
Subject – Math (Standard Level) Topic - Functions and Equations Year - Nov 2011 – Nov 2019

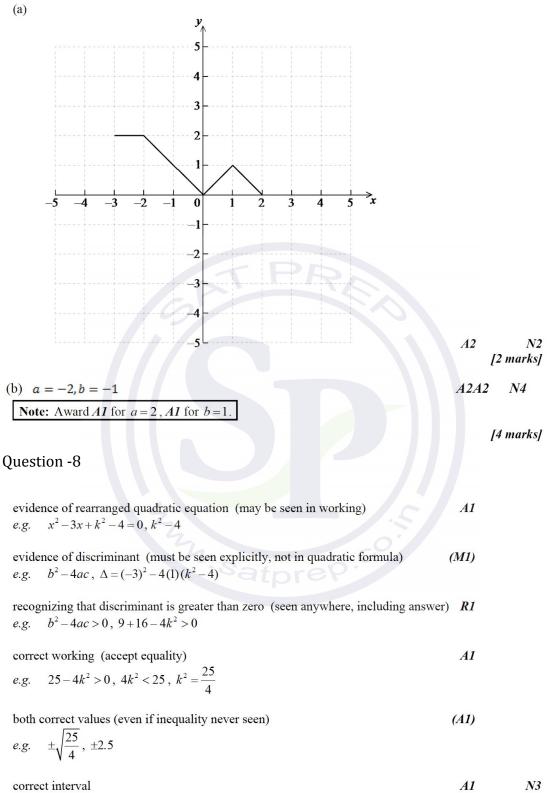
Question -1

(a)	METHOD 1		
	evidence of discriminant e.g. $b^2 - 4ac$, discriminant = 0	(M1)	
	correct substitution into discriminant e.g. $k^2 - 4 \times \frac{1}{2} \times 8$, $k^2 - 16 = 0$	A1	
	$k = \pm 4$	AIAI	N3
	METHOD 2		
	Recognising that equal roots means perfect square <i>e.g.</i> attempt to complete the square, $\frac{1}{2}(x^2 + 2kx + 16)$	(R1)	
	correct working $e.g \frac{1}{2}(x+k)^2, \frac{1}{2}k^2 = 8$	AI	
	$k = \pm 4$	AIAI	N3 [4 marks]
(b)	evidence of appropriate approach e.g. $b^2 - 4ac < 0$	(M1)	
	correct working for k e.g. $-4 < k < 4$, $k^2 < 16$, list all correct values of k	A1	
	$p = \frac{7}{11}$	A2	N3 [4 marks]
		Tota	ıl [8 marks]

Question -3

.)	evide e.g.	ence of substituting the point A $2 = \log_p(6+3)$	(M1)	
	manij e.g.	pulating logs $p^2 = 9$	<i>A1</i>	
	p=3		A2	N2
				[4 marks]
)	(i)	y = -2 (accept (0, -2))	A1	N1
	(ii)			
		(2,6)		
				-
				-
		(1,0)		-
				-
			-7	
			>	
				-
				-
				-

(c) METHOD 1


	recognizing that $g = f^{-1}$	(R1)	
	evidence of valid approach $e.g.$ switching x and y (seen anywhere), solving for x	(M1)	
	correct manipulation e.g. $3^x = y + 3$	(<i>A1</i>)	
	$g(x)=3^x-3$	A1	N3 [4 marks]
	METHOD 2		
	recognizing that $g(x) = a^x + b$	(R1)	
	identifying vertical translation e.g. graph shifted down 3 units, $f(x) - 3$	(A1)	
	evidence of valid approach e.g. substituting point to identify the base	(<i>M1</i>)	
	$g(x)=3^x-3$	A1	N3 [4 marks]
		Total	[13 marks]
	tion -4		
	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation	(MI) (A1)	
	interchanging x and y (seen anywhere) e.g. $x=2y-1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$	(MI)	
	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$	(MI) (AI)	N2
(a)	interchanging x and y (seen anywhere) e.g. $x=2y-1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$	(MI) (AI)	N2
(a)	interchanging x and y (seen anywhere) e.g. $x=2y-1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1)	(MI) (A1) A1 (MI)	N2 [3 marks]
(a)	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1) g(1) = 5	(MI) (A1) A1 (MI) (A1)	N2 [3 marks]
(a)	interchanging x and y (seen anywhere) e.g. $x=2y-1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1)	(MI) (A1) A1 (MI)	N2 [3 marks]
(a)	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1) g(1) = 5	(MI) (A1) A1 (MI) (A1)	N2 [3 marks]
(a)	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1) g(1) = 5 f(5) = 9	(MI) (A1) A1 (MI) (A1)	N2 [3 marks] N2 [3 marks]
(a)	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1) g(1) = 5 f(5) = 9 METHOD 2 attempt to form composite (in any order) e.g. $2(3x^2+2)-1, 3(2x-1)^2+2$ $(f \circ g)(1) = 2(3 \times 1^2 + 2) - 1 (= 6 \times 1^2 + 3)$	(MI) (A1) A1 (MI) (A1) A1 (MI) (A1) (A1)	N2 [3 marks] [3 marks] [3 marks]
ues (a) (b)	interchanging x and y (seen anywhere) e.g. $x = 2y - 1$ correct manipulation e.g. $x+1=2y$ $f^{-1}(x) = \frac{x+1}{2}$ METHOD 1 attempt to find g(1) or f(1) g(1) = 5 f(5) = 9 METHOD 2 attempt to form composite (in any order) e.g. $2(3x^2+2)-1, 3(2x-1)^2+2$	(MI) (AI) A1 (MI) (AI) A1 (MI)	N2 [3 marks] [3 marks] [3 marks]

Question – 5

evidence of valid approach e.g. $b^2 - 4ac$, quadratic formula	(M1)	
correct substitution into $b^2 - 4ac$ (may be seen in formula) e.g. $(k-1)^2 - 4 \times 1 \times 1$; $(k-1)^2 - 4$; $k^2 - 2k - 3$	(A1)	
setting their discriminant equal to zero $e. g. \Delta = 0, (k - 1)^2 - 4 = 0$	<i>M</i> 1	
attempt to solve the quadratic e.g. $(k-1)^2 = 4$, factorizing	(M1)	
correct working e.g. $(k-1) = \pm 2$, $(k-3)(k+1)$	AI	
k = -1, k = 3 (do not accept inequalities)	AIAI	N2
		[7 marks]

