Subject - Math(Higher Level) Topic - Calculus
 Year - Nov 2011 - Nov 2019
 Paper-2

Question -1
$V=\frac{\pi}{3} r^{2} h$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{3}\left[2 r h \frac{\mathrm{~d} r}{\mathrm{~d} t}+\left.r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}\right|_{]}\right.$
M1A1AI
at the given instant

$$
\begin{array}{rlrl}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\frac{\pi}{3}\left[2(40)(200)\left(-\frac{1}{2}\right)+40^{2}(3)\right] & & \boldsymbol{M I} \\
& =\frac{-3200 \pi}{3}=-3351.03 \ldots \approx-3350 & \boldsymbol{A I} \\
& \text { hence, the volume is decreasing (at approximately } 3350 \mathrm{~mm}^{3} \text { per century) } & & \boldsymbol{R I}
\end{array}
$$

Question-2

(a)

Note: Award A1 for shape,
$A 1$ for x-intercept is 0.820 , accept $\sin (-3)$ or $-\sin (3)$
$A 1$ for y-intercept is -0.141 .
(b) $\quad A=\int_{0}^{0.8202}|x+\sin (x-3)| \mathrm{d} x \approx 0.0816$ sq units \quad (M1)A1

Question-3

(a) $\frac{\mathrm{d} v}{\mathrm{~d} t}=-v^{2}-1$

$$
\begin{array}{lr}
\text { attempt to separate the variables } & \text { M1 } \\
\int \frac{1}{1+v^{2}} \mathrm{~d} v=\int-1 \mathrm{~d} t & \text { A1 } \\
\arctan v=-t+k & \text { A1A1 }
\end{array}
$$

Note: Do not penalize the lack of constant at this stage.

$$
\begin{array}{lc}
\text { when } t=0, v=1 & \text { M1 } \\
\Rightarrow k=\arctan 1=\left(\frac{\pi}{4}\right)=\left(45^{\circ}\right) & A 1 \\
\Rightarrow v=\tan \left(\frac{\pi}{4}-t\right) & A 1
\end{array}
$$

(b)

Note: Award A1 for general shape,
A1 for asymptote,
A1 for correct t and v intercept.
Note: Do not penalise if a larger domain is used.
(c) \quad (i) $\quad T=\frac{\pi}{4}$
(ii) area under curve $=\int_{0}^{\frac{\pi}{4}} \tan \left(\frac{\pi}{4}-t\right) \mathrm{d} t$

$$
=0.347\left(=\frac{1}{2} \ln 2\right)
$$

(d) $\quad v=\tan \left(\frac{\pi}{4}-t\right)$

$$
\begin{aligned}
& s=\int \tan \left(\frac{\pi}{4}-t\right) \mathrm{d} t \\
& \int \frac{\sin \left(\frac{\pi}{4}-t\right)}{\cos \left(\frac{\pi}{4}-t\right)} \mathrm{d} t \\
& =\ln \cos \left(\frac{\pi}{4}-t\right)+k
\end{aligned}
$$

when $t=0, s=0$

$$
\begin{aligned}
& k=-\ln \cos \frac{\pi}{4} \\
& \left.s=\ln \cos \left(\frac{\pi}{4}-t\right)-\ln \cos \frac{\pi}{4}\left(=\ln \left[\sqrt{2} \cos \left(\frac{\pi}{4}-t\right)\right]\right)\right]
\end{aligned}
$$

(e) METHOD 1

$$
\frac{\pi}{4}-t=\arctan v
$$

$t=\frac{\pi}{4}-\arctan v$
$s=\ln \left[\sqrt{2} \cos \left(\frac{\pi}{4}-\frac{\pi}{4}+\arctan v\right)\right]$
$s=\ln [\sqrt{2} \cos (\arctan v)]$
M1A1
$s=\ln \left[\sqrt{2} \cos \left(\arccos \frac{1}{\sqrt{1+v^{2}}}\right)\right]$
$=\ln \frac{\sqrt{2}}{\sqrt{1+v^{2}}}$
$=\frac{1}{2} \ln \frac{2}{1+v^{2}}$

Question-4

$$
\begin{equation*}
x=r-\frac{r}{h} y \text { or } x=\frac{r}{h}(h-y) \text { (or equivalent) } \tag{A1}
\end{equation*}
$$

$$
\int \pi x^{2} \mathrm{~d} y
$$

$$
=\pi \int_{0}^{h}\left(r-\frac{r}{h} y\right)^{2} \mathrm{~d} y
$$

e: Award $\boldsymbol{M} \mathbf{1}$ for $\int \boldsymbol{x}^{2} \mathrm{~d} \boldsymbol{y}$ and $\boldsymbol{A 1}$ for correct expression.

$$
\text { Accept } \pi \int_{0}^{h}\left(\frac{r}{h} y-r\right)^{2} \text { dyand } \pi \int_{0}^{h}\left(\pm\left(r-\frac{r}{h} x\right)\right)^{2} \mathrm{~d} x
$$

$$
=\pi \int_{0}^{h}\left(r^{2}-\frac{2 r^{2}}{h} y+\frac{r^{2}}{h^{2}} y^{2}\right) \mathrm{d} y
$$

e: Accept substitution method and apply markscheme to corresponding steps.

