> Subject - Math(Higher Level)
> Topic - Statistics and Probability
> Year - Nov 2011 - Nov 2017
> Paper -2

Question -1
(a) $m=\frac{300}{60}=5$ (A1)
$\mathrm{P}(X=0)=0.00674$
or e^{-5}
(b) $\mathrm{E}(X)=5 \times 2=10$
(c) $\quad \mathrm{P}(X>10)=1-\mathrm{P}(X \leq 10)$ (M1)

$$
=0.417
$$

Question-2

Question 3

(a) $\quad X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$
$\mathrm{P}(X<x)=0.2 \Rightarrow x=58.69 \mathrm{~m}$
(M1)A1
[2 marks]
(b) $z=-0.8416 \ldots$
$-0.8416=\frac{56.52-59.39}{\sigma}$
(A1)
(M1)
AI
[3 marks]
(c) Jan $X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$; Sia $X \sim \mathrm{~N}\left(59.50,3.00^{2}\right)$
(i) Jan: $\mathrm{P}(X>65) \approx 0.00831$
(M1)A1
Sia: $\mathrm{P}(Y>65) \approx 0.0334$
A1
Sia is more likely to qualify
R1
Note: Only award R1 if (M1) has been awarded.
(ii) Jan: $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)$
(M1)

$$
=1-(1-0.00831 \ldots)^{3} \approx 0.0247
$$

$$
(M 1) A 1
$$

Sia: $\mathrm{P}(Y \geq 1)=1-\mathrm{P}(Y=0)=1-(1-0.0334 \ldots)^{3} \approx 0.0968$

Note: Accept 0.0240 and 0.0969 .

hence, $\mathrm{P}(X \geq 1$ and $Y \geq 1)=0.0247 \times 0.0968=0.00239$
(M1)AI
[10 marks]
Total [15 marks]

Question -4
(a) $\binom{10}{6}=210$
(M1)A1
[2 marks]
(b) $\quad 2 \times\binom{ 8}{5}=112$
(M1)A1A1

Note: Accept $210-28-70=112$
(c) $\frac{112}{210}\left(=\frac{8}{15}=0.533\right)$
(M1)A1
[2 marks]
Total [7 marks]

Question -5

(a) 50 A1
(b) Lower quartile is 4 so at least 26 obtained a $4 \quad$ R1

Lower bound is $26 \quad$ A1

Minimum is 2 but the rest could be 4 R1

So upper bound is 49 A1

Note: Do not allow follow through for \boldsymbol{A} marks.
Note: If answers are incorrect award ROAO, if argument is correct but no clear lower/upper bound is stated award R1AO; award ROA1 for correct answer without explanation or incorrect explanation.

[4 marks]

Question-6

$$
\begin{aligned}
& X \sim \mathrm{Po}(m) \\
& \mathrm{P}(X=2)=\mathrm{P}(X<2) \\
& \frac{1}{2} m^{2} \mathrm{e}^{-m}=\mathrm{e}^{-m}(1+m) \\
& m=2.73 \quad(1+\sqrt{3})
\end{aligned}
$$

in four hours the expected value is $10.9 \quad(4+4 \sqrt{3})$
te: Value of m does not need to be rounded.

Question -7
(a) (i) $X \sim \operatorname{Po}$ (11)
$\mathrm{P}(X \leq 11)=0.579$
(ii) $\quad \mathrm{P}(X>8 \mid X<12)=$
$=\frac{\mathrm{P}(8<X<12)}{\mathrm{P}(X<12)}\left(\right.$ or $\frac{\mathrm{P}(X \leq 11)-\mathrm{P}(X \leq 8)}{\mathrm{P}(X \leq 11)}$ or $\left.\frac{0.3472 \ldots}{0.5792 \ldots}\right)$
$=0.600$ (M1)

A1
N2
[6 marks]
(b) (i) $\quad Y \sim \operatorname{Po}(m)$
$\mathrm{P}(Y>3)=0.24$
(M1)
$\mathrm{P}(Y \leq 3)=0.76$ (M1)
$\mathrm{e}^{-m}\left(1+m+\frac{1}{2} m^{2}+\frac{1}{6} m^{3}\right)=0.76$
Note: At most two of the above lines can be implied.
Attempt to solve equation with GDC
$m=2.49$
(ii) $\quad A \sim \operatorname{Po}(4.98)$

$$
\begin{array}{lr}
\mathrm{P}(A>5)=1-\mathrm{P}(A \leq 5)=0.380 \ldots & \text { M1A1 } \\
W \sim \mathrm{~B}(4,0.380 \ldots) & \text { (M1) } \\
\mathrm{P}(W \geq 2)=1-\mathrm{P}(W \leq 1)=0.490 & \text { M1A1 }
\end{array}
$$

(c) $\mathrm{P}(A<25)=0.8, \mathrm{P}(A<18)=0.4$

$$
\begin{aligned}
& \frac{25-\mu}{\sigma}=0.8416 \ldots \\
& \frac{18-\mu}{\sigma}=-0.2533 \ldots \text { (or }-0.2534 \text { from tables) } \\
& \text { solving these equations } \\
& \mu=19.6
\end{aligned}
$$

Note: Accept just 19.6, 19 or 20; award A0 to any other final answer.
[6 marks]

Total [22 marks]

Question -8
(a) $\mathrm{E}(X)=n p$
$\Rightarrow 10=30 p$
$\Rightarrow p=\frac{1}{3}$
A1
[1 mark]
(b) $\mathrm{P}(X=10)=\binom{30}{10}\left(\frac{1}{3}\right)^{10}\left(\frac{2}{3}\right)^{20}=0.153$
(M1)A1
[2 marks]
(c) $\mathrm{P}(X \geq 15)=1-\mathrm{P}(X \leq 14)$

$$
=1-0.9565 \ldots=0.0435
$$

(M1)
A1
[2 marks]

Question -9
(a) $\mathrm{P}(X=5)=\mathrm{P}(X=3)+\mathrm{P}(X=4)$

$$
\begin{align*}
& \frac{\mathrm{e}^{-m} m^{5}}{5!}=\frac{\mathrm{e}^{-m} m^{3}}{3!}+\frac{\mathrm{e}^{-m} m^{4}}{4!} \tag{A1}\\
& m^{2}-5 m-20=0 \\
& \Rightarrow m=\frac{5+\sqrt{105}}{2}=(7.62)
\end{align*}
$$

(b) $\quad \begin{aligned} & \mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2) \\ & =1-0.018 \ldots\end{aligned}$

$$
=1-0.018 \ldots
$$

$$
=0.982
$$

Question 10
(a) $\begin{aligned} & \int_{0}^{a} \frac{1}{1+x^{4}} \mathrm{~d} x=1 \\ & a=1.40\end{aligned}$
(b) $\mathrm{E}(X)=\int_{0}^{a} \frac{x}{1+x^{4}} \mathrm{~d} x$
$\left(=\frac{1}{2} \arctan \left(a^{2}\right)\right)$ $=0.548$

M2
A1
[3 marks]

M1

A1
[2 marks]
Total [5 marks]

Question 11

(a) (i) $\mathrm{P}(X>225)=0.158 \ldots$
(M1)(A1)
expected number $=450 \times 0.158 \ldots=71.4$
A1
(ii) $\mathrm{P}(X<m)=0.7$
(M1)
$\Rightarrow m=213$ (grams)
A1
[5 marks]
(b) $\frac{270-\mu}{\sigma}=1.40 \ldots$
$\frac{250-\mu}{\sigma}=-1.03 \ldots \quad$ A1
Note: These could be seen in graphical form.
solving simultaneously (M1)
$\mu=258, \sigma=8.19$ A1A1

[6 marks]

(c)

$$
\begin{aligned}
& X \sim \mathrm{~N}\left(80,4^{2}\right) \\
& \mathrm{P}(X>82)=0.3085 \ldots
\end{aligned}
$$

recognition of the use of binomial distribution.

$$
\mathrm{P}(X=3)=0.140
$$

Question 12

$\frac{\sum_{i=1}^{15} x_{i}}{15}=11.5 \Rightarrow \sum_{i=1}^{15} x_{i}=172.5$
new mean $=\frac{172.5-22.1}{14}$
(M1)
$=10.7428 \ldots=10.7(3 \mathrm{sf})$
$\frac{\sum_{i=1}^{15} x_{i}^{2}}{15}-11.5^{2}=9.3$ (M1)
$\Rightarrow \sum_{i=1}^{15} x_{i}^{2}=2123.25$
new variance $=\frac{2123.25-22.1^{2}}{14}-(10.7428 \ldots)^{2}$
(M1)
$=1.37$ (3sf)

Question 13
(a) $\mathrm{P}(\mathrm{WWW})=0.75 \times 0.375 \times 0.1875=0.0527 \quad(3 \mathrm{sf})\left(\frac{3}{4} \times \frac{3}{8} \times \frac{3}{16}=\frac{27}{512}\right) \quad$ (M1)A1
[2 marks]
(b)
(M1)(A1)
Note: Award M1 for any reasonable attempt to use a tree diagram showing that three games were played (do not award M1 for tree diagrams that only show the first two games) and $\boldsymbol{A 1}$ for the highlighted probabilities.
$\mathrm{P}($ wins 2 games \mid wins first game $)=\frac{\mathrm{P}(\text { WWL, WLW })}{\mathrm{P}(\text { wins first game })}$
$=\frac{0.75 \times 0.375 \times 0.8125+0.75 \times 0.625 \times 0.375}{0.75}$
(A1)(A1)

$$
=0.539(3 \mathrm{sf})\left(\text { or } \frac{69}{128}\right)
$$

Question 14
(a) $2.2 \times 6 \times 60=792$
(M1)A1
[2 marks]
(b) $\quad V \sim \operatorname{Po}(2.2 \times 60)$ $\mathrm{P}(V>100)=0.998$
(M1)
(M1)A1
[3 marks]
(c) $(0.997801 \ldots)^{6}=0.987$
(M1)A1
[2 marks]
(d) $\quad A \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
$\mathrm{P}(A<35)=0.29$ and $\mathrm{P}(A>55)=0.23 \Rightarrow \mathrm{P}(A<55)=0.77$
$\mathrm{P}\left(Z<\frac{35-\mu}{\sigma}\right)=0.29$ and $\mathrm{P}\left(Z<\frac{55-\mu}{\sigma}\right)=0.77$
(M1)
use of inverse normal
(M1)
$\frac{35-\mu}{\sigma}=-0.55338 \ldots$ and $\frac{55-\mu}{\sigma}=0.738846 \ldots$
solving simultaneously
(A1)
$\mu=43.564 \ldots$ and $\sigma=15.477$.
(M1)
$\mu=43.6$ and $\sigma=15.5(3 \mathrm{sf})$
[6 marks]
(e) $0.29 n=100 \Rightarrow n=344.82 \ldots$ $\mathrm{P}(A<50)=0.66121 \ldots$
(M1)(A1)
(A1)
expected number of visitors under $50=228$
(M1)A1
[5 marks]
Total [18 marks]