Question -6

(a)	(i)	h=2, k=1	A1A1	N2
	(ii)	attempt to substitute coordinates of any point (except the vertex) on the graph into f e.g. $13 = a(0-2)^2 + 1$	<i>M1</i>	
		working towards solution e.g. $13 = 4a + 1$	A1	
		<i>a</i> = 3	AG	N0 [4 marks]
(b)		pting to expand their binomial $f(x) = 3(x^2 - 2 \times 2x + 4) + 1, (x - 2)^2 = x^2 - 4x + 4$	(M1)	
		ct working $f(x) = 3x^2 - 12x + 12 + 1$	(A1)	
	f(x)	$x = 3x^2 - 12x + 13$ (accept $A = 3, B = -12, C = 13$)	A1	N2 [3 marks]
(c)	MET	THOD 1		
		ral expression $\int_{2}^{4} (3x^2 - 12x + 13), \int f dx$	(A1)	
		$x = \left[x^3 - 6x^2 + 13x\right]_2^4$	AIAIAI	
Not	e: Aw	$ard AI$ for x^3 , AI for $-6x^2$, AI for $13x$.		
		ct substitution of correct limits into their expression $(4^3-6\times 4^2+13\times 4)-(2^3-6\times 2^2+13\times 2), 64-96+52-(8-24+3)$	<i>A1A1</i> 26)	
Not	e: Aw	ard A1 for substituting 4, A1 for substituting 2.		
	corre e.g.	ct working $64-96+52-8+24-26, 20-10$	(A1)	
	Area	=10	A1	N3

e.g. $-\frac{5}{2} < k < \frac{5}{2}, -2.5 < k < 2.5$

Question -9

(a)	x = 1, x = -3 (accept (1, 0), (-3, 0))	AIAI	N2 [2 marks]
(b)	METHOD 1		
	attempt to find x-coordinate eg $\frac{1+-3}{2}$, $x = \frac{-b}{2a}$, $f'(x) = 0$	(M1)	
	correct value, $x = -1$ (may be seen as a coordinate in the answer)	A1	
	attempt to find their <i>y</i> -coordinate eg $f(-1), -2 \times 2, y = \frac{-D}{4a}$	(M1)	
	y = -4 vertex (-1, -4)	AI	N3 [4 marks]
	METHOD 2		
	attempt to complete the square $eg x^2 + 2x + 1 - 1 - 3$	(M1)	
	attempt to put into vertex form eg $(x+1)^2 - 4$, $(x-1)^2 + 4$	(M1)	
	vertex (-1, -4)	AIAI	N3 [4 marks]
		Tota	l [6 marks]

(a)	METHOD 1 attempt to set up equation $eg 2 = \sqrt{y-5}, \ 2 = \sqrt{x-5}$	(M1)	
	correct working eg $4 = y - 5$, $x = 2^2 + 5$	(A1)	
	$f^{-1}(2) = 9$	<i>A1</i>	N2 [3 marks]
	METHOD 2		
	interchanging x and y (seen anywhere)	(M1)	
	$eg x = \sqrt{y-5}$		
	correct working eg $x^2 = y - 5$, $y = x^2 + 5$	(A1)	
	$f^{-1}(2) = 9$	A1	N2 [3 marks]
(b)	recognizing $g^{-1}(3) = 30$ eg $f(30)$	(M1)	
	correct working eg $(f \circ g^{-1})(3) = \sqrt{30-5}, \sqrt{25}$	(A1)	
	$(f \circ g^{-1})(3) = 5$	AI	N2
Not	te: Award $A\theta$ for multiple values, $eg \pm 5$.		
			[3 marks]

Total [6 marks]

Question -11

evidence of discriminant $eg = b^2 - 4ac$, $\Delta = 0$	(M1)
correct substitution into discriminant $eg \qquad (k+2)^2 - 4(2k), \ k^2 + 4k + 4 - 8k$	(A1)
correct discriminant $eg k^2 - 4k + 4$, $(k - 2)^2$	A1
recognizing discriminant is positive $eg \qquad \Delta > 0, \ (k+2)^2 - 4(2k) > 0$	<i>R1</i>
attempt to solve their quadratic in k eg factorizing, $k = \frac{4 \pm \sqrt{16 - 16}}{2}$	(M1)
correct working eg $(k-2)^2 > 0$, $k = 2$, sketch of positive parabola on the x-axis	<i>A1</i>
correct values $eg k \in \mathbb{R} \text{ and } k \neq 2, \mathbb{R} \setminus 2,]-\infty, 2[\cup]2, \infty[$	A2

Question -12

interchanging x and y(M1) (a) x = 3y - 2eg

$$f^{-1}(x) = \frac{x+2}{3} \left(\text{accept } y = \frac{x+2}{3}, \frac{x+2}{3} \right)$$
 A1 N2

[2 marks]

(b) attempt to form composite (in any order) 5

$$eg = g\left(\frac{x+2}{3}\right), \frac{\frac{3}{3x}+2}{3}$$

correct substitution

$$eg \quad \frac{5}{3\left(\frac{x+2}{3}\right)}$$
$$(g \circ f^{-1})(x) = \frac{5}{3}$$

$$(g \circ j)(x) = x+2$$

(c) (i) valid approach 5 e

2.5

(ii)

$$g = h(0), \frac{5}{0+2}$$

$$v = \frac{5}{2} \text{ (accept (0,2.5))}$$

x

(M1)

A1

(M1)

A1A2

y

N3

<u>N2</u>

(d)	(i) $x = \frac{5}{2}$ (accept (2.5, 0))	A1	N1
	(ii) $x=0$ (must be an equation)	<i>A1</i>	N1 [2 marks]
(e)	METHOD 1		
	attempt to substitute 3 into h (seen anywhere) $eg = h(3), \frac{5}{3+2}$	(M1)	
	correct equation $eg = a = \frac{5}{3+2}, h(3) = a$	(A1)	
	<i>a</i> = 1	A1	N2 [3 marks]
	METHOD 2		
	attempt to find inverse (may be seen in (d)) $eg = x = \frac{5}{y+2}, h^{-1} = \frac{5}{x} - 2, \frac{5}{x} + 2$	(M1)	
	correct equation, $\frac{5}{x} - 2 = 3$	(A1)	
	<i>a</i> = 1	A1	N2 [3 marks]
		Total	[14 marks]

(a) interchanging x and y (seen anywhere) $eg \quad x = 4y - 2$ (M1)

evidence of correct manipulation eg x+2=4y

$$f^{-1}(x) = \frac{x+2}{4} \left(\text{accept } y = \frac{x+2}{4}, \frac{x+2}{4}, f^{-1}(x) = \frac{1}{4}x + \frac{1}{2} \right)$$
 A1 N2 [3 marks]

(b) METHOD 1

attempt to substitute 1 into $g(x)$	<i>(M1)</i>	
$eg \qquad g(1) = -2 \times 1^2 + 8$		
g(1) = 6	(A1)	
f(6) = 22	A1	N3

METHOD 2

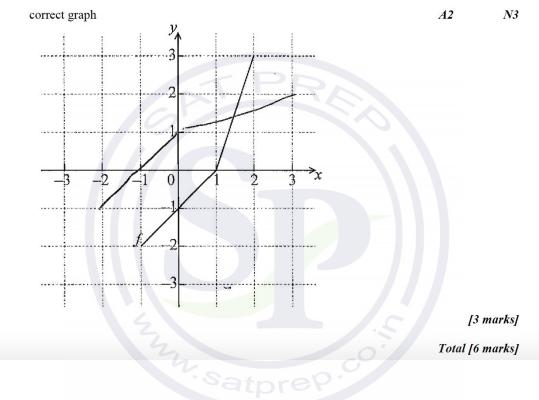
attempt to form composite function (in any order) (M1) $eg \quad (f \circ g)(x) = 4(-2x^2 + 8) - 2 \quad (= -8x^2 + 30)$

correct substitution

Total [6 marks]

