
Subject – Math (Standard Level) Topic - Functions and Equations

Year - Nov 2011 - Nov 2019

Question -1

[Maximum mark: 6]

Let f be a quadratic function. Part of the graph of f is shown below.

The vertex is at P(4, 2) and the y-intercept is at Q(0, 6).

(a) Write down the equation of the axis of symmetry.

[1 mark]

The function f can be written in the form $f(x) = a(x-h)^2 + k$.

(b) Write down the value of h and of k.

[2 marks]

(c) Find a.

[3 marks]

Question -2

[Maximum mark: 8]

Let $f(x) = \frac{1}{2}x^2 + kx + 8$, where $k \in \mathbb{Z}$.

(a) Find the values of k such that f(x) = 0 has two equal roots.

[4 marks]

(b) Each value of k is equally likely for $-5 \le k \le 5$. Find the probability that f(x) = 0 has no roots.

[4 marks]

[Maximum mark: 13]

Let $f(x) = \log_p(x+3)$ for x > -3. Part of the graph of f is shown below.

The graph passes through A(6, 2), has an x-intercept at (-2, 0) and has an asymptote at x = -3.

(a) Find p. [4 marks]

The graph of f is reflected in the line y = x to give the graph of g.

- (b) (i) Write down the y-intercept of the graph of g.
 - (ii) Sketch the graph of g, noting clearly any asymptotes and the image of A. [5 marks]
- (c) Find g(x). [4 marks]

[Maximum mark: 6]

Let f(x) = 2x - 1 and $g(x) = 3x^2 + 2$.

(a) Find $f^{-1}(x)$.

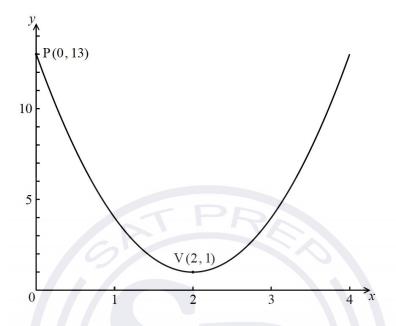
[3 marks]

(b) Find $(f \circ g)(1)$.

[3 marks]

Question -5

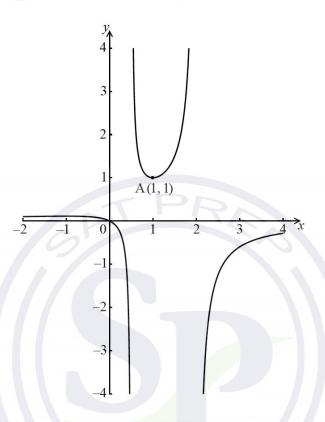
[Maximum mark: 7]


Consider the equation $x^2 + (k-1)x + 1 = 0$, where k is a real number.

Find the values of k for which the equation has two **equal** real solutions.

[Maximum mark: 15]

The following diagram shows the graph of a quadratic function f, for $0 \le x \le 4$.

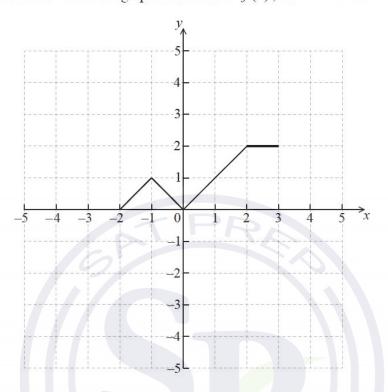


The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

- (a) The function can be written in the form $f(x) = a(x-h)^2 + k$.
 - (i) Write down the value of h and of k.
 - (ii) Show that a = 3. [4 marks]
- (b) Find f(x), giving your answer in the form $Ax^2 + Bx + C$. [3 marks]
- (c) Calculate the area enclosed by the graph of f, the x-axis, and the lines x = 2 and x = 4. [8 marks]

[Maximum mark: 16]

Let $f(x) = \frac{x}{-2x^2 + 5x - 2}$ for $-2 \le x \le 4$, $x \ne \frac{1}{2}$, $x \ne 2$. The graph of f is given below.