$$
=\pi\left[r^{2} y-\frac{r^{2} y^{2}}{h}+\frac{r^{2} y^{3}}{3 h^{2}}\right]_{0}^{h}
$$

e: Award $\boldsymbol{M} 1$ for attempted integration of any quadratic trinomial.

$$
=\pi\left(r^{2} h-r^{2} h+\frac{1}{3} r^{2} h\right)
$$

e: Award $\boldsymbol{M} 1$ for attempted substitution of limits in a trinomial.

$$
=\frac{1}{3} \pi r^{2} h
$$

e: Throughout the question do not penalize missing $\mathrm{d} x / \mathrm{d} y$ as long as the integrations are done with respect to correct variable

Question -5
(a) $(3.79,-5) \quad \boldsymbol{A 1}$
(b) $p=1.57$ or $\frac{\pi}{2}, q=6.00$

A1A1
[2 marks]
(c) $\quad f^{\prime}(x)=3 \cos x-4 \sin x \quad$ (M1)(A1)
$3 \cos x-4 \sin x=3 \Rightarrow x=4.43 \ldots$
($y=-4$)
A1
Coordinates are $(4.43,-4)$

[4 marks]

(d) $\quad m_{\text {tormal }}=-\frac{1}{m_{\text {tangent }}}$
gradient at P is -4 so gradient of normal at P is $\frac{1}{4}$
gradient at Q is 4 so gradient of normal at Q is $-\frac{1}{4}$
equation of normal at P is $y-3=\frac{1}{4}(x-1.570 \ldots)$ (or $\left.y=0.25 x+2.60 \ldots\right)$
equation of normal at Q is $y-3=-\frac{1}{4}(x-5.999 \ldots)($ or $y=-0.25 x+\underbrace{4.499 \ldots})$
(M1)

Note: Award the previous two $\boldsymbol{M 1}$ even if the gradients are incorrect in $y-b=m(x-a)$ where (a, b) are coordinates of P and Q
(or in $y=m x+c$ with c determined using coordinates of Pand Q .
intersect at $(3.79,3.55)$
A1A1
Note: Award N2 for 3.79 without other working.
[7 marks]
Total [14 marks]

Question -6
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+k$

M1A1

For use of discriminant $b^{2}-4 a c=0$ or completing the square $3(x-2)^{2}+k-12 \quad$ (M1)
$144-12 k=0$
(A1)
गte: Accept trial and error, sketches of parabolas with vertex $(2,0)$ or use of second derivative.
$k=12$

Question-7

(a)

A1A1A1A1
Note: Award $A 1$ for correct shape. Do not penalise if too large a domain is used, A1 for correct x-intercepts,
A1 for correct coordinates of two minimum points,
A1 for correct coordinates of maximum point.

Accept answers which correctly indicate the position of the intercepts, maximum point and minimum points.
[4 marks]
(b) gradient at $x=1$ is -0.786

A1
[1 mark]
(c) gradient of normal is $\frac{-1}{-0.786}(=1.272 \ldots)$
when $x=1, y=0.3820 \ldots$
Equation of normal is $y-0.382=1.27(x-1)$
($\Rightarrow y=1.27 x-0.890$)

Question-8
$2 s \frac{\mathrm{~d} s}{\mathrm{~d} t}+\frac{\mathrm{d} s}{\mathrm{~d} t}-2=0$
$v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{2}{2 s+1}$
EITHER
$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} t}$
$\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{-4}{(2 s+1)^{2}}$
$a=\frac{-4}{(2 s+1)^{2}} \frac{\mathrm{~d} s}{\mathrm{~d} t}$
OR
$2\left(\frac{\mathrm{~d} s}{\mathrm{~d} t}\right)^{2}+2 s \frac{\mathrm{~d}^{2} s}{\mathrm{~d} t^{2}}+\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=0$
(M1)
$\underbrace{\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}}_{a}=\frac{-2\left(\frac{\mathrm{~d} s}{\mathrm{~d} t}\right)^{2}}{2 s+1}$
THEN
$a=\frac{-8}{(2 s+1)^{3}}$

Question-9
$x=\sin t, d x=\cos t d t$
$\int \frac{x^{3}}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int \frac{\sin ^{3} t}{\sqrt{1-\sin ^{2} t}} \cos t \mathrm{~d} t$ M1
$=\int \sin ^{3} t \mathrm{~d} t$
$=\int \sin ^{2} t \sin t \mathrm{~d} t$
$=\int\left(1-\cos ^{2} t\right) \sin t \mathrm{~d} t$
M1A1
$=\int \sin t \mathrm{~d} t-\int \cos ^{2} t \sin t \mathrm{~d} t$
$=-\cos t+\frac{\cos ^{3} t}{3}+C$ A1A1
$=-\sqrt{1-x^{2}}+\frac{1}{3}\left(\sqrt{1-x^{2}}\right)^{3}+C$
$\left(=-\sqrt{1-x^{2}}\left(1-\frac{1}{3}\left(1-x^{2}\right)\right)+C\right)$
$\left(=-\frac{1}{3} \sqrt{1-x^{2}}\left(2+x^{2}\right)+C\right)$