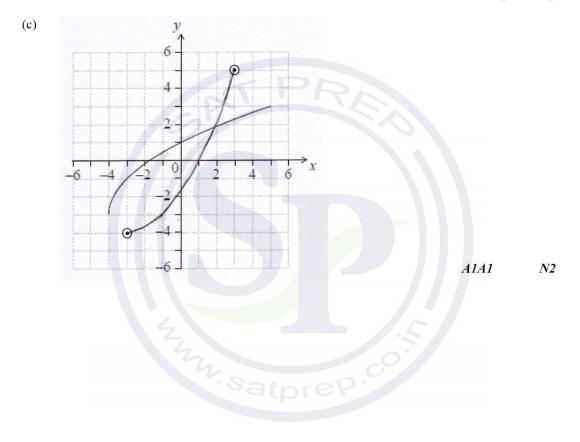
(A1)

(a)	(i)	f(2) = 3	A1	N1
	(ii)	$f^{-1}(-1) = 0$	A2	<u>N2</u>


		[3 marks]
(b)	EITHER	

attempt to draw y = x on grid (M1)

OR


attempt to reverse x and y coordinates (M1) eg writing or plotting **at least two** of the points (-2, -1), (-1, 0), (0, 1), (3, 2)

THEN

(a)	h = 2, k = 3	A1A1	N2 [2 marks]
(b)	attempt to substitute (1, 7) in any order into their $f(x)$ eg $7 = a(1-2)^2 + 3$, $7 = a(1-3)^2 + 2$, $1 = a(7-2)^2 + 3$	(M1)	
	correct equation eg $7 = a + 3$	(A1)	
	<i>a</i> = 4	AI	N2 [3 marks]
		Tota	l [5 marks]

(a)	(i) $f(-3) = -1$ A1	N1	
	(ii) $f^{-1}(1) = 0$ (accept $y = 0$)	AI	N1 [2 marks]
(b)	domain of f^{-1} is range of f eg $Rf = Df^{-1}$	(R1)	
	correct answer eg $-3 \le x \le 3$, $x \in [-3, 3]$ (accept $-3 < x < 3, -3 \le y \le 3$)	A1	N2
	eg $-3 \le x \le 3, x \in [-3, 3]$ (accept $-3 < x < 3, -3 \le y \le 3$)		[2 marks]

