Subject - Math(Standard Level)
 Topic - Algebra
 Year - Nov 2011 - Nov 2019

Question -1

[Maximum mark: 7]
Given that $\left(1+\frac{2}{3} x\right)^{n}(3+n x)^{2}=9+84 x+\ldots$, find the value of n.

Question -2
[Maximum mark: 7]
Find the value of
(a) $\log _{2} 40-\log _{2} 5$;
(b) $8^{\log _{2} 5}$.

Question-3
[Maximum mark: 7]
Let $\log _{3} p=6$ and $\log _{3} q=7$.
(a) Find $\log _{3} p^{2}$.
(b) Find $\log _{3}\left(\frac{p}{q}\right)$.
[2 marks]
(c) Find $\log _{3}(9 p)$.

Question -4

[Maximum mark: 16]

The first three terms of a infinite geometric sequence are $m-1,6, m+4$, where $m \in \mathbb{Z}$.
(a) (i) Write down an expression for the common ratio, r.
(ii) Hence, show that m satisfies the equation $m^{2}+3 m-40=0$.
(b) (i) Find the two possible values of m.
(ii) Find the possible values of r.
(c) The sequence has a finite sum.
(i) State which value of r leads to this sum and justify your answer.
(ii) Calculate the sum of the sequence

Question -5

[Maximum mark: 7]

In an arithmetic sequence, the third term is 10 and the fifth term is 16 .
(a) Find the common difference. [2]
(b) Find the first term. [2]
(c) Find the sum of the first 20 terms of the sequence.

Question -6

[Maximum mark: 6]
(a) Write down the value of
(i) $\log _{3} 27$;
(ii) $\quad \log _{8} \frac{1}{8}$;
(iii) $\log _{16} 4$.
(b) Hence, solve $\log _{3} 27+\log _{8} \frac{1}{8}-\log _{16} 4=\log _{4} x$.

Question -7

[Maximum mark: 8]
The sums of the terms of a sequence follow the pattern

$$
S_{1}=1+k, S_{2}=5+3 k, S_{3}=12+7 k, S_{4}=22+15 k, \ldots, \text { where } k \in \mathbb{Z} .
$$

(a) Given that $u_{1}=1+k$, find u_{2}, u_{3} and u_{4}.
(b) Find a general expression for u_{n}.

Question-8
[Maximum mark: 6]
In an arithmetic sequence, the first term is 2 and the second term is 5 .
(a) Find the common difference. [2]
(b) Find the eighth term. [2]
(c) Find the sum of the first eight terms of the sequence. [2]

Question -9

[Maximum mark: 6]
(a) Write the expression $3 \ln 2-\ln 4$ in the form $\ln k$, where $k \in \mathbb{Z}$.
(b) Hence or otherwise, solve $3 \ln 2-\ln 4=-\ln x$.

Question -10

[Maximum mark: 6]
(a) Given that $2^{m}=8$ and $2^{n}=16$, write down the value of m and of n.
(b) Hence or otherwise solve $8^{2 x+1}=16^{2 x-3}$.

Question 11

[Maximum mark: 7]
In the expansion of $(3 x+1)^{n}$, the coefficient of the term in x^{2} is $135 n$, where $n \in \mathbb{Z}^{+}$. Find n.

Question 12

[Maximum mark: 6]
An arithmetic sequence has the first term $\ln a$ and a common difference $\ln 3$. The 13th term in the sequence is $8 \ln 9$. Find the value of a.

Question 13

[Maximum mark: 6]
Let $x=\ln 3$ and $y=\ln 5$. Write the following expressions in terms of x and y.
(a) $\quad \ln \left(\frac{5}{3}\right)$.
(b) $\ln 45$.

Question 14

[Maximum mark: 6]
Three consecutive terms of a geometric sequence are $x-3,6$ and $x+2$. Find the possible values of x.

Question 15

[Maximum mark: 13]
The first two terms of an infinite geometric sequence, in order, are

$$
2 \log _{2} x, \log _{2} x, \text { where } x>0 .
$$

(a) Find r.
(b) Show that the sum of the infinite sequence is $4 \log _{2} x$.

The first three terms of an arithmetic sequence, in order, are

$$
\log _{2} x, \log _{2}\left(\frac{x}{2}\right), \log _{2}\left(\frac{x}{4}\right), \text { where } x>0 .
$$

(c) Find d, giving your answer as an integer.