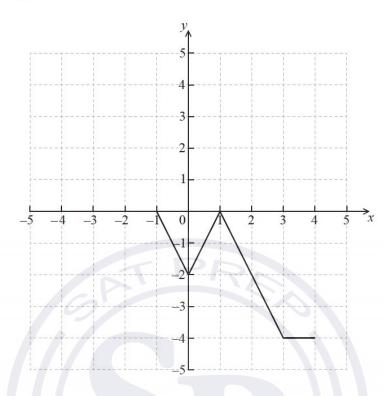


The graph of f has a local minimum at A(1, 1) and a local maximum at B.

- (a) Use the quotient rule to show that $f'(x) = \frac{2x^2 2}{(-2x^2 + 5x 2)^2}$. [6 marks]
- (b) Hence find the coordinates of B. [7 marks]
- (c) Given that the line y = k does not meet the graph of f, find the possible values of k. [3 marks]

[Maximum mark: 6]

The diagram below shows the graph of a function f(x), for $-2 \le x \le 3$.



(a) Sketch the graph of f(-x) on the grid below.

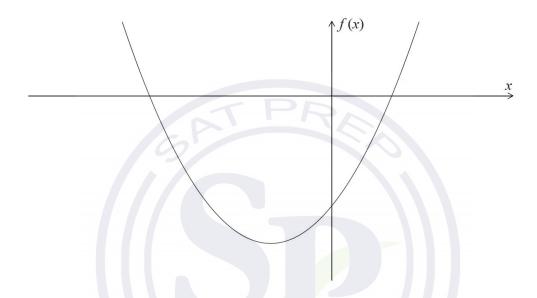
[2 marks]

(b) The graph of f is transformed to obtain the graph of g. The graph of g is shown below.

The function g can be written in the form g(x) = af(x+b). Write down the value of a and of b.

[4 marks]

	-		•		1			Ż	•					•	•			•		•	٠	•	•	•			•	•			P			•	Ż			•	•	•		•		• 0			•
•									٠							. ,	 ÷							•								7			٠			•	•		 	٠		•		٠	
35	•			٠.	•	:					7	7							•	•	•		•	• 0	•				C		?				•						 	•	•	•			•
3.5	•					3.5	•										1							E					•						•				•				٠	• 0			÷
	•				•	•			0	•										·			•								•					•		ų.	•		 			•20		•	•
	•				•	•		 •	•				•	•			 •	•			•	•	•	•			٠							1.	•			•			 			•			•
1									0								 7.									 					·			•			 	٠.	i.o		 			•			
12	•								0				•				 7.																	•				٠.	18		 						
						8.			-								 7.				•	•												٠.			 	-			 			•			
									-	•			•				 ·				•	•			•	 								<u>.</u>							 			•			


[Maximum mark: 6]

The equation $x^2 - 3x + k^2 = 4$ has two distinct real roots. Find the possible values of k.

Question -9

[Maximum mark: 6]

The diagram below shows part of the graph of f(x) = (x-1)(x+3).

(a) Write down the x-intercepts of the graph of f.

[2 marks]

(b) Find the coordinates of the vertex of the graph of f.

[4 marks]

Question -10

[Maximum mark: 6]

Let $f(x) = \sqrt{x-5}$, for $x \ge 5$.

(a) Find $f^{-1}(2)$.

[3 marks]

(b) Let g be a function such that g^{-1} exists for all real numbers. Given that g(30) = 3, find $(f \circ g^{-1})(3)$.

[3 marks]

[Maximum mark: 8]

The equation $x^2 + (k+2)x + 2k = 0$ has two distinct real roots.

Find the possible values of k.

Question 12

[Maximum mark: 14]

Let f(x) = 3x - 2 and $g(x) = \frac{5}{3x}$, for $x \neq 0$.

(a) Find
$$f^{-1}(x)$$
. [2]

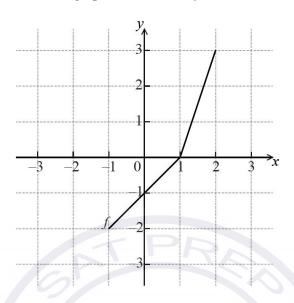
(b) Show that
$$(g \circ f^{-1})(x) = \frac{5}{x+2}$$
. [2]

Let $h(x) = \frac{5}{x+2}$, for $x \ge 0$. The graph of h has a horizontal asymptote at y = 0.