Question 15

$$
\frac{5 \times 6+6 k+7 \times 3+8 \times 1+9 \times 2+10 \times 1}{13+k}=6.5(\text { or equivalent })
$$

ote: Award (M1)(A1) for correct numerator, and (A1) for correct denominator.

$$
0.5 k=2.5 \Rightarrow k=5
$$

Question 16

Let X represent the length of time a journey takes on a particular day.
(a) $P(X>15)=0.0912112819 \ldots=0.0912$
(M1)A1
(b) Use of correct Binomial distribution (M1)
$N \sim B(5,0.091 \ldots)$
$1-0.0912112819 \ldots=0.9087887181 \ldots$
$1-(0.9087887181 \ldots)^{5}=0.380109935 \ldots=0.380$

Note: Allow answers to be given as percentages.

Question 17

(a) $\quad X \sim \operatorname{Po}(0.25 \mathrm{~T})$

Attempt to solve $\mathrm{P}(X \leq 3)=0.6$
$T=12.8453 \ldots=13$ (minutes)

Note: Award A1M1A0 if T found correctly but not stated to the nearest minute.
(b) let X_{1} be the number of cars that arrive during the first interval and X_{2} be the number arriving during the second.
X_{1} and X_{2} are $\mathrm{Po}(2.5)$
P (all get on $)=\mathrm{P}\left(X_{1} \leq 3\right) \times \mathrm{P}\left(X_{2} \leq 3\right)+\mathrm{P}\left(X_{1}=4\right) \times \mathrm{P}\left(X_{2} \leq 2\right)$
$+\mathrm{P}\left(X_{1}=5\right) \times \mathrm{P}\left(X_{2} \leq 1\right)+\mathrm{P}\left(X_{1}=6\right) \times \mathrm{P}\left(X_{2}=0\right)$
$=0.573922 \ldots+0.072654 \ldots+0.019192 \ldots+0.002285 \ldots$
$=0.668$ ($053 \ldots$..)

Question 18

(a) $\quad X \sim N(13.5,9.5)$
$13.5-\sqrt{9.5}<X<13.5+\sqrt{9.5}$
(M1)
$10.4<X<16.6$
A1

Note: Accept 6.16.
(b) $\mathrm{P}(X<10)=0.12807 \ldots$
estimate is 1281 (correct to the nearest whole number).
A1

Note: Accept 1280.

Question 19

(a) $\int_{0}^{0.5} a x^{2} \mathrm{~d} x+\int_{0.5}^{1} 0.5 a(1-x) \mathrm{d} x=1$
$\frac{5 a}{48}$ (or equivalent) or $a \times 0.104 \ldots=1$

Note: Award M1 for considering two definite integrals.
Award $A 1$ for equating to 1 .
Award $A 1$ for a correct equation.
The $A 1 A 1$ can be awarded in any order.
$a=9.6$
$A G$
[3 marks]
(b)

correct shape for $0 \leq x \leq 0.5$ and $f(0.5) \approx 2.4 \quad$ A1
correct shape for $0.5 \leq x \leq 1$ and $f(1)=0$
(c) attempting to find $\mathrm{P}(X<0.6)$
direct GDC use or eg $\mathrm{P}(0 \leq X \leq 0.5)+\mathrm{P}(0.5 \leq X \leq 0.6)$ or $1-\mathrm{P}(0.6 \leq X \leq 1)$
$\mathrm{P}(X<0.6)=0.616\left(=\frac{77}{125}\right)$

Question 20

(a) $\quad X \sim \operatorname{Po}(1.2)$

$$
\begin{aligned}
& \mathrm{P}(X=3) \times \mathrm{P}(X=0) \\
& =0.0867 \ldots \times 0.3011 \ldots \\
& =0.0261
\end{aligned}
$$

(M1)
(b) Three requests over two days can occur as $(3,0),(0,3),(2,1)$ or $(1,2)$. R1 using conditional probability, for example

Note: Award M1 for attempting to find the expected income including both $(3,0)$ and $(2,1)$ cases.

$$
\begin{aligned}
& =\text { US } \$ 30+\text { US } \$ 135 \\
& =\text { US } \$ 165
\end{aligned}
$$

Question 21

$$
\mathrm{P}\left(Z<\frac{780-\mu}{\sigma}\right)=0.92 \text { and } \mathrm{P}\left(Z<\frac{755-\mu}{\sigma}\right)=0.12
$$

use of inverse normal
$\Rightarrow \frac{780-\mu}{\sigma}=1.405 \ldots$ and $\frac{755-\mu}{\sigma}=-1.174 \ldots$
solving simultaneously
Note: Award M1 for attempting to solve an incorrect pair of equations eg, inverse normal not used.

```
\mu=766.385
\sigma=9.6897
\mu=12 \textrm{hrs 46 mins (= 766 mins)}
\(\sigma=10 \mathrm{mins}\)
```

Question 22
(a) $\quad \mathrm{P}(F)=\left(\frac{1}{7} \times \frac{7}{9}\right)+\left(\frac{6}{7} \times \frac{4}{9}\right)$
(M1)(A1)

Note: Award M1 for the sum of two products.

$$
=\frac{31}{63}(=0.4920 \ldots)
$$

(b) Use of $\mathrm{P}(S \mid F)=\frac{\mathrm{P}(S \cap F)}{\mathrm{P}(F)}$ to obtain $\mathrm{P}(S \mid F)=\frac{\frac{1}{7} \times \frac{7}{9}}{\frac{31}{63}}$.

Note: Award M1 only if the numerator results from the product of two probabilities.

$$
=\frac{7}{31}(=0.2258 \ldots)
$$

Question 23
(a) (i) $X \sim \operatorname{Po}(0.6)$
$\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right) \quad A 1$
(ii) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$
(M1)(A1)
$=1-\left(\mathrm{e}^{-0.6}+\mathrm{e}^{-0.6} \times 0.6+\mathrm{e}^{-0.6} \times \frac{0.6^{2}}{2}\right)$
$=0.0231$
A1
$\begin{array}{llr}\text { (iii) } & Y \sim \operatorname{Po}(2.4) & \text { (M1) } \\ & \mathrm{P}(Y \leq 5)=0.964 \\ \text { (iv) } & Z \sim \mathrm{~B}(12,0.451 \ldots) & \text { A1 } \\ \text { (M1)(A1) }\end{array}$
Note: Award M1 for recognising binomial and $A 1$ for using correct parameters.

$$
\mathrm{P}(Z=4)=0.169
$$

(b) (i) $\quad k \int_{1}^{3} \ln x \mathrm{~d} x=1$
$(k \times 1.2958 \ldots=1)$
$k=0.771702$
(ii) $\mathrm{E}(X)=\int_{1}^{3} k x \ln x \mathrm{~d} x$
attempting to evaluate their integral
(M1) $=2.27$
(iii) $x=3$
(iv) $\begin{aligned} & \int_{1}^{m} k \ln x \mathrm{~d} x=0.5 \\ & k[x \ln x-x]_{1}^{m}=0.5 \\ & \text { attempting to solve for } m \\ & m=2.34\end{aligned}$