Let S_{12} be the sum of the first 12 terms of the arithmetic sequence.
(d) Show that $S_{12}=12 \log _{2} x-66$.
(e) Given that S_{12} is equal to half the sum of the infinite geometric sequence, find x, giving your answer in the form 2^{p}, where $p \in \mathbb{Q}$.

Question 16

[Maximum mark: 8]
The first three terms of a geometric sequence are $\ln x^{16}, \ln x^{8}, \ln x^{4}$, for $x>0$.
(a) Find the common ratio.
(b) Solve $\sum_{k=1}^{\infty} 2^{5-k} \ln x=64$.

Question 17

[Maximum mark: 6]
In an arithmetic sequence, the first term is 3 and the second term is 7 .
(a) Find the common difference.
(b) Find the tenth term.
(c) Find the sum of the first ten terms of the sequence.

Question 18
[Maximum mark: 6]
The following figures consist of rows and columns of squares. The figures form a continuing pattern.

Figure 1 has two rows and one column. Figure 2 has three rows and two columns.
Figure 1
Figure 2
Figure 3
Figure 4

Figure 5 has p rows and q columns.
(a) Write down the value of
(i) p;
(ii) q.

Each small square has an area of $1 \mathrm{~cm}^{2}$. Let A_{n} be the total area of Figure n. The following table gives the first five values of A_{n}.

n	1	2	3	4	5
$A_{n}\left(\mathrm{~cm}^{2}\right)$	2	6	12	20	k

(b) Find the value of k.
(c) Find an expression for A_{n} in terms of n.

Question 19
[Maximum mark: 7]
Solve $\log _{2}(2 \sin x)+\log _{2}(\cos x)=-1$, for $2 \pi<x<\frac{5 \pi}{2}$.

Question 20

[Maximum mark: 6]
In an arithmetic sequence, the first term is 8 and the second term is 5 .
(a) Find the common difference.
(b) Find the tenth term.
(c) Find the sum of the first ten terms.

Question 21

[Maximum mark: 14]
(a) The following diagram shows $[\mathrm{AB}]$, with length 2 cm . The line is divided into an infinite number of line segments. The diagram shows the first three segments.

The length of the line segments are $p \mathrm{~cm}, p^{2} \mathrm{~cm}, p^{3} \mathrm{~cm}, \ldots$, where $0<p<1$.
Show that $p=\frac{2}{3}$.
(b) The following diagram shows [CD], with length $b \mathrm{~cm}$, where $b>1$. Squares with side lengths $k \mathrm{~cm}, k^{2} \mathrm{~cm}, k^{3} \mathrm{~cm}, \ldots$, where $0<k<1$, are drawn along [CD]. This process is carried on indefinitely. The diagram shows the first three squares.

The total sum of the areas of all the squares is $\frac{9}{16}$. Find the value of b.

Question 22

[Maximum mark: 7]
Consider $f(x)=\log _{k}\left(6 x-3 x^{2}\right)$, for $0<x<2$, where $k>0$.
The equation $f(x)=2$ has exactly one solution. Find the value of k.
Question 23
[Maximum mark: 15]
The first two terms of an infinite geometric sequence are $u_{1}=18$ and $u_{2}=12 \sin ^{2} \theta$, where $0<\theta<2 \pi$, and $\theta \neq \pi$.
(a) (i) Find an expression for r in terms of θ.
(ii) Find the possible values of r.
(b) Show that the sum of the infinite sequence is $\frac{54}{2+\cos (2 \theta)}$.
(c) Find the values of θ which give the greatest value of the sum.

Question 24
[Maximum mark: 7]
Let $f(x)=p x^{2}+q x-4 p$, where $p \neq 0$. Find the number of roots for the equation $f(x)=0$. Justify your answer.

Question 25
[Maximum mark: 8]
An arithmetic sequence has $u_{1}=\log _{c}(p)$ and $u_{2}=\log _{c}(p q)$, where $c>1$ and $p, q>0$.
(a) Show that $d=\log _{c}(q)$.
(b) Let $p=c^{2}$ and $q=c^{3}$. Find the value of $\sum_{n=1}^{20} u_{n}$.