Question -10

intersection points
A1A1
te: Only either the x-coordinate or the y-coordinate is needed.
EITHER

$$
\begin{align*}
& x=y^{2}-3 \Rightarrow y= \pm \sqrt{x+3} \quad(\text { accept } y=\sqrt{x+3}) \tag{M1}\\
& A=\int_{-3}^{-1.111 \ldots} 2 \sqrt{x+3} \mathrm{~d} x+\int_{-1.111 \ldots}^{1.2739 \ldots} \sqrt{x+3}-x^{3} \mathrm{~d} x \\
& =3.4595 \ldots+3.8841 \ldots \\
& =7.34(3 \mathrm{sf})
\end{align*}
$$

OR

$$
\begin{aligned}
& y=x^{3} \Rightarrow x=\sqrt[3]{y} \\
& A=\int_{-1.374 \ldots}^{2.067 \ldots} \sqrt[3]{y}-\left(y^{2}-3\right) \mathrm{d} y \\
& =7.34(3 \mathrm{sf})
\end{aligned}
$$

$$
(M 1)
$$

Question -11

(a) $L=\mathrm{CA}+\mathrm{AD}$ M1
$\sin \alpha=\frac{a}{\mathrm{CA}} \Rightarrow \mathrm{CA}=\frac{a}{\sin \alpha} \quad$ A1
$\cos \alpha=\frac{b}{\mathrm{AD}} \Rightarrow \mathrm{AD}=\frac{b}{\cos \alpha} \quad$ A1
$L=\frac{a}{\sin \alpha}+\frac{b}{\cos \alpha}$
(b) $\quad a=5$ and $b=1 \Rightarrow L=\frac{5}{\sin \alpha}+\frac{1}{\cos \alpha}$

METHOD 1

minimum from graph $\Rightarrow L=7.77$
(M1)
(M1)A1
minimum of L gives the max length of the painting
[4 marks]
METHOD 2
$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-5 \cos \alpha}{\sin ^{2} \alpha}+\frac{\sin \alpha}{\cos ^{2} \alpha}$
(M1)
$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=0 \Rightarrow \frac{\sin ^{3} \alpha}{\cos ^{3} \alpha}=5 \Rightarrow \tan \alpha=\sqrt[3]{5} \quad(\alpha=1.0416 \ldots)$
(M1)
minimum of L gives the max length of the painting
maximum length $=7.77$
(c) $\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-3 k \cos \alpha}{\sin ^{2} \alpha}+\frac{k \sin \alpha}{\cos ^{2} \alpha}$ (or equivalent)

M1A1A1
(d) $\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-3 k \cos ^{3} \alpha+k \sin ^{3} \alpha}{\sin ^{2} \alpha \cos ^{2} \alpha}$
(A1)
$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=0 \Rightarrow \frac{\sin ^{3} \alpha}{\cos ^{3} \alpha}=\frac{3 k}{k} \Rightarrow \tan \alpha=\sqrt[3]{3} \quad(\alpha=0.96454 \ldots)$
$\tan \alpha=\sqrt[3]{3} \Rightarrow \frac{1}{\cos \alpha}=\sqrt{1+\sqrt[3]{9}} \quad(1.755 \ldots)$
and $\frac{1}{\sin \alpha}=\frac{\sqrt{1+\sqrt[3]{9}}}{\sqrt[3]{3}} \quad(1.216 \ldots)$
(A1)
$L=3 k\left(\frac{\sqrt{1+\sqrt[3]{9}}}{\sqrt[3]{3}}\right)+k \sqrt{1+\sqrt[3]{9}} \quad(L=5.405598 \ldots k)$
A1
N4
[6 marks]
(e) $L \leq 8 \Rightarrow k \geq 1.48$ the minimum value is 1.48

M1A1
[2 marks]
Total [18 marks]

Question 12

$$
\begin{array}{lr}
\text { volume }=\pi \int x^{2} \mathrm{~d} y & \begin{array}{c}
\text { (M1) } \\
x=\arcsin y+1
\end{array} \\
\text { volume }=\pi \int_{0}^{1}(\arcsin y+1)^{2} \mathrm{~d} y & \text { A1 (A1) } \\
\hline \text { (M1 is for the limits, provided a correct integration of } y . & \\
\hline=2.608993 \ldots \pi=8.20 & \text { A2 } \\
\text { [6 marks] }
\end{array}
$$

Question 13

(a)

Note: Award A1 for general shape, A1 for correct maximum and minimum, $A 1$ for intercepts.