Total [18 marks]
Question 24

```
\(X: \mathrm{N}\left(100, \sigma^{2}\right)\)
\(\mathrm{P}(X<124)=0.68\)
(M1)(A1)
\(\frac{24}{\sigma}=0.4676 \ldots\)
\(\sigma=51.315 \ldots\)
(M1)
(A1)
variance \(=2630\)

Notes: Accept use of \(\mathrm{P}(X<124.5)=0.68\) leading to variance \(=2744\).

Question 25
(a) \(\left(A\binom{6}{5} 2^{5} B+3\binom{6}{4} 2^{4} B^{2}\right) x^{5}\)

M1A1A1

A1
[4 marks]
(b) METHOD 1
\(x=\frac{1}{6}, A=\frac{3}{6}\left(=\frac{1}{2}\right), B=\frac{4}{6}\left(=\frac{2}{3}\right)\)
A1A1A1
probability is \(\frac{4}{81}(=0.0494)\)
METHOD 2
\(P(5\) eaten \()=P(M\) eats 1\() P(N\) eats 4\()+P(M\) eats 0\() P(N\) eats 5\()\)
(M1)
\(=\frac{1}{2}\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)\)
\(=\frac{4}{81}(=0.0494)\)

\section*{Question 26}
(a) mean for week is 40.88
\[
\mathrm{P}(S>40)=1-\mathrm{P}(S \leq 40)=0.513
\]
(b) probability there were more than 10 on Monday AND more than 40 over the week probability there were more than 10 on Monday
possibilities for the numerator are:
there were more than 40 birds on the power line on Monday
R1
11 on Monday and more than 29 over the course of the next 6 days
12 on Monday and more than 28 over the course of the next 6 days \(\ldots\) until 40 on Monday and more than 0 over the course of the next 6 days
hence if \(X\) is the number on the power line on Monday and \(Y\), the number on the power line Tuesday - Sunday then the numerator is
\(\mathrm{P}(X>40)+\mathrm{P}(X=11) \times \mathrm{P}(Y>29)+\mathrm{P}(X=12) \times \mathrm{P}(Y>28)+\ldots\)
\(+\mathrm{P}(X=40) \times \mathrm{P}(Y>0)\)
\(=\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)\)
hence solution is \(\frac{\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)}{\mathrm{P}(X>10)}\)

Question 27
(a) \(\quad \int_{2}^{3}(a x+b) \mathrm{d} x(=1)\)

M1A1
\(\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{3}(=1)\) A1
\(\frac{5}{2} a+b=1\)
M1
\(5 a+2 b=2\)
\(\boldsymbol{A} \boldsymbol{G}\)
[4 marks]
(b) (i) \(\int_{2}^{3}\left(a x^{2}+b x\right) \mathrm{d} x(=\mu)\)

M1A1
A1
\(\frac{19}{3} a+\frac{5}{2} b=\mu\)
eliminating \(b\)
M1
eg
\(\begin{array}{ll}\frac{19}{3} a+\frac{5}{2}\left(1-\frac{5}{2} a\right)=\mu & A 1 \\ \frac{1}{12} a+\frac{5}{2}=\mu & \\ a=12 \mu-30 & A G\end{array}\)
Note: Elimination of \(b\) could be at different stages.
(ii) \(\quad b=1-\frac{5}{2}(12 \mu-30)\)
\[
=76-30 \mu
\]

Note: This solution may be seen in part (i).
(c) (i) \(\int_{2}^{2.3}(a x+b) \mathrm{d} x(=0.5)\)
\[
\begin{aligned}
& {\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{2.3}(=0.5)} \\
& 0.645 a+0.3 b(=0.5) \\
& 0.645(12 \mu-30)+0.3(76-30 \mu)=0.5 \\
& \mu=2.34\left(=\frac{295}{126}\right)
\end{aligned}
\]
(ii) \(\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}(a x+b) \mathrm{d} x\)
\(a=12 \mu-30=-\frac{40}{21}, b=76-30 \mu=\frac{121}{21}\)
(A1)
\(\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}\left(-\frac{40}{21} x+\frac{121}{21}\right) \mathrm{d} x=5.539 \ldots\left(=\frac{349}{63}\right)\)
\(\operatorname{Var}(X)=5.539 \mathrm{~K}-(2.341 \mathrm{~K})^{2}=0.05813 \ldots\)
\(\sigma=0.241\)

Total [21 marks]
Question 28
(a) (i) \(0.6^{3} \times 0.4^{3}\)

Note: Award (M1) for use of the product of probabilities.
\[
=0.0138
\]
(ii) binomial distribution \(X: \mathrm{B}(6,0.6)\)

Note: Award (M1) for recognizing the binomial distribution.
\[
\begin{aligned}
& \mathrm{P}(X=3)={ }^{6} C_{3}(0.6)^{3}(0.4)^{3} \\
& =0.276
\end{aligned}
\]

Note: Award (M1)A1 for \({ }^{6} C_{3} \times 0.0138=0.276\).
(b) \(\quad Y: \mathrm{B}(n, 0.4)\)
\(\mathrm{P}(Y \geq 1)>0.995\)
\(1-\mathrm{P}(Y=0)>0.995\)
\(\mathrm{P}(Y=0)<0.005\)
Note: Award (M1) for any of the last three lines. Accept equalities.
\[
0.6^{n}<0.005
\]
(M1)
Note: Award (M1) for attempting to solve \(0.6^{n}<0.005\) using any method, eg, logs, graphically, use of solver. Accept an equality.
\[
\begin{aligned}
& n>10.4 \\
& \therefore n=11
\end{aligned}
\]

Question 29

Total [4 marks]

\section*{Question 30}
(a) \(\quad a \int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x=1\)
integrating by parts:
\(\begin{array}{llr}u=x & v^{\prime}=\cos x & \text { M1 } \\ u^{\prime}=1 & v=\sin x & \text { A1 } \\ \int x \cos x \mathrm{~d} x & =x \sin x+\cos x & \end{array}\)
\([x \sin x+\cos x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-1\)
\(a=\frac{1}{\frac{\pi}{2}-1}\)
\(=\frac{2}{\pi-2}\)
(b) \(\mathrm{P}\left(X<\frac{\pi}{4}\right)=\frac{2}{\pi-2} \int_{0}^{\frac{\pi}{4}} x \cos x \mathrm{~d} x=0.460\)
(M1) A1

Note: Accept \(\frac{2}{\pi-2}\left(=\frac{\pi \sqrt{2}}{8}+\frac{\sqrt{2}}{2}-1\right)\) or equivalent
(c) (i) mode \(=0.860\)
( \(x\)-value of a maximum on the graph over the given domain)
(ii) \(\frac{2}{\pi-2} \int_{0}^{m} x \cos x \mathrm{~d} x=0.5\)
\(\int_{0}^{m} x \cos x \mathrm{~d} x=\frac{\pi-2}{4}\)
\(m \sin m+\cos m-1=\frac{\pi-2}{4}\)
median \(=0.826\)
Note:Do not accept answers containing additional solutions.
(d) \(\mathrm{P}\left(\left.X<\frac{\pi}{8} \right\rvert\, X<\frac{\pi}{4}\right)=\frac{\mathrm{P}\left(X<\frac{\pi}{8}\right)}{\mathrm{P}\left(X<\frac{\pi}{4}\right)}\)
\(=\frac{0.129912}{0.459826}\)
\(=0.283\)

Question 31
(a) \(\mathrm{P}(X>x)=0.99(=\mathrm{P}(X<x)=0.01)\)
\(\Rightarrow x=54.6(\mathrm{~cm})\)
(b) \(\quad \begin{aligned} \mathrm{P} & (60.15 \leq X \leq 60.25) \\ & =0.0166\end{aligned}\)
(M1)
A1
[2 marks]
(M1)(A1)
A1
[3 marks]
Total [5 marks]

Question 32
use of \(\mu=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n}\) to obtain \(\frac{2+x+y+10+17}{5}=8\)
(M1)
\(x+y=11\)

\section*{EITHER}
use of \(\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}\) to obtain \(\frac{(-6)^{2}+(x-8)^{2}+(y-8)^{2}+2^{2}+9^{2}}{5}=27.6\)
(M1)
\((x-8)^{2}+(y-8)^{2}=17\)
OR
use of \(\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n}-\mu^{2}\) to obtain \(\frac{2^{2}+x^{2}+y^{2}+10^{2}+17^{2}}{5}-8^{2}=27.6\)
\(x^{2}+y^{2}=65\)
\[
A 1
\]

THEN
attempting to solve the two equations
\(x=4\) and \(y=7\) (only as \(x<y\) )
(M1) A1 N4

Note: Award A0 for \(x=7\) and \(y=4\).

Note: Award (M1)A1(M0)A0(M1)A1 for \(x+y=11 \Rightarrow x=4\) and \(y=7\).

\section*{Question 33}
(a) (i) \(\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right) \quad A 1\)
(ii) \(\quad \mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)\)
(M1)
\(\mathrm{P}(X \geq 3)=0.0231\)
\[
A 1
\]
(b) EITHER
using \(Y \sim \operatorname{Po}(3)\)
(M1)

OR
using (0.549) \({ }^{5}\)
(M1)
THEN
\(\mathrm{P}(Y=0)=0.0498\left(=\mathrm{e}^{-3}\right)\)
\[
A 1
\]
(c) \(\mathrm{P}(X=0)\) (most likely number of complaints received is zero)

\section*{EITHER}
calculating \(\mathrm{P}(X=0)=0.549\) and \(\mathrm{P}(X=1)=0.329\)
OR
sketching an appropriate (discrete) graph of \(\mathrm{P}(X=x)\) against \(x\)
OR
finding \(\mathrm{P}(X=0)=e^{-0.6}\) and stating that \(\mathrm{P}(X=0)>0.5\)
OR
using \(\mathrm{P}(X=x)=\mathrm{P}(X=x-1) \times \frac{\mu}{x}\) where \(\mu<1\)
M1A1
(d) \(\mathrm{P}(X=0)=0.8\left(\Rightarrow e^{-\lambda}=0.8\right)\)
\(\lambda=0.223\left(=\ln \frac{5}{4},=-\ln \frac{4}{5}\right)\)
(A1)
A1
[2 marks]
Total [10 marks]
(a) \(\quad \mathrm{P}(\) Ava wins on her first turn \()=\frac{1}{3}\)
(b) \(\quad \mathrm{P}(\) Barry wins on his first turn \()=\left(\frac{2}{3}\right)^{2}\)
\[
=\frac{4}{9}(=0.444)
\]
(c) P (Ava wins in one of her first three turns)
\[
=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}
\]

Note: Award M1 for adding probabilities, award \(\boldsymbol{A 1}\) for a correct second term and award \(\boldsymbol{A 1}\) for a correct third term.
Accept a correctly labelled tree diagram, awarding marks as above.
\[
=\frac{103}{243}(=0.424)
\]
(d) \(\mathrm{P}(\) Ava eventually wins \()=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\). using \(S_{\infty}=\frac{a}{1-r}\) with \(a=\frac{1}{3}\) and \(r=\frac{2}{9}\)
(M1)(A1)

Note: Award (M1) for using \(S_{\infty}=\frac{a}{1-r}\) and award (A1) for \(a=\frac{1}{3}\) and \(r=\frac{2}{9}\).
\[
=\frac{3}{7}(=0.429)
\]

Total [11 marks]
Question 35
(a) \(\quad X \sim N\left(210,22^{2}\right)\)
\[
\mathrm{P}(X<180)=0.0863
\]
(M1)A1