(a) (i) correct value 0, or $36-12p$ $A2$ $N2$ (ii) correct equation which clearly leads to $p=3$ AI eg = 36-12p=0, $36=12pp=3$ AG $N0[3 marks](b) METHOD 1valid approach (MI)eg = x = -\frac{b}{2a}correct working AIeg = -\frac{(-6)}{2(3)}, x = \frac{6}{6}correct answers eg = x=1, y=0; (1,0) AIAI N2eg = x^2-2x+1=0, (3x-3)(x-1), f(x)=3(x-1)^2 AIAI N2eg = x=1, y=0; (1,0)$ $AIIeg = x^2-2x+1=0, (3x-3)(x-1), f(x)=3(x-1)^2 AIAI N2eg = x=1, y=0; (1,0)$ $METHOD 3valid approach using derivative eg = f'(x)=0, 6x-6correct equation AI$					
$eg 36-12p=0, \ 36=12p$ $p=3$ $AG N0$ $[3 marks]$ (b) METHOD 1 valid approach $eg x=-\frac{b}{2a}$ correct working $eg -\frac{(-6)}{2(3)}, x=\frac{6}{6}$ correct answers $eg x=1, \ y=0; \ (1, 0)$ $METHOD 2$ valid approach $eg x^2-2x+1=0, \ (3x-3)(x-1), \ f(x)=3(x-1)^2$ correct answers $eg x=1, \ y=0; \ (1, 0)$ $METHOD 3$ valid approach using derivative $eg f'(x)=0, \ 6x-6$ correct equation AI	(a)	(i)	correct value 0, or $36-12p$	A2	N2
[3 marks] (b) METHOD 1 valid approach (M1) eg $x = -\frac{b}{2a}$ correct working A1 eg $-\frac{(-6)}{2(3)}, x = \frac{6}{6}$ correct answers A1A1 N2 eg $x = 1, y = 0; (1, 0)$ METHOD 2 valid approach (M1) eg $f(x) = 0$, factorisation, completing the square correct working eg $x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ correct answers A1A1 N2 eg $x = 1, y = 0; (1, 0)$ METHOD 3 valid approach using derivative eg $f'(x) = 0, 6x - 6$ correct equation A1		(ii)	· · · · · · · · · · · · · · · · · · ·	A1	
(b) METHOD 1 valid approach (M1) eg $x = -\frac{b}{2a}$ correct working AI eg $-\frac{(-6)}{2(3)}, x = \frac{6}{6}$ correct answers eg $x=1, y=0; (1, 0)$ METHOD 2 valid approach $(M1)$ eg $x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ correct answers eg $x=1, y=0; (1, 0)$ METHOD 3 valid approach using derivative eg $f'(x) = 0, 6x - 6$ correct equation AI			p = 3	AG	NO
valid approach eg $(M1)$ eg $x = -\frac{b}{2a}$ correct workingA1eg $-\frac{(-6)}{2(3)}, x = \frac{6}{6}$ correct answers egA1A1N2egeg $x = 1, y = 0; (1, 0)$ METHOD 2(M1)valid approach eg $(M1)$ eg $x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ correct answers eg $x = 1, y = 0; (1, 0)$ METHOD 3Valid approach using derivative egy valid approach using derivative eg $(M1)$ eg $f'(x) = 0, 6x - 6$ correct equationA1					[3 marks]
valid approach eg $(M1)$ eg $x = -\frac{b}{2a}$ correct workingA1eg $-\frac{(-6)}{2(3)}, x = \frac{6}{6}$ correct answers egA1A1N2egeg $x = 1, y = 0; (1, 0)$ METHOD 2(M1)valid approach eg $(M1)$ eg $x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ correct answers eg $x = 1, y = 0; (1, 0)$ METHOD 3Valid approach using derivative egy valid approach using derivative eg $(M1)$ eg $f'(x) = 0, 6x - 6$ correct equationA1					
eg $x = -\frac{b}{2a}$ A1correct workingA1eg $-\frac{(-6)}{2(3)}, x = \frac{6}{6}$ correct answersA1A1eg $x = 1, y = 0; (1, 0)$ METHOD 2(M1)valid approach(M1)eg $f(x) = 0$, factorisation, completing the squarecorrect workingA1eg $x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ correct answersA1A1eg $x = 1, y = 0; (1, 0)$ METHOD 3(M1)valid approach using derivative(M1)eg $f'(x) = 0, 6x - 6$ correct equationA1	(b)	ME	THOD 1		
correct workingA1 $eg - \frac{(-6)}{2(3)}, x = \frac{6}{6}$ A1A1correct answersA1A1 $eg x=1, y=0; (1, 0)$ A1A1 METHOD 2 (M1)valid approach(M1) $eg f(x) = 0$, factorisation, completing the squareA1 $correct$ workingA1 $eg x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ A1A1 $correct$ answersA1 $eg x=1, y=0; (1, 0)$ A1A1 METHOD 3 valid approach using derivative $eg f'(x) = 0, 6x - 6$ (M1)correct equationA1		valio	d approach	(M1)	
$eg = -\frac{(-6)}{2(3)}, x = \frac{6}{6}$ A1A1N2 $eg = x=1, y=0; (1, 0)$ A1A1N2 METHOD 2 valid approach(M1) $eg = f(x) = 0$, factorisation, completing the squareA1 $eg = x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ A1A1 $eg = x^2 - 2x + 1 = 0, (3x - 3)(x - 1), f(x) = 3(x - 1)^2$ A1A1 $eg = x=1, y=0; (1, 0)$ METHOD 3valid approach using derivative $eg = f'(x) = 0, 6x - 6$ correct equation(M1)		eg	$x = -\frac{b}{2a}$		
(x_{0}) (x_{1}) (x_{1}) (x_{1}) (x_{1}) (x_{1}) (x_{1}) (x_{1}) (x_{1}) (x_{2}) (x_{1}) (x_{1}) (x_{2}) (x_{2}) (x_{1}) (x_{2}) (x) $(x$		corr	ect working	A1	
eg $x=1, y=0; (1,0)$ METHOD 2(M1)valid approach(M1)eg $f(x)=0$, factorisation, completing the squarecorrect workingA1eg $x^2-2x+1=0, (3x-3)(x-1), f(x)=3(x-1)^2$ correct answersA1A1eg $x=1, y=0; (1,0)$ METHOD 3(M1)valid approach using derivative(M1)eg $f'(x)=0, 6x-6$ correct equationA1		eg	$-\frac{(-6)}{2(3)}, x = \frac{6}{6}$		
METHOD 2(M1) $eg f(x) = 0$, factorisation, completing the square(M1) $eg f(x) = 0$, factorisation, completing the squareA1 $eg x^2 - 2x + 1 = 0$, $(3x - 3)(x - 1)$, $f(x) = 3(x - 1)^2$ A1correct answersA1A1 $eg x = 1, y = 0; (1, 0)$ METHOD 3valid approach using derivative(M1) $eg f'(x) = 0, 6x - 6$ A1correct equationA1		corr	ect answers	A1A1	<u>N2</u>
valid approach eg (M1) eg $f(x) = 0$, factorisation, completing the squareA1 $correct working$ eg A1 eg $x^2 - 2x + 1 = 0$, $(3x - 3)(x - 1)$, $f(x) = 3(x - 1)^2$ A1A1 $correct answers$ eg $x = 1$, $y = 0$; $(1, 0)$ A1A1 METHOD 3 eg $f'(x) = 0$, $6x - 6$ correct equation(M1)		eg	x = 1, y = 0; (1, 0)		
eg $f(x) = 0$, factorisation, completing the squarecorrect workingA1eg $x^2 - 2x + 1 = 0$, $(3x - 3)(x - 1)$, $f(x) = 3(x - 1)^2$ A1A1correct answersA1A1N2eg $x = 1$, $y = 0$; $(1, 0)$ METHOD 3valid approach using derivative(M1)eg $f'(x) = 0$, $6x - 6$ correct equationA1		ME	THOD 2		
correct working eg $x^2 - 2x + 1 = 0$, $(3x - 3)(x - 1)$, $f(x) = 3(x - 1)^2$ A1correct answers eg $x = 1$, $y = 0$; $(1, 0)$ A1A1N2 METHOD 3 eg $f'(x) = 0$, $6x - 6$ correct equation(M1)		valie		(M1)	
eg $x^2 - 2x + 1 = 0$, $(3x - 3)(x - 1)$, $f(x) = 3(x - 1)^2$ A1A1N2correct answers eg $x = 1$, $y = 0$; $(1, 0)$ A1A1N2METHOD 3 eg $f'(x) = 0$, $6x - 6$ (M1)correct equationA1		eg	f(x) = 0, factorisation, completing the square		
correct answers eg A1A1N2 eg $x=1, y=0; (1,0)$ A1A1N2 METHOD 3 $valid approach using derivativeegf'(x)=0, 6x-6(M1)correct equationA1$		corr	ect working	<u>A1</u>	
eg $x = 1, y = 0; (1, 0)$ METHOD 3 (M1) eg $f'(x) = 0, 6x - 6$ correct equationA1		eg	$x^{2}-2x+1=0$, $(3x-3)(x-1)$, $f(x) = 3(x-1)^{2}$		
eg $x = 1, y = 0; (1, 0)$ METHOD 3 (M1) eg $f'(x) = 0, 6x - 6$ correct equationA1		corr	ect answers	A1A1	N2
METHOD 3(M1) $eg f'(x) = 0, \ 6x - 6$ $A1$		eg	x = 1, y = 0; (1, 0)		
correct equation AI		ME	THOD 3		
correct equation AI		valie	d approach using derivative	(M1)	
correct equation AI			$f'(x) = 0, \ 6x - 6$,	
			ect equation	A1	

correct equation $eg \quad 6x-6=0$ correct answers $eg \quad x=1, y=0; (1, 0)$

[4 marks]

N2

A1A1

(c)	<i>x</i> = 1	A1	N1 [1 mark]
(d)	(i) $a = 3$	A1	N1
	(ii) $h = 1$	A1	N1
	(iii) $k = 0$	A1	N1 [3 marks]
(e)	attempt to apply vertical reflection eg $-f(x)$, $-3(x-1)^2$, sketch	(M1)	
	attempt to apply vertical shift 6 units up eg - f(x) + 6, vertex (1, 6)	(M1)	
	transformations performed correctly (in correct order) eg $-3(x-1)^2+6$, $-3x^2+6x-3+6$	(A1)	
	$g(x) = -3x^2 + 6x + 3$	A1	N3 [4 marks]
		Total	[15 marks]
Quest	tion 18		
(a)	<i>y</i> -intercept is -6 , $(0, -6)$, $y = -6$	A1 [1	N1 [mark]
(b)	valid attempt to solve	(M1)	
	eg $(x-2)(x+3) = 0, x = \frac{-1 \pm \sqrt{1+24}}{2}$, one correct answer x=2, x=-3		
	x=2, x=-3	A1A1 [3	N3 marks]