Note: Follow through applies to (b) and (c).
(b) $0 \leq t<0.785,\left(\right.$ or $\left.0 \leq t<\frac{5-\sqrt{7}}{3}\right)$
(allow $t<0.785$)
and $t>2.55\left(\right.$ or $\left.t>\frac{5+\sqrt{7}}{3}\right)$
A1
[2 marks]
(c) $0 \leq t<0.785,\left(\right.$ or $\left.0 \leq t<\frac{5-\sqrt{7}}{3}\right)$
(allow $t<0.785$)
$2<t<2.55$, or $2<t<\frac{5+\sqrt{7}}{3}$)
$t>3$
[3 marks]
(d) position of A: $x_{A}=\int t^{3}-5 t^{2}+6 t \mathrm{~d} t$
$x_{A}=\frac{1}{4} t^{4}-\frac{5}{3} t^{3}+3 t^{2} \quad(+c)$
when $t=0, x_{A}=0$ so $c=0$

R1
[3 marks]
(e) $\frac{\mathrm{d} v_{B}}{\mathrm{~d} t}=-2 v_{B} \Rightarrow \int \frac{1}{v_{B}} \mathrm{~d} v_{B}=\int-2 \mathrm{~d} t$
$\ln \left|v_{B}\right|=-2 t+c$
(M1)
(A1)
$v_{B}=A e^{-2 t}$
$v_{B}=-20$ when $t=0$ so $v_{B}=-20 e^{-2 t}$
(f) $x_{B}=10 e^{-2 t}(+c)$
$x_{B}=20$ when $t=0$ so $x_{B}=10 e^{-2 t}+10$ (M1)A1
meet when $\frac{1}{4} t^{4}-\frac{5}{3} t^{3}+3 t^{2}=10 e^{-2 t}+10$ (M1)
$t=4.41(290 \ldots)$
[6 marks]
Total: [21 marks]

Question 14

(a) $\int x \sec ^{2} x \mathrm{~d} x=x \tan x-\int 1 \times \tan x \mathrm{~d} x$

M1A1
$=x \tan x+\ln |\cos x|(+c)(=x \tan x-\ln |\sec x|(+c))$
M1A1
[4 marks]
(b) attempting to solve an appropriate equation eg $m \tan m+\ln (\cos m)=0.5$
(M1) $m=0.822$

A1
Note: Award $A 1$ if $m=0.822$ is specified with other positive solutions.

Question 15

METHOD 1

$\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{40}(60-v)$
attempting to separate variables $\int \frac{\mathrm{d} v}{60-v}=\int \frac{\mathrm{d} t}{40}$
M1
$-\ln (60-v)=\frac{t}{40}+c$ A1
$c=-\ln 60$ (or equivalent) A1
attempting to solve for v when $t=30$
$v=60-60 e^{-\frac{3}{4}}$
$v=31.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

$$
A 1
$$

METHOD 2
$\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{40}(60-v)$ (M1)
$\frac{\mathrm{d} t}{\mathrm{~d} v}=\frac{40}{60-v}$ (or equivalent) M1
$\int_{0}^{v_{f}} \frac{40}{60-v} \mathrm{~d} v=30$ where v_{f} is the velocity of the car after 30 seconds. A1A1
attempting to solve $\int_{0}^{v_{f}} \frac{40}{60-v} \mathrm{~d} v=30$ for v_{f} (M1)
$v=31.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

Question 16
(a) EITHER
$\theta=\pi-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$ (or equivalent)
Note: Accept $\theta=180^{\circ}-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$ (or equivalent).
OR
$\theta=\arctan \left(\frac{x}{8}\right)+\arctan \left(\frac{20-x}{13}\right)$ (or equivalent)
(b) (i) $\quad \theta=0.994\left(=\arctan \frac{20}{13}\right)$
(ii) $\quad \theta=1.19\left(=\arctan \frac{5}{2}\right)$

A1
[2 marks]
(c) correct shape.
correct domain indicated.

(d) attempting to differentiate one $\arctan (f(x))$ term

EITHER

$\theta=\pi-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{8}{x^{2}} \times \frac{1}{1+\left(\frac{8}{x}\right)^{2}}-\frac{13}{(20-x)^{2}} \times \frac{1}{1+\left(\frac{13}{20-x}\right)^{2}}$

OR
$\theta=\arctan \left(\frac{x}{8}\right)+\arctan \left(\frac{20-x}{13}\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{\frac{1}{8}}{1+\left(\frac{x}{8}\right)^{2}}+\frac{-\frac{1}{13}}{1+\left(\frac{20-x}{13}\right)^{2}}$

THEN

$$
\begin{aligned}
& =\frac{8}{x^{2}+64}-\frac{13}{569-40 x+x^{2}} \\
& =\frac{8\left(569-40 x+x^{2}\right)-13\left(x^{2}+64\right)}{\left(x^{2}+64\right)\left(x^{2}-40 x+569\right)} \\
& =\frac{5\left(744-64 x-x^{2}\right)}{\left(x^{2}+64\right)\left(x^{2}-40 x+569\right)}
\end{aligned}
$$

(e) Maximum light intensity at P occurs when $\frac{\mathrm{d} \theta}{\mathrm{d} x}=0$.
either attempting to solve $\frac{\mathrm{d} \theta}{\mathrm{d} x}=0$ for x or using the graph of either θ or $\frac{\mathrm{d} \theta}{\mathrm{d} x}$ $x=10.05$ (m)
(f) $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.5$

At $x=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} x}=0.000453\left(=\frac{5}{11029}\right)$.
use of $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=0.000227\left(=\frac{5}{22058}\right)\left(\mathrm{rad} \mathrm{~s}^{-1}\right)
$$

Note: Award (A1) for $\frac{\mathrm{d} x}{\mathrm{~d} t}=-0.5$ and $A 1$ for $\frac{\mathrm{d} \theta}{\mathrm{d} t}=-0.000227\left(=-\frac{5}{22058}\right)$.