(b) \(\mathrm{P}(X<T)=0.9 \Rightarrow T=238\) (mins)
(M1)A1

Question 36
(a) \(\quad W \sim B(1000,0.1)\left(\right.\) accept \(\left.C_{k}^{1000}(0.1)^{k}(0.9)^{1000-k}\right)\)

A1A1
Note: First \(\boldsymbol{A 1}\) is for recognizing the binomial, second \(\boldsymbol{A 1}\) for both parameters if stated explicitly in this part of the question.
(b) \(\mu(=1000 \times 0.1)=100\)
(c) \(\quad \mathrm{P}(W>89)=\mathrm{P}(W \geq 90) \quad(=1-\mathrm{P}(W \leq 89))\) \(=0.867\)

Notes: Award MOAO for 0.889

\section*{Question 37}
(a) \(2 \frac{\mathrm{e}^{-m} m^{4}}{4!}=\frac{\mathrm{e}^{-m} m^{5}}{5!}\)

M1A1
\(\frac{2}{4!}=\frac{m}{5!}\) or other simplification
M1
Note: accept a labelled graph showing clearly the solution to the equation. Do not accept simple verification that \(m=10\) is a solution.
\[
\Rightarrow m=10
\]

AG
[3 marks]
\[
\text { (b) } \begin{aligned}
\mathrm{P}(X=6 \mid X \leq 11) & =\frac{\mathrm{P}(X=6)}{\mathrm{P}(X \leq 11)} \\
& =\frac{0.063055 \ldots}{0.696776 \ldots} \\
& =0.0905
\end{aligned}
\]
[2 marks]
Total [5 marks]

\section*{[1 mark]}
(M1)
A1

Total
(M1) (A1)
(A1)
A1
[4 marks]
Total [7 marks]

\section*{Question 38}
(a)


Award \(\boldsymbol{A 1}\) for sine curve from 0 to \(\pi\), award \(\boldsymbol{A 1}\) for straight line from \(\pi\) to \(2 \pi\)
(b) \(\quad \int_{0}^{\pi} \frac{\sin x}{4} \mathrm{~d} x=\frac{1}{2}\)
(M1)A1
(c) METHOD 1
require \(\frac{1}{2}+\int_{\pi}^{2 \pi} a(x-\pi) \mathrm{d} x=1\)
(M1)
\(\Rightarrow \frac{1}{2}+a\left[\frac{(x-\pi)^{2}}{2}\right]_{\pi}^{2 \pi}=1 \quad\left(\right.\) or \(\left.\frac{1}{2}+a\left[\frac{x^{2}}{2}-\pi x\right]_{\pi}^{2 \pi}=1\right)\)
A1
\(\Rightarrow a \frac{\pi^{2}}{2}=\frac{1}{2}\)
\(\Rightarrow a=\frac{1}{\pi^{2}}\)
AG

Note: Must obtain the exact value. Do not accept answers obtained with calculator.

\section*{METHOD 2}
\(0.5+\) area of triangle \(=1\)
R1
area of triangle \(=\frac{1}{2} \pi \times a \pi=0.5\)
M1A1
Note: Award M1 for correct use of area formula \(=0.5, \boldsymbol{A 1}\) for \(a \pi\).
\[
a=\frac{1}{\pi^{2}}
\]

\section*{AG}
[3 marks]
A1
[1 mark]
(e) \(\quad \mu=\int_{0}^{\pi} x \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x\)
(M1)(A1)
A1
[3 marks]
(f) For \(\mu=3.40339 \ldots\)

EITHER
\[
\sigma^{2}=\int_{0}^{\pi} x^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x-\mu^{2}
\]

OR
\(\sigma^{2}=\int_{0}^{\pi}(x-\mu)^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi}(x-\mu)^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x\)
THEN
\(=3.866277 \ldots=3.87\)
A1
[3 marks]
(g) \(\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{\frac{3 \pi}{2}} \frac{x-\pi}{\pi^{2}} \mathrm{~d} x=0.375 \quad\) (or \(\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\) )
(M1)A1
[2 marks]
(M1)(A1)
(M1)

A1
[4 marks]
Total [20 marks]

Question 39
(a) \(\quad\) (i) \(\quad X \sim P o\) (5)
\(\mathrm{P}(X \geq 8)=0.133\)
(M1)A1
M1
(ii) \(7 \times 0.133 \ldots\)
\(\approx 0.934\) days
A1
Note: Accept " 1 day".
(b) \(\quad \begin{aligned} 7 \times 5 & =35(Y \sim P o(35)) \\ & \mathrm{P}(Y \leq 29)=0.177\end{aligned}\)
[4 marks]
(A1)
(M1)A1

Total [7 marks]

Question 40

(a) attempt to set up the problem using a tree diagram and/or an equation, with the unknown \(x\)
\(\frac{4}{5} x+\frac{2}{3}(1-x)=\frac{13}{18}\)
\(\frac{4 x}{5}-\frac{2 x}{3}=\frac{13}{18}-\frac{2}{3}\)
\(\frac{2 x}{15}=\frac{1}{18}\)
\(x=\frac{5}{12}\)
A1
[3 marks]
(b) attempt to set up the problem using conditional probability

M1
EITHER
\(\frac{5}{12} \times \frac{1}{5}\)
A1
\(1-\frac{13}{18}\)

OR
\[
\frac{\frac{5}{12} \times \frac{1}{5}}{\frac{1}{12}+\frac{7}{36}}
\]

THEN
Pidibl Merger Mac - Unregistered \({ }^{\text {Ai }}\)

\section*{Question 41}
(a) (i) \(P(110<X<130)=0.49969 \ldots=0.500=50.0 \%\)
(M1)A1

Note: Accept 50

Note: Award M1AO for 0.50 ( 0.500 )
(ii) \(P(X>130)=(1-0.707 \ldots)=0.293 \ldots\)

M1
expected number of turnips \(=29.3\)
A1
Note: Accept 29.
(iii) no of turnips weighing more than 130 is \(Y \sim B(100,0.293)\)

M1
\(P(Y \geq 30)=0.478\)
A1
[6 marks]
(b) (i) \(X \sim N\left(144, \sigma^{2}\right)\)
\(P(X \leq 130)=\frac{1}{15}=0.0667\)
(M1)
\(P\left(Z \leq \frac{130-144}{\sigma}\right)=0.0667\)
\(\frac{14}{\sigma}=1.501\)
\(\sigma=9.33 g\)
(ii) \(\quad P(X>150 \mid X>130)=\frac{P(X>150)}{P(X>130)}\)
\(=\frac{0.26008 \ldots}{1-0.06667}=0.279\)
expected number of turnips \(=55.7\)
A1
[6 marks]
Total [12 marks]
Question 42
\(\begin{array}{ll}\text { (a) } & 0.818=0.65+0.48-\mathrm{P}(A \cap B) \\ & \mathrm{P}(A \cap B)=0.312\end{array}\)
(M1)
A1
[2 marks]
(b) \(\mathrm{P}(A) \mathrm{P}(B)=0.312(=0.48 \times 0.65)\)

A1
since \(\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A \cap B)\) then \(A\) and \(B\) are independent
R1
e: Only award the R1 if numerical values are seen. Award A1R1 for a correct conditional probability approach.

Question 43
(a) \(\frac{0 \cdot 4+1 \cdot k+2 \cdot 3+3 \cdot 2+4 \cdot 3+8 \cdot 1}{13+k}=1.95\left(\frac{k+32}{k+13}=1.95\right)\)
attempting to solve for \(k\)
\(k=7\)
(b) (i) \(\frac{7+32+22}{7+13+1}=2.90\left(=\frac{61}{21}\right)\)
(M1)A1
(ii) standard deviation \(=4.66\)
: Award \(\boldsymbol{A O}\) for 4.77 .
[3 marks]
Total [6 marks]
Question 44


M1A1A1
e: Award M1 for a two-level tree diagram, A1 for correct first level probabilities, and \(\boldsymbol{A 1}\) for correct second level probabilities.

OR
\(\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)}{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)+\mathrm{P}\left(L^{\prime} \mid C\right) \mathrm{P}(C)+\mathrm{P}\left(L^{\prime} \mid W\right) \mathrm{P}(W)}\left(=\frac{\mathrm{P}\left(B \cap L^{\prime}\right)}{\mathrm{P}\left(L^{\prime}\right)}\right)(\) M1) \((\boldsymbol{A} 1)(\boldsymbol{A} 1)\)

\section*{THEN}
\(\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{0.9 \times 0.2}{0.9 \times 0.2+0.95 \times 0.3+0.75 \times 0.5}\left(=\frac{0.18}{0.84}\right)\)
M1A1
\(=0.214\left(=\frac{3}{14}\right)\)
A1

\section*{Question 45}
(a) \(A \int_{1}^{5} \sin (\ln x) \mathrm{d} x=1\)
(M1)
\(A=0.323\) ( 3 dp only)
(b) either a graphical approach or \(f^{\prime}(x)=\frac{\cos (\ln x)}{x}=0\)
\[
x=4.81\left(=\mathrm{e}^{\frac{\pi}{2}}\right)
\]

Note: Do not award A1FT for a candidate working in degrees.
(c) \(\quad \mathrm{P}(X \leq 3 \mid X \geq 2)=\frac{\mathrm{P}(2 \leq X \leq 3)}{\mathrm{P}(X \geq 2)}\left(=\frac{\int_{2}^{3} \sin (\ln (x)) \mathrm{d} x}{\int_{2}^{5} \sin (\ln (x)) \mathrm{d} x}\right)\) \(=0.288\)

A1
Note: Do not award A1FT for a candidate working in degrees.
[2 marks]
Question 46
(a) (i) let \(W\) be the weight of a worker and \(W \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)\)
\[
\begin{aligned}
& \mathrm{P}\left(Z<\frac{62-\mu}{\sigma}\right)=0.3 \text { and } \mathrm{P}\left(Z<\frac{98-\mu}{\sigma}\right)=0.75 \\
& \frac{62-\mu}{\sigma}=\Phi^{-1}(0.3)(=-0.524 \ldots) \text { and } \\
& \frac{98-\mu}{\sigma}=\Phi^{-1}(0.75)(=0.674 \ldots)
\end{aligned}
\]
or linear equivalents
(ii) attempting to solve simultaneously \(\mu=77.7, \sigma=30.0\)
(M1)
A1A1
[6 marks]
A1
[1 mark]
(c) let \(X\) represent the number of workers over 100 kg in a lift of ten passengers
\(X \sim \mathrm{~B}(10,0.229 \ldots)\)
\(\mathrm{P}(X \geq 4)=0.178\)
(d) \(\mathrm{P}(X<4 \mid X \geq 1)=\frac{\mathrm{P}(1 \leq X \leq 3)}{\mathrm{P}(X \geq 1)}\)

Note: Award the M1 for a clear indication of conditional probability.
\[
=0.808
\]

A1
[3 marks]
(M1)
(M1)
A1
[3 marks]
(f) 400 workers require at least 40 elevators
(A1)
\(\mathrm{P}(L \geq 40)=1-\mathrm{P}(L \leq 39)\)
\(=0.935\)
(M1)
A1
[3 marks]

Question 47
let the heights of the students be \(X\)
\(\mathrm{P}(X<1.62)=0.4, \mathrm{P}(X>1.79)=0.25\)
M1
Note: Award M1 for either of the probabilities above.
\(\mathrm{P}\left(Z<\frac{1.62-\mu}{\sigma}\right)=0.4, \mathrm{P}\left(Z<\frac{1.79-\mu}{\sigma}\right)=0.75\)
Note: Award \(\boldsymbol{M} 1\) for either of the expressions above.
\(\frac{1.62-\mu}{\sigma}=-0.2533 \ldots, \frac{1.79-\mu}{\sigma}=0.6744 \ldots\)
Note: A1 for both values correct.
\(\mu=1.67(\mathrm{~m}), \sigma=0.183(\mathrm{~m})\)