(a)	<i>q</i> = 3	A1	N1 [1 mark]
(b)	correct expression for $f(0)$ eg $p + \frac{9}{0-3}, 4 = p + \frac{9}{-q}$	(A1)	
	recognizing that $f(0) = 4$ (may be seen in equation)	(M1)	
	correct working $eg 4 = p - 3$	(A1)	
	<i>p</i> = 7	A1	N3 [4 marks]
(c)	y = 7 (must be an equation, do not accept $p = 7$)	A1 Total	N1 [1 mark] [6 marks]
Que	stion 20		
(a)	valid approach eg horizontal line on graph at -1 , $f(a) = -1$, $(-1, 5)$	(M1)	
	$f^{-1}(-1) = 5$	A1	N2 [2 marks]
(b)	attempt to find $f(-1)$ eg line on graph	(M1)	
	f(-1) = 2	(A1)	
	$(f \circ f)(-1) = 1$	A1	N3 [3 marks]
(c)	f(-1) = 2 $(f \circ f)(-1) = 1$		
	<u>}</u>	A1A	1 N2

(a)	correct substitution into $b^2 - 4ac$	A1	
	eg $(10-p)^2 - 4(p)\left(\frac{5}{4}p - 5\right)$		
	correct expansion of each term eg $100-20p+p^2-5p^2+20p$, $100-20p+p^2-(5p^2-20p)$	A1A1	
	$100 - 4p^2$	AG	N0 [3 marks]
(b)	recognizing discriminant is zero for equal roots eg $D=0$, $4p^2=100$	(R1)	
	correct working eg $p^2 = 25$, 1 correct value of p	(A1)	
	eg $p^2 = 25$, 1 correct value of p both correct values $p = \pm 5$	A1	N2
			[3 marks]
		Tota	al [6 marks]
Ques	stion 22		
(a)	(i) recognizing intercepts occur when $f(x) = 0$ eg $p = 1, q = -3$	(M1)	
	p = -3, q = 1	A1A1	N3
	(ii) attempt to substitute $(0, 12)$ into their f to find a eg $f(0) = 12$	(M1)	
	correct working eg $12 = a(3)(-1)$	(A1)	
	eg $12 = a(3)(-1)$ a = -4	A1	N2 [6 marks]
(b)		(M1)	
	$eg = \frac{p+q}{2}, -\frac{b}{2a}, f'(x) = 0$		
	correct working eg $\frac{-3+1}{2}, \frac{8}{2(-4)}, -1, -8x-8=0$	(A1)	
	x = -1 (must be equation)	A1	N3 [3 marks]

(c)	METHOD 1 substituting their x to find y-value eg $f(-1), -4(-1+3)(-1-1)$	(M1)	
	correct calculation eg $-4(2)(-2)$	(A1)	
	largest value is 16	A1	N2
	METHOD 2 valid attempt to complete the square eg $-4(x^2+2x+1)+12+4, -4(x^2+2x+1)+12-1$	(M1)	
	correct vertex form eg $-4(x+1)^2 + 16$	(A1)	
	largest value is 16	A1	N2
	METHOD 3 valid approach (may be seen in (b)) eg $f'(x) = 0, -8x - 8 = 0$	(M1)	
	eg $f(x) = 0, -8x - 8 = 0$ substituting $x = -1$ into $f(x)$ eg $-4(-1)^2 - 8(-1) + 12$	(A1)	
	largest value is 16	A1	N2
			[3 marks]
(d)	METHOD 1 recognizing coordinates of vertex eg (-1, 16)	(M1)	
	$h = -1$, $k = 16$ (accept $-4(x+1)^2 + 16$)	A1A1	N3
	METHOD 2		
	valid attempt to complete the square (may be seen in (c)) eg $-4(x^2+2x+1)+12+4, -4(x^2+2x+1)+12-1$	(M1)	
	$h = -1$, $k = 16$ (accept $-4(x+1)^2 + 16$)	A1A1	N3
	h = -1, k = 10 (accept $-4(x+1) + 10$)	Total	[3 marks] [15 marks]

juest	ion 23		
(a)	interchanging x and y (seen anywhere) eg $x = (y-5)^3$	(M1)	
	evidence of correct manipulation eg $y-5=\sqrt[3]{x}$	(A1)	
	$f^{-1}(x) = \sqrt[3]{x} + 5$ (accept $5 + x^{\frac{1}{3}}$, $y = 5 + \sqrt[3]{x}$)	A1	N2 [3 marks]
	METHOD 1		
	attempt to form composite (in any order) eg $g((x-5)^3), (g(x)-5)^3 = 8x^6$	(M1)	
	correct working	(A1)	
	eg $g-5=2x^2$, $((2x^2+5)-5)^3$		
	$g(x) = 2x^2 + 5$	A1	N2
	METHOD 2		
	recognising inverse relationship eg $f^{-1}(8x^6) = g(x), f^{-1}(f \circ g)(x) = f^{-1}(8x^6)$	(M1)	
	correct working		
	$eg g(x) = \sqrt[3]{(8x^6)} + 5$	(A1)	
	$g(x) = 2x^2 + 5$	A1	N2 [3 marks]
		Tota	[6 marks]

(a)	$h=1, k=-9 (accept (x-1)^2-9)$	A1A1	N2
(b)	METHOD 1		[2 marks]
	attempt to substitute $x = 0$ into their quadratic function eg $f(0)$, $(0-1)^2 - 9$	(M1)	
	<i>c</i> = -8	A1	N2
	METHOD 2		
	attempt to expand their quadratic function eg $x^2-2x+1-9$, x^2-2x-8	(M1)	
	<i>c</i> = -8	A1	N2 [2 marks]
(c)	evidence of correct reflection	A1	
	eg $-((x-1)^2-9)$, vertex at (1, 9), <i>y</i> -intercept at (0, 8)		
	valid attempt to find horizontal shift eg $1+p=3, 1\rightarrow 3$	(M1)	
	<i>p</i> = 2	A1	N2
	valid attempt to find vertical shift eg $9+q=1, 9 \rightarrow 1, -9+q=1$	(M1)	
	q = -8	A1	N2
			[5 marks]
(d)	valid approach eg $f(x) = g(x), (x-1)^2 - 9 = -(x-3)^2 + 1$	М1	
	correct expansion of both binomials eg $x^2 - 2x + 1$, $x^2 - 6x + 9$	(A1)	
	correct working eg $x^2 - 2x - 8 = -x^2 + 6x - 8$ correct equation	(A1)	
	correct equation eg $2x^2 - 8x = 0$, $2x^2 = 8x$	(A1)	
	correct working eg $2x(x-4) = 0$	(A1)	
	x = 0, $x = 4$	A1A1	N3 [7 marks]
		Total	[16 marks]

(a)	g(2) = 8	A1	N1 [1 mark]
(b)	attempt to form composite (in any order) eg $f(4x), 4 \times (8x+3)$	(M1)	
	$(f \circ g)(x) = 32x + 3$	A1	N2 [2 marks]
(c)	interchanging x and y (may be seen at any time) eg $x = 8y + 3$	(M1)	
	$f^{-1}(x) = \frac{x-3}{8}$ (accept $\frac{x-3}{8}$, $y = \frac{x-3}{8}$)	A1 Tota	N2 [2 marks] I [5 marks]
Quest	tion 26		
(a)	h = 3, k = -1	A1A1	N2 [2 marks]
(b)	a = 2, b = 4 (or $a = 4, b = 2$)	A1A1	N2 [2 marks]
(c)	attempt to substitute $x = 0$ into their <i>f</i> eg $(0-3)^2-1$, $(0-2)(0-4)$	(M1)	
	<i>y</i> =8	A1	N2 [2 marks]
	y=8	Total	[6 marks]