Note: Implicit differentiation can be used to find $\frac{\mathrm{d} \theta}{\mathrm{d} t}$. Award as above.

Question 17

(a)

A correct graph shape for $0<x \leq 10$.	$\boldsymbol{A 1}$
maxima $(3.78,0.882)$ and $(9.70,1.89)$	$\boldsymbol{A 1}$
minimum $(6.22,-0.885)$	$\boldsymbol{A 1}$
x-axis intercepts $(1.97,0),(5.24,0)$ and $(7.11,0)$	$\boldsymbol{A} 2$

Note: Award A1 if two x-axis intercepts are correct.
[5 marks]
(b) $\quad 0<x \leq 1.9701 . \begin{aligned} & 5.24 \leq x \leq 7.11\end{aligned}$

A1
A1

[2 marks]

Total [7 marks]

Question 18

EITHER

$\frac{\mathrm{d} x}{\mathrm{~d} u}=2 \sec ^{2} u$
$\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \sqrt{4+4 \tan ^{2} u}}$ (M1)
$=\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \times 2 \sec u} \quad\left(=\int \frac{\mathrm{d} u}{4 \sin ^{2} u \sqrt{\tan ^{2} u+1}}\right.$ or $\left.=\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \sqrt{4 \sec ^{2} u}}\right)$
OR
$u=\arctan \frac{x}{2}$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2}{x^{2}+4}$
$\int \frac{\sqrt{4 \tan ^{2} u+4} \mathrm{~d} u}{2 \times 4 \tan ^{2} u}$
$\int \frac{2 \sec u \mathrm{~d} u}{2 \times 4 \tan ^{2} u}$

THEN

$=\frac{1}{4} \int \frac{\sec u \mathrm{~d} u}{\tan ^{2} u}$
$=\frac{1}{4} \int \operatorname{cosec} u \cot u \mathrm{~d} u\left(=\frac{1}{4} \int \frac{\cos u}{\sin ^{2} u} \mathrm{~d} u\right)$
$=-\frac{1}{4} \operatorname{cosec} u(+C)\left(=-\frac{1}{4 \sin u}(+C)\right)$
use of either $\tan u=\frac{x}{2}$ or an appropriate trigonometric identity M1
either $\sin u=\frac{x}{\sqrt{x^{2}+4}}$ or $\operatorname{cosec} u=\frac{\sqrt{x^{2}+4}}{x}$ (or equivalent) A1
$=\frac{-\sqrt{x^{2}+4}}{4 x}(+C)$

Question 19

(a) (i) METHOD 1

$$
\begin{array}{ll}
v=\int 3 \cos \frac{t}{4} \mathrm{~d} t & M 1 \\
=12 \sin \frac{t}{4}+c & A 1 \\
t=0, v=12 \Rightarrow v=12 \sin \frac{t}{4}+12 & A 1
\end{array}
$$

METHOD 2
$v-12=\int_{0}^{t} 3 \cos \frac{t}{4} \mathrm{~d} t$
$v=12 \sin \frac{t}{4}+12$
(ii)

Note: Award $A 1$ for shape and domain $0 \leq t \leq 8 \pi$. Award $A 1$ for $(0,12)$ and $(6 \pi, 0)((18.8,0))$. Award $\boldsymbol{A 1}$ for $(2 \pi, 24)((6.28,24))$.
(iii) METHOD 1
$\int_{0}^{6 \pi}\left(12 \sin \frac{t}{4}+12\right) \mathrm{d} t$
$=274(\mathrm{~m})(=72 \pi+48(\mathrm{~m}))$

METHOD 2

$s=\int 12 \sin \frac{t}{4}+12 \mathrm{~d} t$
$=-48 \cos \frac{t}{4}+12 t+c$
When $t=0, s=0$ and so $c=48$.
When $t=6 \pi, s=274(\mathrm{~m})(=72 \pi+48(\mathrm{~m}))$.
(b) (i) METHOD 1

$$
\begin{align*}
& \frac{\mathrm{d} v}{\mathrm{~d} t}=-\left(v^{2}+4\right) \tag{A1}\\
& \int \frac{\mathrm{d} v}{v^{2}+4}=-\int \mathrm{d} t \\
& \frac{1}{2} \arctan \left(\frac{v}{2}\right)=-t+c
\end{align*}
$$

EITHER

$t=0, v=2 \Rightarrow c=\frac{\pi}{8} \quad$ M1
$\arctan \left(\frac{v}{2}\right)=\frac{\pi}{4}-2 t$
OR
$v=2 \tan (2 c-2 t)$
$t=0, v=2 \Rightarrow \tan 2 c=1$ and so $c=\frac{\pi}{8}$