Note: Accept answers that round to 1.7(m) and 0.18(m).
Note: Accept answers in centimetres.

Question 48
\(\mathrm{P}(3\) in the first hour \()=\frac{\lambda^{3} e^{-\lambda}}{3!}\)
number to arrive in the four hours follows \(\operatorname{Po}(4 \lambda)\)
\(\mathrm{P}(5\) arrive in total \()=\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}\)
attempt to find P (2 arrive in the next three hours)
\(=\frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}\)
use of conditional probability formula
M1
\(\mathrm{P}(3\) in the first hour given 5 in total \()=\frac{\frac{\lambda^{3} e^{-\lambda}}{3!} \times \frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}}{\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}}\)
A1
\(\frac{\left(\frac{9}{2!3!}\right)}{\left(\frac{4^{5}}{5!}\right)}=\frac{45}{512}=0.0879\)
A1

\section*{Question 49}
(a) \(\mathrm{E}(X)=1 \times \frac{1}{6}+2 \times \frac{2}{6}+3 \times \frac{3}{6}=\frac{14}{6}\left(=\frac{7}{3}=2.33\right)\)
(M1)A1
[2 marks]
(b) (i) \(3 \times \mathrm{P}(113)+3 \times \mathrm{P}(122)\)
\(3 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}+3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3}=\frac{7}{72}(=0.0972)\)
Note: Award \(\boldsymbol{M} 1\) for attempt to find at least four of the cases.
(ii) recognising 111 as a possibility (implied by \(\frac{1}{216}\) )
recognising 112 and 113 as possibilities (implied by \(\frac{2}{216}\) and \(\frac{3}{216}\) )
seeing the three arrangements of 112 and 113
\(\mathrm{P}(111)+3 \times \mathrm{P}(112)+3 \times \mathrm{P}(113)\)
\(=\frac{1}{216}+\frac{6}{216}+\frac{9}{216}=\frac{16}{216}\left(=\frac{2}{27}=0.0741\right)\)
(c) let the number of twos be \(X, X \sim B\left(10, \frac{1}{3}\right)\)
\[
\mathrm{P}(X<4)=\mathrm{P}(X \leq 3)=0.559
\]
(M1)
(M1)A1
[3 marks]
(d) let \(n\) be the number of balls drawn
\(\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0) \quad\) M1
\(=1-\left(\frac{2}{3}\right)^{n}>0.95\)
M1

A1
[3 marks]
(e) \(8 p_{1}=4.8 \Rightarrow p_{1}=\frac{3}{5}\)
(M1)A1
(M1)
\(8 p_{2}\left(1-p_{2}\right)=1.5\)
\(p_{2}^{2}-p_{2}-0.1875=0\)
\(p_{2}=\frac{1}{4}\left(\right.\) or \(\left.\frac{3}{4}\right)\)
(M1)
A1
reject \(\frac{3}{4}\) as it gives a total greater than one
\(\mathrm{P}(1\) or 2\()=\frac{17}{20}\) or \(\mathrm{P}(3)=\frac{3}{20}\)
recognising LCM as 20 so min total number is 20 the least possible number of 3 's is 3

Question 50
(a) \(\mathrm{P}(0 \leq X \leq 2)=0.242\)
(M1)A1
[2 marks]
(M1)
(A1)
A1

\section*{METHOD 2}
\(\mathrm{P}(|X|>1)=1-\mathrm{P}(-1<X<1)\)
(M1)
\(=1-0.13590 \ldots\)
\(=0.864\)
(A1)
A1
[3 marks]
(M1)A1
[2 marks]

Question 51
(a) \(\quad X \sim \operatorname{Po}(0.5)\)
(A1) \(\mathrm{P}(X \geq 1)=0.393\left(=1-\mathrm{e}^{-0.5}\right)\) (M1)A1
[3 marks]
(b) \(\mathrm{P}(X=0)=0.607 \ldots\)
(A1)
\(\mathrm{E}(P)=(0.607 \ldots \times 5)-(0.393 \ldots \times 3)\)
(M1)
the expected profit is \(\$ 1.85\) per glass sheet
(c) \(Y \sim \operatorname{Po}(2)\)
(M1)
\(\mathrm{P}(Y=0)=0.135\left(=\mathrm{e}^{-2}\right)\)

A1
[2 marks]
Total [8 marks]

Question 52

(a) two enclosed regions ( \(0 \leq t \leq \frac{\pi}{2}\) and \(\left.\frac{\pi}{2} \leq t \leq \pi\right)\) bounded by the curve and the \(t\)-axis
correct non-symmetrical shape for \(0 \leq t \leq \frac{\pi}{2}\) and \(\frac{\pi}{2}<\) mode of \(T<\pi\) clearly apparent
(b) \(\quad\) mode \(=2.46\)
(c) \(\mathrm{E}(T)=\frac{1}{\pi} \int_{0}^{\pi} t^{2}|\sin 2 t| \mathrm{d} t\)
\[
=2.04
\]
(d) EITHER
\[
\operatorname{Var}(T)=\int_{0}^{\pi}(t-2.03788 \ldots)^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t
\]

\section*{OR}
\(\operatorname{Var}(T)=\int_{0}^{\pi} t^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t-(2.03788 \ldots)^{2}\)
(M1)(A1)

THEN
\(\operatorname{Var}(T)=0.516\)

A1
[3 marks]
(e) \(\frac{1}{\pi} \int_{2.03788 . \ldots}^{2.456590 \ldots} t|\sin 2 t| \mathrm{d} t=0.285\)
(M1)A1
[2 marks]
(f) (i) attempting integration by parts

Note: Award A1 if the limits are not included.
\[
=\frac{\sin 2 T}{4 \pi}-\frac{T \cos 2 T}{2 \pi}
\]
(ii) \(\frac{\sin \pi}{4 \pi}-\frac{\frac{\pi}{2} \cos \pi}{2 \pi}=\frac{1}{4}\)
as \(\mathrm{P}\left(0 \leq T \leq \frac{\pi}{2}\right)=\frac{1}{4}\) (or equivalent), then the lower quartile of \(T\) is \(\frac{\pi}{2} R 1 A G\)

Question 53
(a) \(\mathrm{E}\left(X^{2}\right)=\sum x^{2} \cdot \mathrm{P}(X=x)=10.37(=10.43 \mathrm{sf}) \quad\) (M1)A1
(b) METHOD 1
\(\operatorname{sd}(X)=1.44069 \ldots\)
(M1)(A1)
\(\operatorname{Var}(X)=2.08 \quad(=2.0756)\)
A1
METHOD 2
\(\mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)\)
use of \(\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}\)
Note: Award (M1) only if \((\mathrm{E}(X))^{2}\) is used correctly.
\((\operatorname{Var}(X)=10.37-8.29)\)
\(\operatorname{Var}(X)=2.08(=2.0756)\)
A1
Note: Accept 2.11.

\section*{METHOD 3}
\(\mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)\)
(A1)
use of \(\operatorname{Var}(X)=\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right)\)
(M1)
\((0.679728+\ldots+0.549152)\)
\(\operatorname{Var}(X)=2.08(=2.0756)\)
A1

\section*{Question 54}
(a) METHOD 1
\(\mathrm{P}(X=x+1)=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}\)
\(=\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}\)
\(=\frac{\mu}{x+1} \times \mathrm{P}(X=x)\)
METHOD 2
\(\frac{\mu}{x+1} \times \mathrm{P}(X=x)=\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}\)
\(=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}\)
\(=\mathrm{P}(X=x+1)\)
AG
METHOD 3
\(\frac{\mathrm{P}(X=x+1)}{\mathrm{P}(X=x)}=\frac{\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}}{\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}}\)
(M1)
\(=\frac{\mu^{x+1}}{\mu^{x}} \times \frac{x!}{(x+1)!}\)
\(=\frac{\mu}{x+1}\)
and so \(\mathrm{P}(X=x+1)=\frac{\mu}{x+1} \times \mathrm{P}(X=x)\)
(b) \(\mathrm{P}(X=3)=\frac{\mu}{3} \cdot \mathrm{P}(X=2)\left(0.112777=\frac{\mu}{3} \cdot 0.241667\right)\)
attempting to solve for \(\mu\)
\(\mu=1.40\)

Question 55
(a) \(\mathrm{P}(X<42.52)=0.6940\)
either \(\mathrm{P}\left(Z<\frac{30.31-\mu}{\sigma}\right)=0.1180\) or \(\mathrm{P}\left(Z<\frac{42.52-\mu}{\sigma}\right)=0.6940\)
\(\frac{30.31-\mu}{\sigma}=\underbrace{\Phi^{-1}(0.1180)}_{-1.1850 \ldots}\)
\(\frac{42.52-\mu}{\sigma}=\underbrace{\Phi^{-1}(0.6940)}_{0.5072 \ldots}\)
attempting to solve simultaneously
\(\mu=38.9\) and \(\sigma=7.22\)
(b) \(\mathrm{P}(\mu-1.2 \sigma<X<\mu+1.2 \sigma)\) (or equivalent eg. \(2 \mathrm{P}(\mu<X<\mu+1.2 \sigma)\) ) \(=0.770\)
A1

Note: Award (M1)A1 for \(\mathrm{P}(-1.2<Z<1.2)=0.770\).
[2 marks]

\section*{Total [8 marks]}

\section*{Question 56}
(a) \(\quad \mathrm{P}(X=3)=(0.1)^{3}\)
\(=0.001\)
A1
\(\mathrm{P}(X=4)=\mathrm{P}(V V \bar{V} V)+\mathrm{P}(V \bar{V} V V)+\mathrm{P}(\bar{V} V V V)\)
AG
(M1)
A1
AG
[3 marks]

M1
\(\frac{9+3 a+b}{2000}=\frac{1}{1000} \quad(3 a+b=-7)\)
\(\frac{16+4 a+b}{2000} \times \frac{9}{10}=\frac{27}{10000}(4 a+b=-10)\)
A1
A1
attempting to solve simultaneously
(M1)
\(a=-3, b=2\)
A1
METHOD 2
\(\mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3}\)
M1
\(=\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3}\)
\(=\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}\)
(M1)A1
\(a=-3, b=2\)

Note: Condone the absence of \(0.9^{n-3}\) in the determination of the values of \(a\) and \(b\).
(c) METHOD 1

EITHER
\(\mathrm{P}(X=n)=\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}\)
OR
\(\mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3}\) (M1)

THEN
\(=\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3}\)
\(\mathrm{P}(X=n-1)=\frac{(n-2)(n-3)}{2000} \times 0.9^{n-4}\)
\(\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{(n-1)(n-2)}{(n-2)(n-3)} \times 0.9\)
\(=\frac{0.9(n-1)}{n-3}\)

\section*{METHOD 2}
\(\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}}{\frac{(n-1)^{2}-3(n-1)+2}{2000} \times 0.9^{n-4}}\)
\(=\frac{0.9\left(n^{2}-3 n+2\right)}{\left(n^{2}-5 n+6\right)}\)

\section*{Note: Award A1 for a correct numerator and A1 for a correct denominator.}
\[
\begin{aligned}
& =\frac{0.9(n-1)(n-2)}{(n-2)(n-3)} \\