(c) (i) Find the y-intercept of the graph of h.

- (d) For the graph of h^{-1} ,
 - (i) write down the *x*-intercept;
 - (ii) write down the equation of the vertical asymptote. [2]
- (e) Given that $h^{-1}(a) = 3$, find the value of a. [3]

Question 13

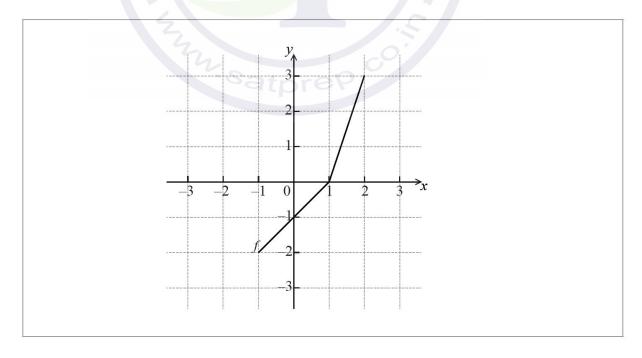

[Maximum mark: 6]

Let f(x) = 4x - 2 and $g(x) = -2x^2 + 8$.

(a) Find
$$f^{-1}(x)$$
. [3 marks]

(b) Find
$$(f \circ g)(1)$$
. [3 marks]

The diagram below shows the graph of a function f, for $-1 \le x \le 2$.



- (a) Write down the value of
 - (i) f(2);
 - (ii) $f^{-1}(-1)$.

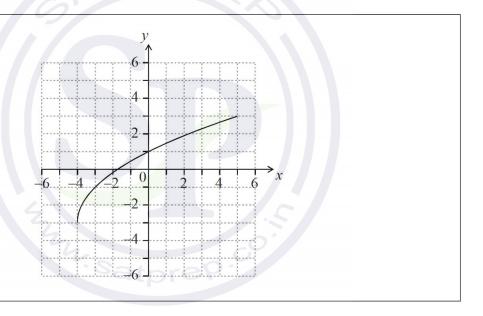
[3 marks]

(b) Sketch the graph of f^{-1} on the grid below.

[3 marks]

[Maximum mark: 5]

Let $f(x) = a(x-h)^2 + k$. The vertex of the graph of f is at (2,3) and the graph passes through (1,7).


(a) Write down the value of h and of k. [2]

(b) Find the value of a. [3]

Question 16

[Maximum mark: 6]

The following diagram shows the graph of y = f(x), for $-4 \le x \le 5$.

- (a) Write down the value of
 - (i) f(-3);

(ii)
$$f^{-1}(1)$$
. [2]

(b) Find the domain of f^{-1} . [2]

(c) On the grid above, sketch the graph of f^{-1} . [2]

[Maximum mark: 15]

Let $f(x) = 3x^2 - 6x + p$. The equation f(x) = 0 has two equal roots.

(a) (i) Write down the **value** of the discriminant.

(ii) Hence, show that
$$p = 3$$
. [3]

The graph of f has its vertex on the x-axis.

(b) Find the coordinates of the vertex of the graph of
$$f$$
. [4]

(c) Write down the solution of
$$f(x) = 0$$
.

(d) The function can be written in the form $f(x) = a(x-h)^2 + k$. Write down the value of

(i)
$$a$$
;

(ii)
$$h$$
;

(e) The graph of a function g is obtained from the graph of f by a reflection of f in the x-axis, followed by a translation by the vector $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$. Find g, giving your answer in the form $g(x) = Ax^2 + Bx + C$.

Question 18

[Maximum mark: 7]

Let
$$f(x) = x^2 + x - 6$$
.

(a) Write down the y-intercept of the graph of
$$f$$
. [1]

(b) Solve
$$f(x) = 0$$
. [3]

[Maximum mark: 6]

Let $f(x) = p + \frac{9}{x - q}$, for $x \ne q$. The line x = 3 is a vertical asymptote to the graph of f.