Question 26
[Maximum mark: 15]
The first two terms of an infinite geometric sequence are $u_{1}=18$ and $u_{2}=12 \sin ^{2} \theta$, where $0<\theta<2 \pi$, and $\theta \neq \pi$.
(a) (i) Find an expression for r in terms of θ.
(ii) Find the possible values of r.
(b) Show that the sum of the infinite sequence is $\frac{54}{2+\cos (2 \theta)}$.
(c) Find the values of θ which give the greatest value of the sum.

Question 27
[Maximum mark: 7]
Let $f(x)=a x^{2}-4 x-c$. A horizontal line, L, intersects the graph of f at $x=-1$ and $x=3$.
(a) (i) The equation of the axis of symmetry is $x=p$. Find p.
(ii) Hence, show that $a=2$.
(b) The equation of L is $y=5$. Find the value of c.

Question 28

[Maximum mark: 16]

Let $f(x)=x^{2}-4 x-5$. The following diagram shows part of the graph of f.

(a) Find the x-intercepts of the graph of f.
(b) Find the equation of the axis of symmetry of the graph of f.
(c) The function can be written in the form $f(x)=(x-h)^{2}+k$.
(i) Write down the value of h.
(ii) Find the value of k.

The graph of a second function, g, is obtained by a reflection of the graph of f in the y-axis, followed by a translation of $\binom{-3}{6}$.
(d) Find the coordinates of the vertex of the graph of g.

Question 29

[Maximum mark: 6]
Let $b=\log _{2} a$, where $a>0$. Write down each of the following expressions in terms of b.
(a) $\log _{2} a^{3}$
(b) $\log _{2} 8 a$
(c) $\log _{8} a$

Question 30
[Maximum mark: 6]
In an arithmetic sequence, $u_{1}=-5$ and $d=3$.
(a) Find u_{8}.
(b) Find the value of n for which $u_{n}=67$.

Question 31
[Maximum mark: 7]
Solve $\log _{4}(2-x)=\log _{16}(13-4 x)$.

Question 32

[Maximum mark: 17]
Consider $f(x)=\sqrt{x} \sin \left(\frac{\pi}{4} x\right)$ and $g(x)=\sqrt{x}$ for $x \geq 0$. The first time the graphs of f and g intersect is at $x=0$.
(a) Find the two smallest non-zero values of x for which $f(x)=g(x)$.

The set of all non-zero values that satisfy $f(x)=g(x)$ can be described as an arithmetic sequence, $u_{n}=a+b n$ where $n \geq 1$.
(b) Find the value of a and of b.
(c) At point P , the graphs of f and g intersect for the 21 st time. Find the coordinates of P .

The following diagram shows part of the graph of g reflected in the x-axis. It also shows part of the graph of f and the point P .

(d) Find an expression for the area of the shaded region. Do not calculate the value of the expression.

Question33
[Maximum mark: 16]
Let $f(x)=9-x^{2}, x \in \mathbb{R}$.
(a) Find the x-intercepts of the graph of f.

The following diagram shows part of the graph of f.

Rectangle PQRS is drawn with P and Q on the x-axis and R and S on the graph of f. Let $\mathrm{OP}=b$.
(b) Show that the area of PQRS is $18 b-2 b^{3}$.
(c) Hence find the value of b such that the area of PQRS is a maximum.

Consider another function $g(x)=(x-3)^{2}+k, x \in \mathbb{R}$.
(d) Show that when the graphs of f and g intersect, $2 x^{2}-6 x+k=0$.
(e) Given that the graphs of f and g intersect only once, find the value of k.

Question 34
[Maximum mark: 6]
Consider the function f, with derivative $f^{\prime}(x)=2 x^{2}+5 k x+3 k^{2}+2$ where $x, k \in \mathbb{R}$.
(a) Show that the discriminant of $f^{\prime}(x)$ is $k^{2}-16$.
(b) Given that f is an increasing function, find all possible values of k.

Question 35
[Maximum mark: 6]
Consider $\binom{11}{a}=\frac{11!}{a!9!}$.
(a) Find the value of a.
(b) Hence or otherwise find the coefficient of the term in x^{9} in the expansion of $(x+3)^{11}$.

Question 36
[Maximum mark: 6]
In an arithmetic sequence, $u_{2}=5$ and $u_{3}=11$.
(a) Find the common difference.
(b) Find the first term.
(c) Find the sum of the first 20 terms.