& =\frac{0.9(n-1)}{n-3}
\end{aligned}
\]
(d) (i) attempting to solve \(\frac{0.9(n-1)}{n-3}=1\) for \(n\)
\[
n=21
\]
\(\frac{0.9(n-1)}{n-3}<1 \Rightarrow n>21\)
\(\frac{0.9(n-1)}{n-3}>1 \Rightarrow n<21\)
R1
\(X\) has two modes
Note: Award R1R1 for a clearly labelled graphical representation of the two inequalities (using \(\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}\) ).
(ii) the modes are 20 and 21

A1
(e) METHOD 1
\(Y \sim \mathrm{~B}(x, 0.1)\)
attempting to solve \(\mathrm{P}(Y \geq 3)>0.5\) (or equivalent eg \(1-\mathrm{P}(Y \leq 2)>0.5\) ) for \(x\) (M1)
Note: Award (M1) for attempting to solve an equality (obtaining \(x=26.4\) ).
\(x=27\)
METHOD 2
\(\sum_{n=0}^{x} \mathrm{P}(X=n)>0.5\) (A1)
attempting to solve for \(x\)
(M1)
\(x=27\)

\section*{Total [20 marks]}

Question 57
(a) use of \(\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)\)

M1
\(0.5=k+3 k-k^{2}\)
A1
\(k^{2}-4 k+0.5=0\)
\(k=0.129\)
A1
Note: Do not award the final \(\boldsymbol{A 1}\) if two solutions are given.
\[
\text { (a) } \begin{aligned}
& \lambda=4 \times 0.5 \\
& \\
& \lambda=2 \\
& \\
& \mathrm{P}(X \leq 2)=0.677
\end{aligned}
\]
(M1)
(A1) A1
[3 marks]
(b) \(Y \sim B(10,0.677)\)
\(\mathrm{P}(Y=7)=0.263\)
Note: Award M1 for clear recognition of binomial distribution.
(b) use of \(\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}(B)-\mathrm{P}(A \cap B)\) or alternative
\(\mathrm{P}\left(A^{\prime} \cap B\right)=3 k-k^{2}\)
(M1)
(A1)
\(=0.371\)

Question 58
[3 marks]
\(\qquad\)
\(\qquad\)
Total

Question 59
(a) \(\quad T \sim N\left(196,24^{2}\right)\)
\(\mathrm{P}(T<180)=0.252\)
(M1)A1
[2 marks]
(b) \(\mathrm{P}\left(T<T_{1}\right)=0.05\)
\(T_{1}=157\)
(c) \(\quad F \sim N\left(210, \sigma^{2}\right)\)
\(\mathrm{P}(F<235)=0.79\)
\(\frac{235-210}{\sigma}=0.806421\) or equivalent
\(\sigma=31.0\)
(M1)(A1)
A1
[4 marks]
Total [8 marks]
Question 60
(a) \(\mathrm{P}(5\) or more \()=\frac{29}{75}(=0.387)\)
(b) mean score \(=\frac{2 \times 3+3 \times 15+4 \times 28+5 \times 17+6 \times 9+7 \times 3}{75}\)
\[
=\frac{323}{75}(=4.31)
\]
(M1)A1
[2 marks]
(M1)
A1
[2 marks]
Total [4 marks]

Question 61
(a) \(\mathrm{P}(X<250)=0.0228\)
(M1)A1
[2 marks]
(b) \(\frac{250-\mu}{1.5}=-2.878 \ldots\)
\(\Rightarrow \mu=254.32\)
Notes: Only award A1 here if the correct 2dp answer is seen.
Award MO for use of \(1.5^{2}\).
[3 marks]
(c) \(\frac{250-253}{\sigma}=-2.878 \ldots\)
\(\Rightarrow \sigma=1.04\)
(A1)
A1
[2 marks]
Total [7 marks]

\section*{Question 62}
(a)


\section*{M1A2}

Note: Award \(\boldsymbol{M}\) 1 for 3 stage tree-diagram, A2 for \(0.8,0.9,0.3\) probabilities correctly placed. [3 marks]
(b) \(0.2 \times 0.7 \times 0.3+0.2 \times 0.3 \times 0.9+0.8 \times 0.1 \times 0.3+0.8 \times 0.9 \times 0.9=0.768\)
(M1)A1
[2 marks]
(c) \(\quad \mathrm{P}(1\) st July is calm \(\mid\) 3rd July is windy \()=\frac{\mathrm{P}(1 \text { st July is calm and 3rd July is windy })}{\mathrm{P}(3 \mathrm{rd} \text { July is windy })}\)
\[
=\frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{1-0.768}
\]
\[
\text { OR } \frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{0.2 \times 0.7 \times 0.7+0.2 \times 0.3 \times 0.1+0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}
\]
\[
\text { OR } \frac{0.128}{0.232}
\]

Note: Award \(\boldsymbol{A 1}\) for correct numerator, A1 for correct denominator.
\[
=0.552
\]

A1
[4 marks]
Total [9 marks]

\section*{Question 64}
(a) \(\int_{0}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=1 \Rightarrow\left[\frac{x^{3}}{3 a}+b x\right]_{0}^{4}=1 \Rightarrow \frac{64}{3 a}+4 b=1\)

M1A1
\[
\int_{2}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.75 \Rightarrow \frac{56}{3 a}+2 b=0.75
\]

Note: \(\int_{0}^{2}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.25 \Rightarrow \frac{8}{3 a}+2 b=0.25\) could be seen/used in place of either of the above equations.
evidence of an attempt to solve simultaneously (or check given \(a, b\) values are consistent)

M1
\[
a=32, b=\frac{1}{12}
\]
(b) \(\mathrm{E}(X)=\int_{0}^{4} x\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x\)
\[
\mathrm{E}(X)=\frac{8}{3}(=2.67)
\]

\section*{(M1)}

A1
[2 marks]
(c) \(\mathrm{E}\left(X^{2}\right)=\int_{0}^{4} x^{2}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x\)
\[
\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{16}{15}(=1.07)
\]
(d) \(\int_{0}^{m}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x=0.5\)
\[
\begin{aligned}
& \frac{m^{3}}{96}+\frac{m}{12}=0.5\left(\Rightarrow m^{3}+8 m-48=0\right) \\
& m=2.91
\end{aligned}
\]
(e) \(\quad Y \sim B(8,0.75)\)
\(E(Y)=8 \times 0.75=6\)
A1
[2 marks]
(f) \(\quad \mathrm{P}(Y \geq 3)=0.996\)

Question 64
(a) \(\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\)
\[
\begin{aligned}
& \Rightarrow 0.75=\frac{0.6}{\mathrm{P}(B)} \\
& \Rightarrow \mathrm{P}(B)\left(=\frac{0.6}{0.75}\right)=0.8
\end{aligned}
\]
(b) \(\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)\)
\(\Rightarrow 0.95=\mathrm{P}(A)+0.8-0.6\)
\(\Rightarrow \mathrm{P}(A)=0.75\)
(c) METHOD 1
\(\mathrm{P}\left(A^{\prime} \mid B\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B\right)}{\mathrm{P}(B)}=\frac{0.2}{0.8}=0.25\)
\(\mathrm{P}\left(A^{\prime} \mid B\right)=\mathrm{P}\left(A^{\prime}\right)\)
hence \(A^{\prime}\) and \(B\) are independent

\section*{Question 65}
let \(X\) be the random variable "amount of caffeine content in coffee" \(\mathrm{P}(X>120)=0.2, \mathrm{P}(X>110)=0.6\)
\((\Rightarrow \mathrm{P}(X<120)=0.8, \mathrm{P}(X<110)=0.4)\)
ote: Award M1 for at least one correct probability statement.
\[
\frac{120-\mu}{\sigma}=0.84162 \ldots, \frac{110-\mu}{\sigma}=-0.253347 \ldots
\]
ote: Award M1 for attempt to find at least one appropriate \(z\)-value.
\(120-\mu=0.84162 \sigma, 110-\mu=-0.253347 \sigma\)
attempt to solve simultaneous equations
\(\mu=112, \sigma=9.13\)

\section*{Question 66}
(a) let \(X\) be the number of bananas eaten in one day
\[
\begin{aligned}
& X \sim \mathrm{Po}(0.2) \\
& \mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0) \\
& =0.181\left(=1-\mathrm{e}^{-0.2}\right)
\end{aligned}
\]
(b) EITHER
let \(Y\) be the number of bananas eaten in one week
\(Y \sim \operatorname{Po}(1.4)\)
(A1)
\(\mathrm{P}(Y=0)=0.246596 \ldots\left(=\mathrm{e}^{-1.4}\right)\)
(A1)
OR
let \(Z\) be the number of days in one week at least one banana is eaten \(Z \sim \mathrm{~B}(7,0.181 \ldots)\)
\(\mathrm{P}(Z=0)=0.246596\).

\section*{THEN}
\(52 \times 0.246596\).
\[
=12.8\left(=52 \mathrm{e}^{-1.4}\right)
\]

A1
[4 marks]
Total [6 marks]

\section*{Question 67}
(a)

normal curve centred on 50
vertical lines at \(x=42\) and \(x=54\), with shading in between
(b) \(\mathrm{P}(42<X<54)(=\mathrm{P}(-2<Z<1))\) \(=0.819\)

A1
[2 marks]
(M1)
A1
[2 marks]
(c) \(\mathrm{P}(\mu-k \sigma<X<\mu+k \sigma)=0.5 \Rightarrow \mathrm{P}(X<\mu+k \sigma)=0.75\) \(k=0.674\)

Question 68
(a) \(n p=3.5\)
(A1)
\(p \leq 1 \Rightarrow\) least \(n=4\)
A1
[2 marks]
(b) \(\quad(1-p)^{n}+n p(1-p)^{n-1}=0.09478\)

\section*{M1A1}
attempt to solve above equation with \(n p=3.5\)
(M1)
\[
n=12, p=\frac{7}{24}(=0.292)
\]
A1A1

\section*{Question 69}
(a) \(\quad\) (i) \(\quad X \sim \operatorname{Po}(5.3)\)
\(\mathrm{P}(X=4)=\mathrm{e}^{-5.3} \frac{5.3^{4}}{4!}\)
\(=0.164 \quad\) A1
(ii) METHOD 1
listing probabilities (table or graph) M1
mode \(X=5\) (with probability 0.174 ) A1
Note: Award MOAO for 5 (taxis) or mode \(=5\) with no justification.

\section*{METHOD 2}
\(\begin{array}{ll}\text { mode is the integer part of mean } & \boldsymbol{R 1} \\ E(X)=5.3 \Rightarrow \text { mode }=5 & \boldsymbol{A 1}\end{array}\)
Note: Do not allow ROA1.
(iii) attempt at conditional probability
\[
\frac{\mathrm{P}(X=7)}{\mathrm{P}(X \geq 6)} \text { or equivalent }\left(=\frac{0.1163 \ldots}{0.4365 \ldots}\right)
\]
\[
=0.267
\]

A1
[7 marks]

\section*{(b) METHOD 1}
the possible arrivals are \((2,0),(1,1),(0,2) \quad\) (A1)
\(Y \sim \operatorname{Po}(0.65)\) A1
attempt to compute, using sum and product rule, (M1)
\(0.070106 \ldots \times 0.52204 \ldots+0.026455 \ldots \times 0.33932 \ldots+0.0049916 \ldots \times 0.11028 \ldots\)