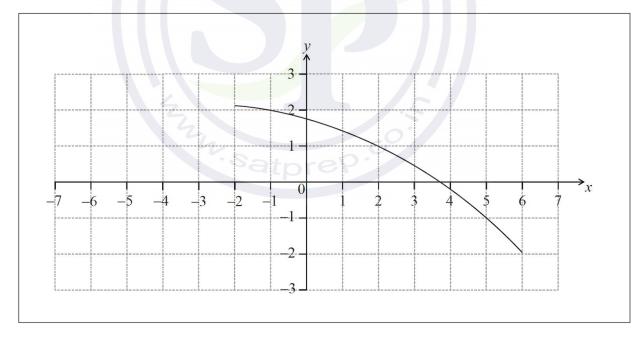
(a) Write down the value of q.

[1]

The graph of f has a y-intercept at (0, 4).

(b) Find the value of p.

[4]


(c) Write down the equation of the horizontal asymptote of the graph of f.

[1]

Question 20

[Maximum mark: 7]

The following diagram shows the graph of a function f.

(a) Find
$$f^{-1}(-1)$$
.

[2]

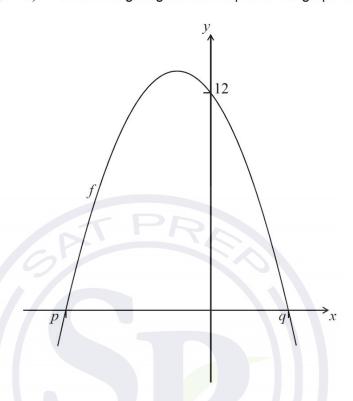
(b) Find
$$(f \circ f)(-1)$$
.

[3]

(c) On the same diagram, sketch the graph of y = f(-x).

[2]

[Maximum mark: 6]


Let
$$f(x) = px^2 + (10 - p)x + \frac{5}{4}p - 5$$
.

- (a) Show that the discriminant of f(x) is $100 4p^2$. [3]
- (b) Find the values of p so that f(x) = 0 has two **equal** roots. [3]

[Maximum mark: 15]

Let f(x) = a(x+3)(x-1). The following diagram shows part of the graph of f.

The graph has x-intercepts at (p, 0) and (q, 0), and a y-intercept at (0, 12).

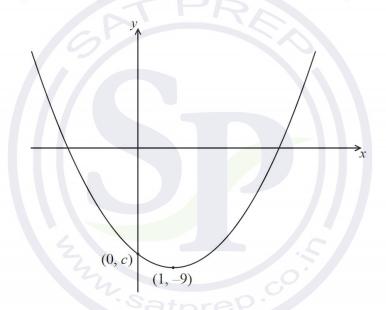
- (a) (i) Write down the value of p and of q.
 - (ii) Find the value of a. [6]
- (b) Find the equation of the axis of symmetry of the graph of f. [3]
- (c) Find the largest value of f. [3]

The function f can also be written as $f(x) = a(x - h)^2 + k$.

(d) Find the value of h and of k. [3]

[Maximum mark: 6]

Let $f(x) = (x-5)^3$, for $x \in \mathbb{R}$.


(a) Find
$$f^{-1}(x)$$
. [3]

(b) Let
$$g$$
 be a function so that $(f \circ g)(x) = 8x^6$. Find $g(x)$. [3]

Question 24

[Maximum mark: 16]

The following diagram shows part of the graph of a quadratic function f.

The vertex is at (1, -9), and the graph crosses the *y*-axis at the point (0, c).

The function can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down the value of
$$h$$
 and of k . [2]

(b) Find the value of
$$c$$
. [2]

Let $g(x) = -(x-3)^2 + 1$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.

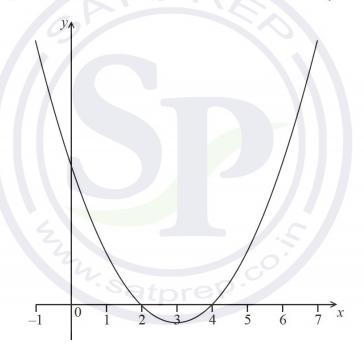
(c) Find the value of
$$p$$
 and of q . [5]

(d) Find the
$$x$$
-coordinates of the points of intersection of the graphs of f and g . [7]

[Maximum mark: 5]

Let f(x) = 8x + 3 and g(x) = 4x, for $x \in \mathbb{R}$.