THEN

$v=2 \tan \left(\frac{\pi}{4}-2 t\right)$
$v=2 \tan \left(\frac{\pi-8 t}{4}\right)$
METHOD 2
$\frac{d v}{d t}=-4 \sec ^{2}\left(\frac{\pi-8 t}{4}\right)$
M1A1
Substituting $v=2 \tan \left(\frac{\pi-8 t}{4}\right)$ into $\frac{d v}{d t}=-\left(v^{2}+4\right)$:
$\frac{d v}{d t}=-\left(4 \tan ^{2}\left(\frac{\pi-8 t}{4}\right)+4\right)$
$=-4\left(\tan ^{2}\left(\frac{\pi-8 t}{4}\right)+1\right)$
$=-4 \sec ^{2}\left(\frac{\pi-8 t}{4}\right)$
Verifying that $v=2$ when $t=0$.
(ii) METHOD 1

$$
\begin{array}{ll}
v \frac{\mathrm{~d} v}{\mathrm{~d} s}=-\left(v^{2}+4\right) & A 1 \\
\Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} s}=-\frac{\left(v^{2}+4\right)}{v} & A G
\end{array}
$$

METHOD 2

$$
\begin{array}{ll}
\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{\mathrm{d} v}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} s} & A 1 \\
\Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} s}=-\frac{\left(v^{2}+4\right)}{v} & A G
\end{array}
$$

(iii) METHOD 1

When $v=0, t=\frac{\pi}{8} \quad(t=0.392 \ldots)$.
$s=\int_{0}^{\frac{\pi}{8}} 2 \tan \left(\frac{\pi-8 t}{4}\right) \mathrm{d} t$ (M1)
$s=0.347(\mathrm{~m})\left(s=\frac{1}{2} \ln 2(\mathrm{~m})\right)$

METHOD 2

$\int \frac{v}{4+v^{2}} \mathrm{~d} v=-\int \mathrm{d} s$

EITHER

$\frac{1}{2} \ln \left(v^{2}+4\right)=-s+c$ (or equivalent)
$v=2, s=0 \Rightarrow c=\frac{1}{2} \ln 8$
$s=-\frac{1}{2} \ln \left(v^{2}+4\right)+\frac{1}{2} \ln 8\left(s=\frac{1}{2} \ln \left(\frac{8}{v^{2}+4}\right)\right)$
(A1)
$v=0 \Rightarrow s=\frac{1}{2} \ln 2(\mathrm{~m})(s=0.347(\mathrm{~m}))$
OR

$$
-\int_{2}^{0} \frac{V}{4+v^{2}} \mathrm{~d} v=s \text { (or equivalent) }
$$

Note: Award M1 for setting up a definite integral and award $A 1$ for stating correct limits.

$$
s=0.347(\mathrm{~m})\left(s=\frac{1}{2} \ln 2(\mathrm{~m})\right)
$$

Question 20

(a) (i) either counterexample or sketch or
recognising that $y=k(k>1)$ intersects the graph of $y=f(x)$ twice $M 1$ function is not $1-1$ (does not obey horizontal line test)R1
so f^{-1} does not exist $\quad A G$
(ii) $\quad f^{\prime}(x)=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)$
$f^{\prime}(\ln 3)=\frac{4}{3}(=1.33)$
$m=-\frac{3}{4}$
$f(\ln 3)=\frac{5}{3}(=1.67)$

EITHER
$\frac{y-\frac{5}{3}}{x-\ln 3}=-\frac{3}{4}$
$4 y-\frac{20}{3}=-3 x+3 \ln 3$
OR
$\frac{5}{3}=-\frac{3}{4} \ln 3+c$
$c=\frac{5}{3}+\frac{3}{4} \ln 3$
$y=-\frac{3}{4} x+\frac{5}{3}+\frac{3}{4} \ln 3$
$12 y=-9 x+20+9 \ln 3$

THEN

$9 x+12 y-9 \ln 3-20=0$
(iii) The tangent at $(a, f(a))$ has equation $y-f(a)=f^{\prime}(a)(x-a)$.
(M1)
$f^{\prime}(a)=\frac{f(a)}{a}$ (or equivalent)
$\mathrm{e}^{a}-\mathrm{e}^{-a}=\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{a}$ (or equivalent)
attempting to solve for a
(b) (i) $2 y=\mathrm{e}^{x}+\mathrm{e}^{-x}$

$$
\mathrm{e}^{2 x}-2 y \mathrm{e}^{x}+1=0
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for either attempting to rearrange or interchanging x and y.

$$
\begin{array}{ll}
\mathrm{e}^{x}=\frac{2 y \pm \sqrt{4 y^{2}-4}}{2} & \boldsymbol{A 1} \\
\mathrm{e}^{x}=y \pm \sqrt{y^{2}-1} & \\
x=\ln \left(y \pm \sqrt{y^{2}-1}\right) & \boldsymbol{A 1} \\
f^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) & A 1
\end{array}
$$