(A1)(A1)
Note: Award A1 for one correct product and A1 for two other correct products.
\[
=0.0461 \quad A 1
\]

\section*{METHOD 2}
recognising a sum of 2 independent Poisson variables eg \(Z=X+Y \quad \boldsymbol{R 1}\)
\(\lambda=5.3+\frac{1.3}{2}\)
\(\mathrm{P}(Z=2)=0.0461\)
A1
(M1)A3
[6 marks]
Total [13 marks]
Question 70
(a) \(\mathrm{P}(L \geq 5)=0.910\)
(M1)A1
[2 marks]
(b) \(X\) is the number of wolves found to be at least 5 years old recognising binomial distribution

M1
\(X \sim \mathrm{~B}(8,0.910 \ldots)\)
\(\mathrm{P}(X>6)=1-\mathrm{P}(X \leq 6)\)
(M1)
\(=0.843\)
A1
Note: Award M1AO for finding \(\mathrm{P}(X \geq 6)\).

Question 71
\(X\) is number of squirrels in reserve
\(X \sim \operatorname{Po}(179.2)\)
3: Award \(\boldsymbol{A 1}\) if 179.2 or \(56 \times 3.2\) seen or implicit in future calculations.
recognising conditional probability
\(\mathrm{P}(X>190 \mid X \geq 168)\)
\(=\frac{\mathrm{P}(X>190)}{\mathrm{P}(X \geq 168)}\left(=\frac{0.19827 \ldots}{0.80817 \ldots}\right)\)
\(=0.245\)

Question 72

\section*{METHOD 1}
let \(p\) have no pets, \(q\) have one pet and \(r\) have two pets
\(p+q+r+2=25\)
\(0 p+1 q+2 r+6=18\)
e: Accept a statement that there are a total of 12 pets.
attempt to use variance equation, or evidence of trial and error
\(\frac{0 p+1 q+4 r+18}{25}-\left(\frac{18}{25}\right)^{2}=\left(\frac{24}{25}\right)^{2}\)
attempt to solve a system of linear equations
\(p=14\)

\section*{METHOD 2}
\begin{tabular}{|l|c|c|c|c|}
\hline\(X\) & 0 & 1 & 2 & 3 \\
\hline \(\mathrm{P}(X=x)\) & \(p\) & \(q\) & \(r\) & \(\frac{2}{25}\) \\
\hline
\end{tabular}
\(p+q+r+\frac{2}{25}=1\)
\(q+2 r+\frac{6}{25}=\frac{18}{25}\left(\Rightarrow q+2 r=\frac{12}{25}\right)\)
\(q+4 r+\frac{18}{25}-\left(\frac{18}{25}\right)^{2}=\frac{576}{625}\left(\Rightarrow q+4 r=\frac{18}{25}\right)\)
(M1)(A1)
\(q=\frac{6}{25}, r=\frac{3}{25}\)
\(p=\frac{14}{25}\)
so 14 have no pets

Question 73
(a) \(\quad a\left[\int_{0}^{0.5} 3 x \mathrm{~d} x+\int_{0.5}^{2}(2-x) \mathrm{d} x\right]=1\)

M1
(M1)A1 \(A G\)
[3 marks]
(b) EITHER
\(\int_{0}^{0.5} 2 x \mathrm{~d} x+\frac{2}{3} \int_{0.5}^{1}(2-x) \mathrm{d} x\)
(M1)(A1)
\(=\frac{2}{3}\)
A1

OR
\(\frac{2}{3} \int_{1}^{2}(2-x) \mathrm{d} x=\frac{1}{3}\)
so \(\mathrm{P}(X<1)=\frac{2}{3}\)
(M1)
(M1)A1
[3 marks]
(c) \(\mathrm{P}(s<X<0.8)=\int_{s}^{0.5} 2 x \mathrm{~d} x+\frac{2}{3} \int_{0.5}^{0.8}(2-x) \mathrm{d} x\)
\(=\left[X^{2}\right]_{s}^{0.5}+0.27\)
\(0.25-s^{2}+0.27\)
\(\mathrm{P}(2 s<X<0.8)=\frac{2}{3} \int_{2 s}^{0.8}(2-X) \mathrm{d} X\)
\(=\frac{2}{3}\left[2 x-\left.\frac{X^{2}}{2}\right|_{2 s} ^{0.8}\right.\)
\(\frac{2}{3}\left(1.28-\left(4 s-2 s^{2}\right)\right)\)
equating
\(0.25-s^{2}+0.27=\frac{4}{3}\left(1.28-\left(4 s-2 s^{2}\right)\right)\)
attempt to solve for \(s\)
\(s=0.274\)
(A1)
M1A1
(A1)
A1
(M1) A1
[7 marks]
Total [13 marks]

\section*{Question 74}
(a) use of inverse normal (implied by \(\pm 0.1509 \ldots\) or \(\pm 1.554 \ldots\) )
(M1)
\(\mathrm{P}(X<16)=0.56\)
\(\Rightarrow \frac{16-\mu}{\sigma}=0.1509 \ldots\)
(A1)
\(\mathrm{P}(X<17)=0.94\)
\(\Rightarrow \frac{17-\mu}{\sigma}=1.554 \ldots\)
(A1)
attempt to solve a pair of simultaneous equations
\(\mu=15.9, \sigma=0.712\)
(b) correctly shaded diagram or intent to find \(\mathrm{P}(X \geq 15)\)
(M1)
\(=0.895\)
Note: Accept answers rounding to 0.89 or 0.90 . Award M1AO for the answer 0.9.

\section*{Question 75}
(a) (i) \(\mathrm{P}(X<60)\)
\[
\begin{aligned}
& =\mathrm{P}(X \leq 59) \\
& =0.102
\end{aligned}
\]
(ii) \(\quad\) standard deviation \(=\sqrt{70}(=8.37)\)

\section*{(M1)A1}
(b) (i) use of midpoints (accept consistent use of 45,55 etc.)
\[
\begin{equation*}
\frac{44.5 \times 2+54.5 \times 15+64.5 \times 40+74.5 \times 53+94.5+104.5 \times 3+114.5 \times 6}{2+15+40+53+0+1+3+6} \tag{M1}
\end{equation*}
\]
\(=\frac{8530}{120}(=71.1)\)
Note: If 45,55 , etc. are used consistently instead of midpoints (implied by the answer 71.58...) award M1M1A0.
(ii) 13.9
(M1)A1
(c) valid reason given to include the examples below

R1
variance is 192 which is not close to the mean (accept not equal to)
standard deviation too high (using parts (a)(ii) and (b)(ii))
relative frequency of \(X \leq 59\) is 0.142 which is too high (using part (a)(i))
Poisson would give a frequency of roughly 14 for \(80 \leq X \leq 89\)
(d) \(\mathrm{P}(Y>10)=0.99\)
\(1-\mathrm{P}(Y \leq 10)=0.99 \Rightarrow \mathrm{P}(Y \leq 10)=0.01\)
attempt to solve a correct equation
\(\lambda=20.1\)
(e) in 1 day, no of emails is \(X \sim \operatorname{Po}(\lambda)\)
\[
\left.\begin{array}{l}
\text { in } 2 \text { days, no of emails is } Y \sim \mathrm{Po}(2 \lambda) \\
\mathrm{P}(10 \text { on first day } \mid 20 \text { in } 2 \text { days) } \\
=\frac{\mathrm{P}(X=10) \times \mathrm{P}(X=10)}{\mathrm{P}(Y=20)} \\
=\frac{\left(\frac{\lambda^{10} e^{-\lambda}}{10!}\right)^{2}}{\frac{(2 \lambda)^{20} e^{-2 \lambda}}{20!}} \\
=\frac{\lambda^{20} e^{-2 \lambda}}{2^{20} \lambda^{20} e^{-2 \lambda}} \times \frac{20!}{(10!)^{2}} \\
=\frac{20!}{2^{20}(10!)^{2}} \\
\text { which is independent of } \lambda
\end{array} \quad \text { A1 }\right) \text { (M1) }
\]
[5 marks]
Total [18 marks]

\section*{Question 76}
(a) \(\quad X \sim \mathrm{~N}\left(820,230^{2}\right)\)

Note: Award \(\boldsymbol{M 1}\) for an attempt to use normal distribution. Accept labelled normal graph.
\[
\Rightarrow \mathrm{P}(X>1000)=0.217
\]

A1
[2 marks]
(b) \(Y \sim \mathrm{~B}(24,0.217 \ldots)\)
(M1)
Note: Award M1 for recognition of binomial distribution with parameters.
\[
\begin{equation*}
\mathrm{P}(Y \leq 10)-\mathrm{P}(Y \leq 4) \tag{M1}
\end{equation*}
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for an attempt to find \(\mathrm{P}(5 \leq Y \leq 10)\) or \(\mathrm{P}(Y \leq 10)-\mathrm{P}(Y \leq 4)\).
\[
=0.613
\]

\section*{A1}
[3 marks]

Question 77
(a)


Note: Award A1 for each correct column of probabilities.
A1A1A1
[3 marks]
(b) probability (at least twice) \(=\)

\section*{EITHER}
\((0.6 \times 0.7 \times 0.8)+(0.6 \times 0.7 \times 0.2)+(0.6 \times 0.3 \times 0.6)+(0.4 \times 0.6 \times 0.7)\)
(M1)
(M1)
Note: Award M1 for summing all required probabilities.
THEN
\(=0.696\)
A1
[2 marks]
(c) P (passes third paper given only one paper passed before)
\(=\frac{P(\text { passes third AND only one paper passed before })}{P(\text { passes once in first two papers })}\)
\(=\frac{(0.6 \times 0.3 \times 0.6)+(0.4 \times 0.6 \times 0.7)}{(0.6 \times 0.3)+(0.4 \times 0.6)}\)
\(=0.657\)
(M1)

A1
A1
[3 marks]
Total [8 marks]

Question 78
(a) \(\quad X \sim \operatorname{Po}(2.1)\)
\[
\mathrm{P}(X=0)=0.122\left(=\mathrm{e}^{-2.1}\right)
\]
(b)
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(y\) & 0 & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{P}(\mathrm{Y}=y)\) & \(0.122 \ldots\) & \(0.257 \ldots\) & \(0.270 \ldots\) & \(0.189 \ldots\) & \(0.161 \ldots\) \\
& \(\left(=\mathrm{e}^{-2.1}\right)\) & \(\left(=\mathrm{e}^{-2.1} 2.1\right)\) & \(\left(=\frac{\mathrm{e}^{-2.1} 2.1^{2}}{2!}\right)\) & \(\left(=\frac{\mathrm{e}^{-2.1} 2.1^{3}}{3!}\right)\) & \\
\hline
\end{tabular}

A1A1A1A1
Note: Award A1 for each correct probability for \(Y=1,2,3,4\). Accept 0.162 for \(\mathrm{P}(Y=4)\). [4 marks]
(c) \(\mathrm{E}\left(\mathrm{F}^{\mathrm{x}}\right)=\sum y \mathrm{P}(Y=y)\)
(M1)
(A1)
A1
[3 marks]
(d) let - be the of days per year that Steffi does not visit \(\ldots \mathrm{B}(365,0.122 \ldots)\)
require \(0.45 \leq \mathrm{P}(-\leq \pi)<0.55\)
\(P(-\leq 44)=0.51\)
\(=44\)
A1
[3 marks]

\section*{(e) METHOD 1}
let \(V\) be the discrete random variable "number of times Steffi is not fed per day"
\(\mathrm{E}(V)=1 \times \mathrm{P}(X=5)+2 \times \mathrm{P}(X=6)+3 \times \mathrm{P}(X=7)+\cdots\)
\(=1 \times 0.0416 \ldots+2 \times 0.0145 \ldots+3 \times 0.00437 \ldots+\cdots\)
\(=0.083979 \ldots\)
A1
expected no of occasions per year > \(0.083979 \ldots \times 365=30.7\)
hence Steffi can expect not to be fed on at least 30 occasions
Note: Candidates may consider summing more than three terms in their calculation for \(\mathrm{E}(V)\).
[4 marks]

\section*{METHOD 2}
```