(a) Write down
$$g(2)$$
.


(b) Find
$$(f \circ g)(x)$$
. [2]

(c) Find
$$f^{-1}(x)$$
. [2]

Question 26

[Maximum mark: 6]

The following diagram shows part of the graph of a quadratic function f.

The vertex is at (3, -1) and the *x*-intercepts at 2 and 4.

The function f can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down the value of h and of k.

[2]

[1]

The function can also be written in the form f(x) = (x - a)(x - b).

(b) Write down the value of a and of b.

[2]

(c) Find the *y*-intercept.

[2]

[Maximum mark: 7]

Let $f(x)=6x\sqrt{1-x^2}$, for $-1\leq x\leq 1$, and $g(x)=\cos{(x)}$, for $0\leq x\leq \pi$. Let $h(x)=(f\circ g)(x)$.

- (a) Write h(x) in the form $a \sin(bx)$, where $a, b \in \mathbb{Z}$.
- (b) Hence find the range of h. [2]

[5]

Question 28

[Maximum mark: 6]

Let $f(x) = x^2 - 4x + 5$.

(a) Find the equation of the axis of symmetry of the graph of f. [2]

The function can also be expressed in the form $f(x) = (x - h)^2 + k$.

- (b) (i) Write down the value of h.
 - (ii) Find the value of k. [4]

Question 29

[Maximum mark: 7]

Let $f(x) = m - \frac{1}{x}$, for $x \ne 0$. The line y = x - m intersects the graph of f in two distinct points. Find the possible values of m.

Question 30

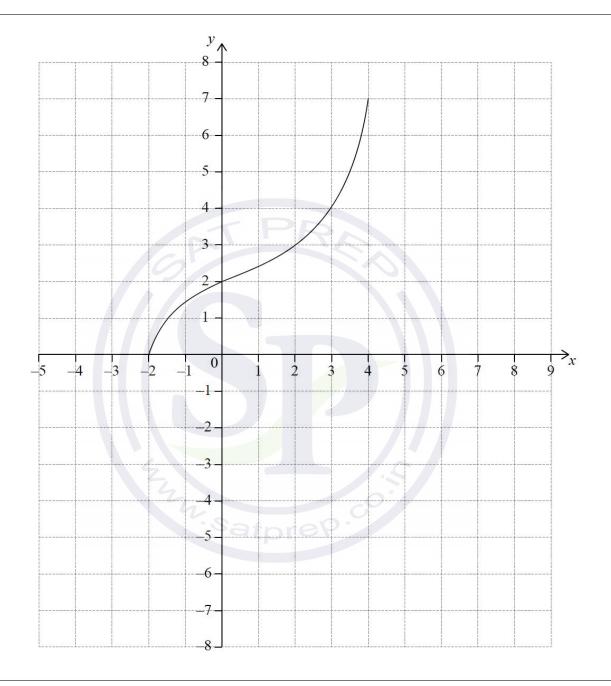
[Maximum mark: 5]

Let f(x) = 5x and $g(x) = x^2 + 1$, for $x \in \mathbb{R}$.

(a) Find
$$f^{-1}(x)$$
. [2]

(b) Find
$$(f \circ g)(7)$$
. [3]