(a)	attempt to form composite in any order eg $f(g(x)), \cos(6x\sqrt{1-x^2})$	(M1)
	correct working eg $6\cos x\sqrt{1-\cos^2 x}$	(A1)
	correct application of Pythagorean identity (do not accept $\sin^2 x + \cos^2 x = 1$) eg $\sin^2 x = 1 - \cos^2 x$, $6\cos x \sin x$, $6\cos x \sin x $) (A1)
	valid approach (do not accept $2\sin x \cos x = \sin 2x$) eg $3(2\cos x \sin x)$	(M1)
	$h(x) = 3\sin 2x$	A1 N3 [5 marks]
(b)	valid approach eg amplitude = 3, sketch with max and min y-values labelled, $-3 < y < 3$	(M1)
	correct range eg $-3 \le y \le 3$, $[-3, 3]$, from -3 to 3	A1 N2
Ques	tion 28	
(a)	correct approach eg $\frac{-(-4)}{2}, f'(x) = 2x - 4 = 0, (x^2 - 4x + 4) + 5 - 4$ (A1)	
	x = 2 (must be an equation)A1[N2 2 marks]
	(i) $h = 2$ A1	N1
	(ii) METHOD 1 valid attempt to find k (M1)	
	valid attempt to find k (M1) eg $f(2)$	
	correct substitution into their function (A1) eg $(2)^2 - 4(2) + 5$	
	<i>k</i> = 1 A1	N2
	METHOD 2	
	valid attempt to complete the square (M1) eg $x^2 - 4x + 4$	
	correct working (A1) eg $(x^2-4x+4)-4+5, (x-2)^2+1$	
	k = 1 A1	N2 4 marks]
	ITotal	6 marks1

[Total 6 marks]

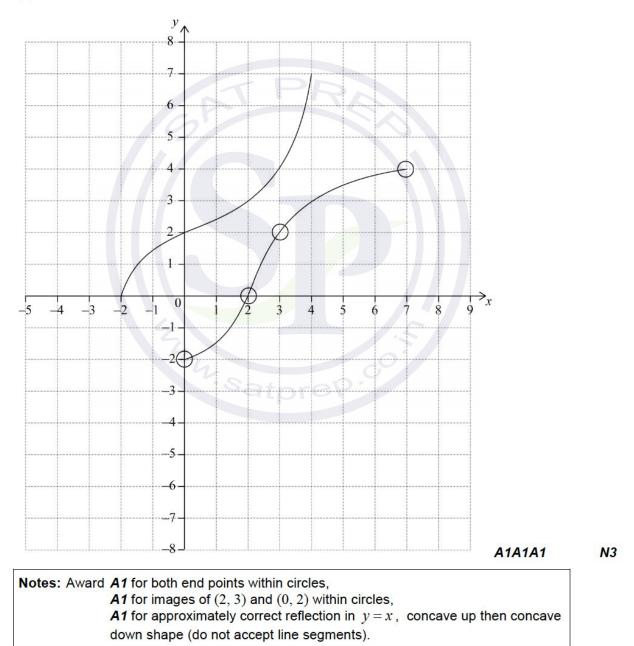
valid approach (M1) f = y, $m - \frac{1}{r} = x - m$ eg correct working to eliminate denominator (A1) $mx - 1 = x(x - m), mx - 1 = x^2 - mx$ eg correct quadratic equal to zero A1 $x^2 - 2mx + 1 = 0$ eq correct reasoning **R1** for two solutions, $b^2 - 4ac > 0$ eg correct substitution into the discriminant formula (A1) $(-2m)^2 - 4$ eg correct working (A1) $4m^2 > 4$, $m^2 = 1$, sketch of positive parabola on the *x*-axis eg correct interval A1 N4 |m| > 1, m < -1 or m > 1eg Question 30 interchanging x and y (M1) (a) eg x = 5v $f^{-1}(x) = \frac{x}{5}$ A1 N2 [2 marks] METHOD 1 (b) attempt to substitute 7 into g(x) or f(x)(M1) $7^2 + 1, 5 \times 7$ eg g(7) = 50(A1) N2 f(50) = 250A1 **METHOD 2** attempt to form composite function (in any order) (M1) $5(x^2+1), (5x)^2+1$ eq correct substitution (A1) eg $5 \times (7^2 + 1)$ $(f \circ g)(7) = 250$ A1 N2 [3 marks] Total [5 marks]

(a) METHOD 1 (using x-intercept)

determining that 3 is an *x*-intercept (M1)

	determining that 5 is an x-intercept	(111)	
	eg x-3=0,		
	valid approach	(M1)	
	eg 3-2.5, $\frac{p+3}{2} = 2.5$		
	<i>p</i> = 2	A1	N2
	METHOD 2 (expanding $f(x)$)		
	correct expansion (accept absence of <i>a</i>)	(A1)	
	eg $ax^2 - a(3+p)x + 3ap$, $x^2 - (3+p)x + 3p$		
	valid approach involving equation of axis of symmetry	(M1)	
	eg $\frac{-b}{2a} = 2.5$, $\frac{a(3+p)}{2a} = \frac{5}{2}$, $\frac{3+p}{2} = \frac{5}{2}$	(111)	
	<i>p</i> = 2	A1	N2
	METHOD 3 (using derivative)		
	correct derivative (accept absence of a)	(A1)	
	eg $a(2x-3-p), 2x-3-p$		
	valid approach	(M1)	
	valid approach eg $f'(2.5) = 0$		
	p=2	A1	N2
	r -		[3 marks]
(d)	attempt to substitute $(0, -6)$	(M1)	
	eg $-6 = a(0-2)(0-3), 0 = a(-8)(-9), a(0)^2 - 5a(0) + 6a = -6$	2011/0612	
	correct working $eg -6 = 6a$	(A1)	
	-		10
	a = -1	A1	N2 [3 marks]

