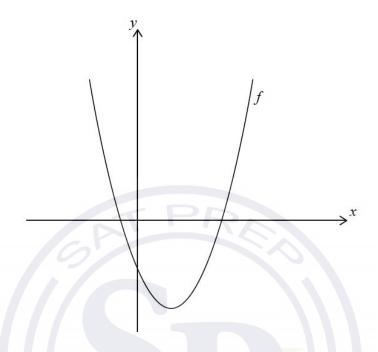
[4]

(b) The equation of L is y = 5. Find the value of c.

[3]

[Maximum mark: 16]

Let $f(x) = x^2 - 4x - 5$. The following diagram shows part of the graph of f.



(a) Find the x-intercepts of the graph of f.

(b) Find the equation of the axis of symmetry of the graph of f.

[2]

[5]

- (c) The function can be written in the form $f(x) = (x h)^2 + k$.
 - (i) Write down the value of h.

[4]

(ii) Find the value of k.

The graph of a second function, g, is obtained by a reflection of the graph of f in the y-axis, followed by a translation of $\begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

(d) Find the coordinates of the vertex of the graph of g.

[5]

[Maximum mark: 6]

Let $b = \log_2 a$, where a > 0. Write down each of the following expressions in terms of b.

(a)
$$\log_2 a^3$$

(b)
$$\log_2 8a$$
 [2]

(c)
$$\log_8 a$$
 [2]

Question 30

[Maximum mark: 6]

In an arithmetic sequence, $u_1 = -5$ and d = 3.

(a) Find
$$u_8$$
.

(b) Find the value of
$$n$$
 for which $u_n = 67$. [4]

Question 31

[Maximum mark: 7]

Solve
$$\log_4(2-x) = \log_{16}(13-4x)$$
.

Question 32

[Maximum mark: 17]

Consider $f(x) = \sqrt{x} \sin\left(\frac{\pi}{4}x\right)$ and $g(x) = \sqrt{x}$ for $x \ge 0$. The first time the graphs of f and g intersect is at x = 0.

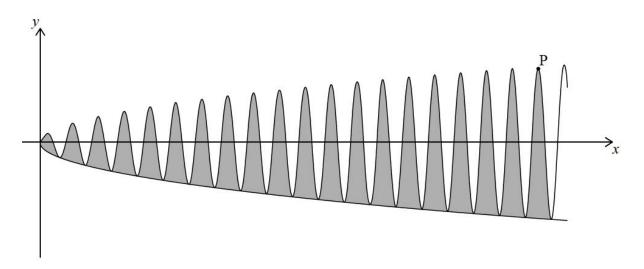
(a) Find the two smallest non-zero values of
$$x$$
 for which $f(x) = g(x)$. [5]

The set of all non-zero values that satisfy f(x) = g(x) can be described as an arithmetic sequence, $u_n = a + bn$ where $n \ge 1$.

(b) Find the value of
$$a$$
 and of b . [4]

(c) At point P, the graphs of
$$f$$
 and g intersect for the 21st time. Find the coordinates of P. [4]

The following diagram shows part of the graph of g reflected in the x-axis. It also shows part of the graph of f and the point P.



(d) Find an expression for the area of the shaded region. Do not calculate the value of the expression.

[4]

[2]

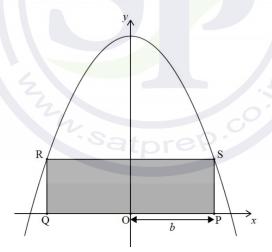
Question33

[Maximum mark: 16]

Let
$$f(x) = 9 - x^2$$
, $x \in \mathbb{R}$.

(a) Find the x-intercepts of the graph of f.

The following diagram shows part of the graph of f.



Rectangle PQRS is drawn with P and Q on the x-axis and R and S on the graph of f.

Let OP = b.

- (b) Show that the area of PQRS is $18b 2b^3$. [2]
- (c) Hence find the value of b such that the area of PQRS is a maximum. [5]

Consider another function $g(x) = (x-3)^2 + k$, $x \in \mathbb{R}$.

- (d) Show that when the graphs of f and g intersect, $2x^2 6x + k = 0$. [2]
- (e) Given that the graphs of f and g intersect only once, find the value of k. [5]

Question 34

[Maximum mark: 6]

Consider the function f, with derivative $f'(x) = 2x^2 + 5kx + 3k^2 + 2$ where $x, k \in \mathbb{R}$.

- (a) Show that the discriminant of f'(x) is $k^2 16$. [2]
- (b) Given that f is an increasing function, find all possible values of k. [4]

Question 35

[Maximum mark: 6]

Consider
$$\binom{11}{a} = \frac{11!}{a! \, 9!}$$
.

- (a) Find the value of a. [2]
- (b) Hence or otherwise find the coefficient of the term in x^9 in the expansion of $(x+3)^{11}$. [4] Question 36

[Maximum mark: 6]

In an arithmetic sequence, $u_2 = 5$ and $u_3 = 11$.

- (a) Find the common difference. [2]
- (b) Find the first term. [2]
- (c) Find the sum of the first 20 terms. [2]