Note: Award A1 for correct notation and for stating the positive "branch".
(ii) $\quad V=\pi \int_{1}^{5}\left(\ln \left(y+\sqrt{y^{2}-1}\right)\right)^{2} d y$

Note: Award $\boldsymbol{M} 1$ for attempting to use $V=\pi \int_{c}^{d} x^{2} \mathrm{~d} y$.

$$
=37.1\left(\text { units }^{3}\right)
$$

A1
[8 marks]
Total [22 marks]

Question 21
(a) $\frac{\pi}{2}(1.57), \frac{3 \pi}{2}(4.71)$ hence the coordinates are $\left(\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{3 \pi}{2}, \frac{3 \pi}{2}\right)$
(b) (i) $\pi \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(x^{2}-(x+2 \cos x)^{2}\right) \mathrm{d} x$

A1A1A1

Note: Award $\boldsymbol{A 1}$ for $x^{2}-(x+2 \cos x)^{2}, \boldsymbol{A 1}$ for correct limits and $\boldsymbol{A 1}$ for π.
(ii) $6 \pi^{2}(=59.2)$

A2
Notes: Do not award ft from (b)(i).

Question 22

METHOD 1

volume of a cone is $V=\frac{1}{3} \pi r^{2} h$
given $h=r, V=\frac{1}{3} \pi h^{3}$
$\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi h^{2}$
when $h=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\pi \times 4^{2} \times 0.5\left(\right.$ using $\left.\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}\right)$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$

METHOD 2

volume of a cone is $V=\frac{1}{3} \pi r^{2} h$
given $h=r, V=\frac{1}{3} \pi h^{3}$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi \times 3 h^{2} \times \frac{\mathrm{d} h}{\mathrm{~d} t}$
when $h=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\pi \times 4^{2} \times 0.5$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \min ^{-1}\right)$
METHOD 3
$V=\frac{1}{3} \pi r^{2} h$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi\left(2 r h \frac{\mathrm{~d} r}{\mathrm{~d} t}+r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}\right)$
Note: Award M1 for attempted implicit differentiation and $\boldsymbol{A 1}$ for each correct term on the RHS.
when $h=4, r=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{1}{3} \pi\left(2 \times 4 \times 4 \times 0.5+4^{2} \times 0.5\right)$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$

Question 23

(a) METHOD 1
expanding the brackets first:

$$
\begin{aligned}
& x^{4}+2 x^{2} y^{2}+y^{4}=4 x y^{2} \\
& 4 x^{3}+4 x y^{2}+4 x^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}
\end{aligned}
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt at implicit differentiation.
Award A1 for each side correct.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x^{3}-x y^{2}+y^{2}}{y x^{2}-2 x y+y^{3}}$ or equivalent

METHOD 2

$$
2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

Note: Award M1 for an attempt at implicit differentiation. Award A1 for each side correct.
$\left(x^{2}+y^{2}\right)\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$x^{3}+x^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} x+y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x^{3}-x y^{2}+y^{2}}{y x^{2}-2 x y+y^{3}}$ or equivalent
(b) METHOD 1
at $(1,1), \frac{\mathrm{d} y}{\mathrm{~d} x}$ is undefined
$y=1$

METHOD 2

gradient of normal $=-\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}=-\frac{\left(y x^{2}-2 x y+y^{3}\right)}{\left(-x^{3}-x y^{2}+y^{2}\right)}$
at $(1,1)$ gradient $=0$
A1
$y=1$

Question 24

(a)

A1 for correct shape and correct domain
$(1.41,0.0884)\left(\sqrt{2}, \frac{\sqrt{2}}{16}\right)$
(b) EITHER
$u=t^{2}$
$\frac{\mathrm{d} u}{\mathrm{~d} t}=2 t$
OR
$t=u^{\frac{1}{2}}$
$\frac{\mathrm{d} t}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}}$
THEN
$\int \frac{t}{12+t^{4}} \mathrm{~d} t=\frac{1}{2} \int \frac{\mathrm{~d} u}{12+u^{2}}$
$=\frac{1}{2 \sqrt{12}} \arctan \left(\frac{u}{\sqrt{12}}\right)(+c)$
$=\frac{1}{4 \sqrt{3}} \arctan \left(\frac{t^{2}}{2 \sqrt{3}}\right)(+c)$ or equivalent

A1
(c) $\int_{0}^{6} \frac{t}{12+t^{4}} \mathrm{~d} t$

Note: Accept $\frac{\sqrt{3}}{12} \arctan (6 \sqrt{3})$ or equivalent.
(d) $\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{1}{2 \sqrt{s(1-s)}}$
$a=v \frac{\mathrm{~d} v}{\mathrm{~d} s}$
$a=\arcsin (\sqrt{s}) \times \frac{1}{2 \sqrt{s(1-s)}}$
$a=\arcsin (\sqrt{0.1}) \times \frac{1}{2 \sqrt{0.1 \times 0.9}}$
$a=0.536\left(\mathrm{~ms}^{-2}\right)$