(c) METHOD 1 (using discriminant)


recognizing tangent intersects curve once	(M1)	
recognizing one solution when discriminant $= 0$	М1	
attempt to set up equation eg $g = f$, $kx - 5 = -x^2 + 5x - 6$	(M1)	
rearranging their equation to equal zero eg $x^2 - 5x + kx + 1 = 0$	(M1)	
correct discriminant (if seen explicitly, not just in quadratic formula) eg $(k-5)^2-4$, $25-10k+k^2-4$	A1	
correct working	(A1)	
eg $k-5=\pm 2$, $(k-3)(k-7)=0$, $\frac{10\pm\sqrt{100-4\times 21}}{2}$		
<i>k</i> = 3, 7	A1A1	NO
METHOD 2 (using derivatives)		
attempt to set up equation eg $g = f$, $kx - 5 = -x^2 + 5x - 6$	(M1)	
recognizing derivative/slope are equal eg $f' = m_T$, $f' = k$	(M1)	
correct derivative of f (A1) eg $-2x+5$		
attempt to set up equation in terms of either x or k	M1	
eg $(-2x+5)x-5 = -x^2+5x-6$, $k\left(\frac{5-k}{2}\right)-5 = -\left(\frac{5-k}{2}\right)^2+5\left(\frac{5-k}{2}\right)^2$	-6	
rearranging their equation to equal zero eg $x^2 - 1 = 0$, $k^2 - 10k + 21 = 0$	(M1)	
correct working	(A1)	
eg $x = \pm 1$, $(k-3)(k-7) = 0$, $\frac{10 \pm \sqrt{100 - 4 \times 21}}{2}$		
k = 3, 7	A1A1	NO
		[8 marks]

- (a) correct range (do not accept $0 \le x \le 7$)
 A1
 N1

 eg
 $[0, 7], 0 \le y \le 7$ [1 mark]
- (b) (i) f(2) = 3 A1 N1

(ii)
$$f^{-1}(2) = 0$$
 A1 N1 [2 marks]

(c)

[3 marks]

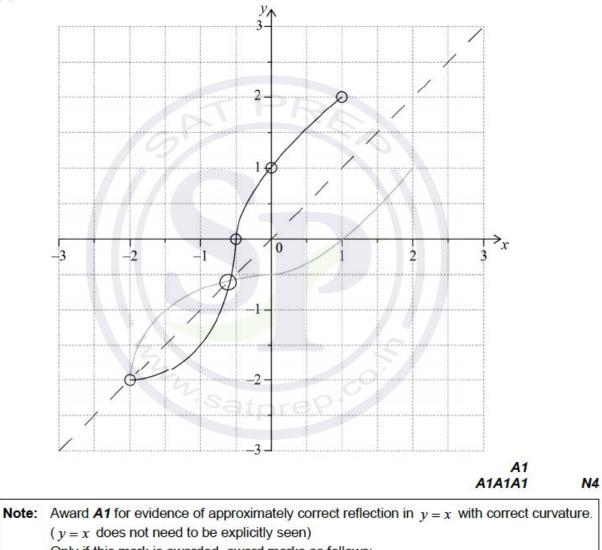
(a) attempt to form composite (M1) eg $g(1+e^{-x})$ correct function A1 N2 eg $(g \circ f)(x) = 2+b+2e^{-x}, 2(1+e^{-x})+b$

(b) evidence of
$$\lim_{x \to \infty} (2+b+2e^{-x}) = 2+b+\lim_{x \to \infty} (2e^{-x})$$
 (M1)
eg $2+b+2e^{-\infty}$, graph with horizontal asymptote when $x \to \infty$

Note: Award *M0* if candidate clearly has incorrect limit, such as $x \rightarrow 0$, e^{∞} , $2e^{0}$.

evidence that $e^{-x} \rightarrow 0$ (seen anywhere) (A1) eg $\lim_{x \rightarrow \infty} (e^{-x}) = 0, 1 + e^{-x} \rightarrow 1, 2(1) + b = -3, e^{\text{large negative number}} \rightarrow 0, \text{ graph of } y = e^{-x} \text{ or}$ $y = 2e^{-x}$ with asymptote y = 0, graph of composite function with asymptote y = -3correct working (A1) eg 2+b=-3 b=-5 A1 N2 [4 marks] Total [6 marks]

METHOD 1 – using discriminant		
correct equation without logs eg $6x - 3x^2 = k^2$	(A1)	
valid approach eg $-3x^2 + 6x - k^2 = 0$, $3x^2 - 6x + k^2 = 0$	(M1)	
recognizing discriminant must be zero (seen anywhere) $eg = \Delta = 0$	M1	
correct discriminant eg $6^2 - 4(-3)(-k^2), \ 36 - 12k^2 = 0$	(A1)	
correct working eg $12k^2 = 36$, $k^2 = 3$	(A1)	
$k = \sqrt{3}$	A2	N2
METHOD 2 – completing the square		
correct equation without logs eg $6x - 3x^2 = k^2$	(A1)	
valid approach to complete the square eg $3(x^2-2x+1)=-k^2+3, x^2-2x+1-1+\frac{k^2}{3}=0$	(M1)	
correct working eg $3(x-1)^2 = -k^2 + 3, (x-1)^2 - 1 + \frac{k^2}{3} = 0$	(A1)	
recognizing conditions for one solution	M1	
eg $(x-1)^2 = 0, -1 + \frac{k^2}{3} = 0$ correct working		
correct working eg $\frac{k^2}{3} = 1, k^2 = 3$	(A1)	
$k = \sqrt{3}$	A2	N2


(a)	f(1) = 3	A1	N1 [1 mark]
(b)	attempt to form the composite (including value) eg $g(3), g(f(1))$	(M1)	
	$(g \circ f)(1) = 5$	A1	N2 [2 marks]
(C)	valid approach eg $g(x) = -2$	(M1)	
	$g^{-1}(-2) = 1$	A1	N2 [2 marks]
		Total	[5 marks]

(a)	(i)	$f(0) = -\frac{1}{2}$	A1	N1
	(ii)	$f^{-1}(1) = 2$	A1	N1 [2 marks]

(b)
$$-2 \le y \le 2, y \in [-2, 2]$$
 (accept $-2 \le x \le 2$) A1 N1

[1 mark]

(c)

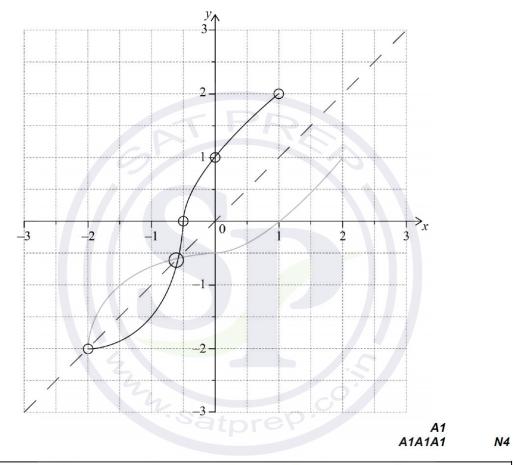
- Only if this mark is awarded, award marks as follows:
- A1 for both correct invariant points in circles,A1 for the three other points in circles,
- A1 for correct domain.