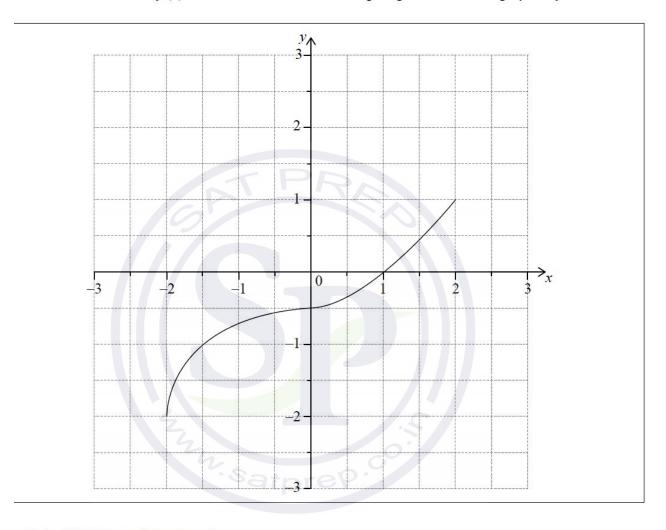
[Maximum mark: 14]


A quadratic function f can be written in the form f(x) = a(x-p)(x-3). The graph of f has axis of symmetry x = 2.5 and y-intercept at (0, -6).

- (a) Find the value of p. [3]
- (b) Find the value of a. [3]
- (c) The line y = kx 5 is a tangent to the curve of f. Find the values of k. [8]

[Maximum mark: 6]

The following diagram shows the graph of a function f, with domain $-2 \le x \le 4$.



The points (-2,0) and (4,7) lie on the graph of f.

Write down the range of f. [1] (a) Write down (b) (i) f(2); $f^{-1}(2)$. [2] (ii) On the grid opposite, sketch the graph of f^{-1} . [3] Question 33 [Maximum mark: 6] Let $f(x) = 1 + e^{-x}$ and g(x) = 2x + b, for $x \in \mathbb{R}$, where b is a constant. (a) Find $(g \circ f)(x)$. [2] Given that $\lim (g \circ f)(x) = -3$, find the value of b. [4] (b) Question 34 [Maximum mark: 7] Consider $f(x) = \log_k(6x - 3x^2)$, for 0 < x < 2, where k > 0. The equation f(x) = 2 has exactly one solution. Find the value of k. Question 35 [Maximum mark: 6] Let $f(x) = \sqrt{x+2}$ for $x \ge -2$ and g(x) = 3x - 7 for $x \in \mathbb{R}$. (a) Write down f(14). [1] (b) Find $(g \circ f)(14)$. [2] Find $g^{-1}(x)$. (c) [3]

[Maximum mark: 7]

Consider a function f(x), for $-2 \le x \le 2$. The following diagram shows the graph of f.

- (a) Write down the value of
 - (i) f(0);

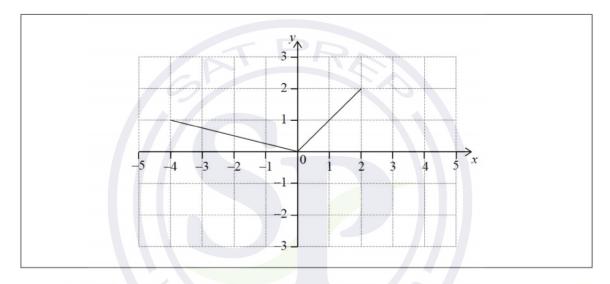
(ii)
$$f^{-1}(1)$$
. [2]

- (b) Write down the range of f^{-1} . [1]
- (c) On the grid above, sketch the graph of f^{-1} . [4]

[Maximum mark: 7]

Let $f(x) = ax^2 - 4x - c$. A horizontal line, L, intersects the graph of f at x = -1 and x = 3.

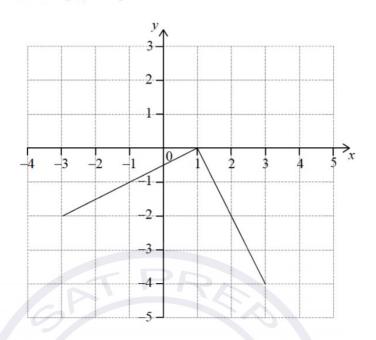
- (a) (i) The equation of the axis of symmetry is x = p. Find p.
 - (ii) Hence, show that a = 2.


[4]

(b) The equation of L is y = 5. Find the value of c.

[3]

Question 38


The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

(a) On the same axes, sketch the graph of f(-x).

[2]

(b) Another function, g, can be written in the form $g(x) = a \times f(x+b)$. The following diagram shows the graph of g.