$\mathrm{E}(X)-\mathrm{E}(Y)=0.0903$.
$0.0903 \ldots \times 365$
$=33.0>30$

```
M1A1

Question 79
(a) (i) 6.75

A1 A1
[2 marks]
(b) (i) 8.75
(ii) 2.22

A1
A1
[2 marks]
(c) the order is \(3,4,6,7,7,8,9,10\) median is currently 7
```

A1

```

Note: This can be indicated by a diagram/list, rather than actually stated. with 9 numbers the middle value (median) will be the \(5^{\text {th }}\) value which will correspond to 7 regardless of whether the position of the median moves up or down
```

 R1
    ```
R1

Note: Accept answers using data 5, 6, 8, 9, 9, 10, 11, 12 (ie from part (b)).

\section*{Total [7 marks]}

Question 80
(a) (i) use of formula or Venn diagram
\(0.72+0.45-1\)
\[
=0.17
\]
(ii) \(0.72-0.17=0.55\)
(b) (i) \(200 \times 0.45=90\)

\section*{A1}
[4 marks]
A1
(ii) let \(X\) be the number of customers who order cake
\(X \sim \mathrm{~B}(200,0.45)\)
(M1)
(M1)
A1
\(=0.0681\)
(c) (i) \(0.46 \times 0.8=0.368\)

\section*{[4 marks]}
(ii) METHOD 1
\[
0.368+0.54 \times \mathrm{P}(S \mid F)=0.72
\]

METHOD 2
\(\mathrm{P}(S \mid F)=\frac{\mathrm{P}(S \cap F)}{\mathrm{P}(F)}\)
\(=\frac{0.72-0.368}{0.54}\)
A1A1
Note: Award A1 for numerator, A1 for denominator.
\(\mathrm{P}(S \mid F)=0.652\)

\section*{A1}
[5 marks]

Question 81
(a) \(\quad X \sim \operatorname{Po}(1.3)\)
\[
\mathrm{P}(X \geq 2)=0.373
\]
(M1)A1
[2 marks]
(b) \(\quad V \sim \mathrm{~B}(5,0.373)\)
(M1)A1
Note: Award (M1) for recognition of binomial or equivalent, A1 for correct parameters.
\[
\mathrm{P}(V=4)=0.0608
\]
(M1)A1

Total [6 marks]
Question 82
ote: Accept only 0.575 .

Question 83
(a) \(\quad(\mathrm{P}(1<X<3)=) \int_{1}^{2} 3 a \mathrm{~d} x+a \int_{2}^{3}-x^{2}+6 x-5 \mathrm{~d} x\)
\[
\begin{aligned}
& =3-+\frac{11}{3}- \\
& =\frac{20}{3}-(=6.67 a)
\end{aligned}
\]
A1
(b)

\[
\begin{aligned}
& \mathrm{T} \sim \mathrm{~N}\left(11.6,0.8^{2}\right) \\
& \mathrm{P}(\mathrm{I}<10.7 \mid T<11) \\
& 7 \quad \mid T<11)=0.575 \\
& \text { A1 }
\end{aligned}
\]
award \(\boldsymbol{A 1}\) for \((0,3-), \boldsymbol{A 1}\) for continuity at \((2,3 a), \boldsymbol{A 1}\) for maximum at \((3,4 a), \boldsymbol{A 1}\) for \((5,0)\)

Note: Award A3 if correct four points are not joined by a straight line and a quadratic curve.
(c) (i) \(\mathrm{P}(0 \leq X \leq 5)=6 a+a \int_{2}^{5}-x^{2}+6 x-5 \mathrm{~d} x\)
(M1)
\[
\begin{aligned}
& =15- \\
& 15=1 \\
& \Rightarrow=\frac{1}{15}(=0.0667)
\end{aligned}
\]
(ii) \(\mathrm{E}(X)=\frac{1}{5} \int_{0}^{2} x \mathrm{~d} x+\frac{1}{15} \int_{2}^{5}-x^{3}+6 x^{2}-5 x \mathrm{~d} x\) \(=2.35\)
(iii) attempt to use \(\int_{0}^{m} f(x) \mathrm{d} x=0.5\)
\(0.4+a \int_{2}^{m}-x^{2}+6 x-5 \mathrm{~d} x=0.5\)
\(a \int_{2}^{m}-x^{2}+6 x-5 \mathrm{~d} x=0.1\)
attempt to solve integral using GDC and/or analytically
\(\frac{1}{15}\left[-\frac{1}{3} x^{3}+3 x^{2}-\left.5 x\right|_{]_{2}} ^{m}=0.1\right.\)
\(m=2.44\)
(iii) attempt to use \(\int_{0}^{m} f(x) \mathrm{d} x=0.5\)
\(0.4+a \int_{2}^{m}-x^{2}+6 x-5 \mathrm{~d} x=0.5\)
\(a \int_{2}^{m}-x^{2}+6 x-5 \mathrm{~d} x=0.1\)
attempt to solve integral using GDC and/or analytically
\(\frac{1}{15}\left[-\frac{1}{3} x^{3}+3 x^{2}-\left.5 x\right|_{\rfloor_{2}} ^{m}=0.1\right.\)
\(m=2.44\)
A1
continued...
(M1) \\ \section*{A1 \\ \section*{A1 \\ \\ [11 marks] \\ \\ [11 marks] \\ \\ Total [19 marks]} \\ \\ Total [19 marks]}
(A1)
(M1)(A1) (A1)
(M1)

A1
[11 marks]```