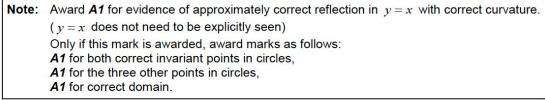
Total [7 marks]

	d approach $\frac{-1+3}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$	(M1)	
<i>p</i> =		A1	N2
	no marks if they work backwards by substituting $a = 2$ interaction accept $p = \frac{2}{a}$.	to $-\frac{b}{2a}$ to find p .	
	d approach $-\frac{b}{2a}, \frac{4}{2a}$ (might be seen in (i)), $f'(1) = 0$	<mark>M</mark> 1	
	the equation $\frac{4}{2a} = 1$, $2a(1) - 4 = 0$	A1	
<i>a</i> =		AG	NO
METHOD	2 (calculating a first)		
<mark>(i) & (ii)</mark>	valid approach to calculate <i>a</i> eg $a+4-c=a(3^2)-4(3)-c$, $f(-1)=f(3)$	M1	
	correct working $eg 8a = 16$	A1	
	<i>a</i> = 2	AG	N
	valid approach to find p eg $-\frac{b}{2a}, \frac{4}{2(2)}$	(M1)	
	<i>p</i> = 1	A1	N2
		[4	marksj
b) valid appr eg $f(-$	roach -1) = 5, $f(3) = 5$	(M1)	
correct we	orking $4-c=5, 18-12-c=5$	(A1)	
<i>c</i> =1		A1 [3	N2 marksj
		Total [7	marks

(a)	V		
	-5 -4 -3 -2 -1 0 1 2 3 4 5 x		
		A2	N2
			[2 marks]
(b)	recognizing horizontal shift/translation of 1 unit $b = 1$, moved 1 right	(M1)	
	recognizing vertical stretch/dilation with scale factor 2 eg $a=2, y\times(-2)$	(M1)	
	a = -2, b = -1	A1A1	N2N2
			[4 marks]
		[Total:	6 marks]
Quest	ion 39 $f(1) = 3$		
(a)	f(1) = 3	A1	N1 1 mark]
(b)	attempt to form the composite (including value) eg g(3), $g(f(1))$	(M1)	
	$(g \circ f)(1) = 5$	A1 [2	N2 marks]
(C)	valid approach	(M1)	
	eg g(x) = -2		
	$g^{-1}(-2) = 1$	A1	N2
		[2	marks]

Total [5 marks]


(a)	(i)	$f(0) = -\frac{1}{2}$	A1	N1
	(ii)	$f^{-1}(1) = 2$	A1	N1 [2 marks]


(b)
$$-2 \le y \le 2$$
, $y \in [-2, 2]$ (accept $-2 \le x \le 2$)

N1 [1 mark]

A1

(c)

[4 marks]

Total [7 marks]

(b) attempt to substitute (M1)	
$eg g(4), 3 \times 4 - 7$	
5 A1 [2 m	N2 arks]
(c) interchanging x and y (seen anywhere) (M1) eg $x = 3y - 7$	
evidence of correct manipulation (A1) eg $x+7=3y$	
$g^{-1}(x) = \frac{x+7}{3}$ A1	N3
[3 m Total [6 m	arks] arks]
Question 42	
correct substitution into discriminant (do not accept only in quadratic formula) (A1) eg $1-4(1-k)k$	
correct expansion of discriminant (do not accept only in quadratic formula) A1 eg $1-4k+4k^2$, $4k^2-4k=-1$	
recognizing discriminant equals 0 (seen anywhere) eg $\Delta = 0$, $b^2 - 4ac = 0$	
valid attempt to solve their quadratic in k(M1)egfactorizing equation, use of quadratic formula, completing the square, recognizing vertex on x-axis	
correct working eg $(2k-1)^2$, $\frac{-(-4)\pm\sqrt{16-4(4)(1)}}{2(4)}$, $\left(k-\frac{1}{2}\right)^2 = 0$, $k = \frac{-(-4)}{2(4)}$ (A1)	
$k = \frac{1}{2}$ A1	N2
2	narks]

Ques	stion 43		
(a)	(i) y-intercept is 11 (accept $(0, 11)$)	A1	N1
	(ii) valid approach	(M1)	
	eg $f(4 \times 0) = f(0)$, recognizing stretch of $\frac{1}{4}$ in x-direction		
	y-intercept is 8 (accept $(0, 8)$)	A1	N2 [3 marks]
(b)	<i>x</i> -intercept is $\frac{5}{2}$ (= 2.5) (accept $\left(\frac{5}{2}, 0\right)$ or (2.5, 0))	A2	N2
			[2 marks]
(c)	correct name, correct magnitude and direction <i>eg name:</i> translation, (horizontal) shift (do not accept move)	A1A1	N2
	eg magnitude and direction: 1 unit to the left, $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$, horizontal by -1		
			[2 marks]
		Total	[7 marks]

(a)	(i) $x = 2$ (must be an equation)	A1	N1
	(ii) valid approach	(M1)	
	eg $3 + \frac{7}{x-2}, x \to \infty, \frac{3x}{x}, \frac{3}{1}, \frac{3 + \frac{1}{x}}{1 - \frac{2}{x}}, \frac{3(x-2) + 7}{x-2}$		
	y=3 (must be an equation)	A1	N2
			[3 marks]
(b)	METHOD 1		
	attempt to substitute 1 into $g(x)$ or $f(x)$	(M1)	
	eg $1^2 + 4, \frac{3+1}{1-2}$		
	g(1) = 5	(A1)	
	$(f \circ g)(1) = \frac{16}{3}$	A1	N2
	METHOD 2		
	attempt to form composite function (in any order)	(M1)	
	eg $\frac{3(x^2+4)+1}{x^2+4-2}, \left(\frac{3x+1}{x-2}\right)^2+4$		
	correct substitution	(A1)	
	eg $\frac{3(5)+1}{5-2}$		
	eg $\frac{3(5)+1}{5-2}$ $(f \circ g)(1) = \frac{16}{3}$	A1	N2
	5		[3 marks]
		Tota	l [6 marks]

(a) x = -3 (must be an equation) A1 N1

[1 mark]

(b) interchanging x and y (seen anywhere) (M1) eg $x = \frac{2y-1}{y+3}, x(y+3) = 2y-1$ evidence of correct manipulation (A1)

eg
$$yx+3x=2y-1, y(x-2)=-3x-1, 2-\frac{7}{y+3}$$

$$f^{-1}(x) = \frac{-3x-1}{x-2} \left(= \frac{3x+1}{2-x}, \frac{7}{2-x} - 3 \right) (\text{accept } y =)$$
 A1 N3

[3 marks]

(c) valid approach to find horizontal asymptote (M1) eg $\frac{-3}{1}$, vert.asymp of f becomes horiz.asymp of f^{-1} , $\frac{-3(x-2)+5}{x-2}$, $x \to \infty$ y = -3 (must be an equation) A1 N2 [2 marks] Total [6 marks]

(b)

- valid attempt to substitute coordinates (M1) (a) g(-1) = 8eg correct substitution (A1) $(-1)^{2}+b(-1)+11=8, 1-b+11=8$ eg b = 4A1 [3 marks]
 - valid attempt to solve $(x^2+4x+4)+7$, $h=\frac{-4}{2}$, k=g(-2)eg

correct working

 $(x+2)^2 + 7$, h = -2, k = 7eg

-2) 7 translation or shift (do not accept move) of vector (accept left by 2 and up by 7)

> A1A1 N2 [4 marks] Total [7 marks]

(M1)

A1

N2