Write down the value of a and of b.

[4]

Question 39

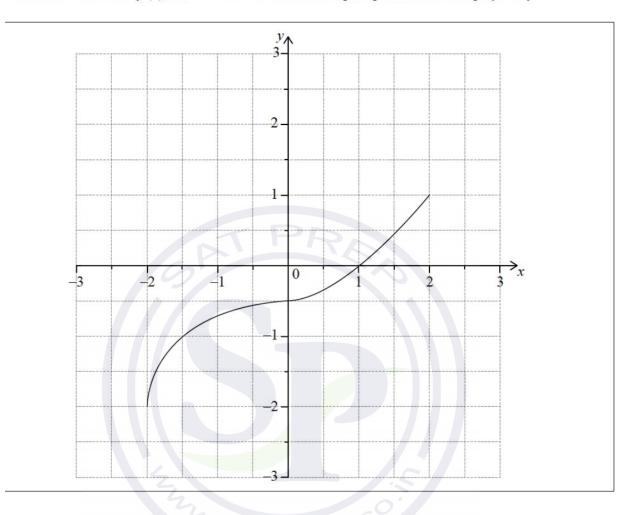
[Maximum mark: 5]

Two functions, f and g, are defined in the following table.

x	-2	1	3	6
f(x)	6	3	1	-2
g(x)	-7	-2	5	9

(a) Write down the value of f(1).

[1]


(b) Find the value of $(g \circ f)(1)$.

[2] [2]

(c) Find the value of $g^{-1}(-2)$.

[Maximum mark: 7]

Consider a function f(x), for $-2 \le x \le 2$. The following diagram shows the graph of f.

(a) Write down the value of

(i) f(0);

(ii)
$$f^{-1}(1)$$
. [2]

(b) Write down the range of f^{-1} . [1]

(c) On the grid above, sketch the graph of f^{-1} . [4]

[Maximum mark: 6]

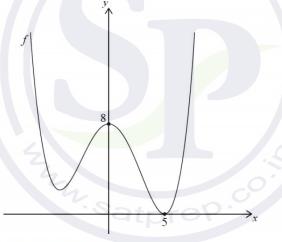
Let $f(x) = \sqrt{x+2}$ for $x \ge -2$ and g(x) = 3x - 7 for $x \in \mathbb{R}$.

(a) Write down
$$f(14)$$
. [1]

(b) Find
$$(g \circ f)(14)$$
. [2]

(c) Find
$$g^{-1}(x)$$
. [3]

Question42


[Maximum mark: 6]

Consider the function $f(x) = (1 - k)x^2 + x + k$, $x \in \mathbb{R}$. Find the value of k for which f(x) has two equal real roots.

Question 43

[Maximum mark: 7]

The following diagram shows part of the graph of f with x-intercept (5,0) and y-intercept (0,8).

- (a) Find the y-intercept of the graph of
 - (i) f(x) + 3;

(ii)
$$f(4x)$$
. [3]

(b) Find the *x*-intercept of the graph of f(2x). [2]

(c) Describe the transformation f(x+1). [2]

[Maximum mark: 6]

Consider the function $f(x) = \frac{3x+1}{x-2}$, $x \neq 2$.

- (a) For the graph of f,
 - (i) write down the equation of the vertical asymptote;
 - (ii) find the equation of the horizontal asymptote.

[3]

Let $g(x) = x^2 + 4$, $x \in \mathbb{R}$.

(b) Find $(f \circ g)(1)$.

[3]

Question 45

[Maximum mark: 6]

Let
$$f(x) = \frac{2x-1}{x+3}, x \neq -3$$
.

(a) Write down the equation of the vertical asymptote of the graph of f.

[1]

(b) Find $f^{-1}(x)$.

[3]

(c) Find the equation of the horizontal asymptote of the graph of f^{-1}

[2]

Question 46

[Maximum mark: 7]

Let $g(x) = x^2 + bx + 11$. The point (-1, 8) lies on the graph of g.

(a) Find the value of b.

[3]

(b) The graph of $f(x) = x^2$ is transformed to obtain the graph of g.

Describe this transformation.

[4]