Question 25

METHOD 1

attempt to set up (diagram, vectors)
correct distances $x=15 t, y=20 t$
the distance between the two cyclists at time t is $s=\sqrt{(15 t)^{2}+(20 t)^{2}}=25 t(\mathrm{~km}) \quad \boldsymbol{A 1}$
$\frac{\mathrm{d} s}{\mathrm{~d} t}=25\left(\mathrm{kmh}^{-1}\right)$
hence the rate is independent of time
METHOD 2
attempting to differentiate $x^{2}+y^{2}=s^{2}$ implicitly
$2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 s \frac{\mathrm{~d} s}{\mathrm{~d} t}$
the distance between the two cyclists at time t is $\sqrt{(15 t)^{2}+(20 t)^{2}}=25 t(\mathrm{~km})$
$2(15 t)(15)+2(20 t)(20)=2(25 t) \frac{\mathrm{d} s}{\mathrm{~d} t}$
M1

Note: Award M1 for substitution of correct values into their equation involving $\frac{\mathrm{d} s}{\mathrm{~d} t}$.
$\frac{\mathrm{d} s}{\mathrm{~d} t}=25\left(\mathrm{kmh}^{-1}\right)$
hence the rate is independent of time

Question 26
(a) $3-\frac{t}{2}=0 \Rightarrow t=6(\mathrm{~s})$
(M1)A1
[2 marks]
Note: Award $\boldsymbol{A 0}$ if either $t=-0.236$ or $t=4.24$ or both are stated with $t=6$.
(b) let d be the distance travelled before coming to rest

$$
d=\int_{0}^{4} 5-(t-2)^{2} \mathrm{~d} t+\int_{4}^{6} 3-\frac{t}{2} \mathrm{~d} t
$$

$$
(M 1)(A 1)
$$

Note: Award M1 for two correct integrals even if the integration limits are incorrect. The second integral can be specified as the area of a triangle.
$d=\frac{47}{3}(=15.7)(\mathrm{m})$
(A1)
attempting to solve $\int_{6}^{T}\left(\frac{t}{2}-3\right) \mathrm{d} t=\frac{47}{3}$ (or equivalent) for T
M1
$T=13.9(\mathrm{~s})$

A1

Question 27

(a) use of $A=\frac{1}{2} q r \sin \theta$ to obtain $A=\frac{1}{2}(x+2)(5-x)^{2} \sin 30^{\circ}$

$$
=\frac{1}{4}(x+2)\left(25-10 x+x^{2}\right)
$$

$A=\frac{1}{4}\left(x^{3}-8 x^{2}+5 x+50\right)$
(b) (i) $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3 x^{2}-16 x+5\right)=\frac{1}{4}(3 x-1)(x-5)$
(ii) METHOD 1

EITHER
$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)^{2}-16\left(\frac{1}{3}\right)+5\right)=0$
OR
$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)-1\right)\left(\left(\frac{1}{3}\right)-5\right)=0$
M1A1
THEN
so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$

METHOD 2

solving $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ for x
$-2<x<5 \Rightarrow x=\frac{1}{3}$
so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$

METHOD 3

a correct graph of $\frac{\mathrm{d} A}{\mathrm{~d} x}$ versus x
the graph clearly showing that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$
so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$
(c) (i) $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{1}{2}(3 x-8)$

A1
for $x=\frac{1}{3}, \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-3.5(<0) \quad \boldsymbol{R 1}$
so $x=\frac{1}{3}$ gives the maximum area of triangle PQR
$A G$
(ii) $\quad A_{\max }=\frac{343}{27}(=12.7)\left(\mathrm{cm}^{2}\right)$
(iii) $\mathrm{PQ}=\frac{7}{3}(\mathrm{~cm})$ and $\mathrm{PR}=\left(\frac{14}{3}\right)^{2}(\mathrm{~cm})$
$\mathrm{QR}^{2}=\left(\frac{7}{3}\right)^{2}+\left(\frac{14}{3}\right)^{4}-2\left(\frac{7}{3}\right)\left(\frac{14}{3}\right)^{2} \cos 30^{\circ}$ $=391.702$.
$\mathrm{QR}=19.8(\mathrm{~cm})$

Question 28
(a) attempting to use $V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y$
attempting to express x^{2} in terms of y ie $x^{2}=4(y+16)$
for $y=h, V=4 \pi \int_{0}^{h} y+16 \mathrm{~d} y$

$$
V=4 \pi\left(\frac{h^{2}}{2}+16 h\right)
$$

(b) (i) METHOD 1

$$
\begin{aligned}
\frac{\mathrm{d} h}{\mathrm{~d} t} & =\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} \\
\frac{\mathrm{~d} V}{\mathrm{~d} h} & =4 \pi(h+16) \\
\frac{\mathrm{d} h}{\mathrm{~d} t} & =\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}
\end{aligned}
$$

Note: Award $M 1$ for substitution into $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$.

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}
$$

METHOD 2

$\frac{\mathrm{d} V}{\mathrm{~d} t}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}$ (implicit differentiation)
$\frac{-250 \sqrt{h}}{\pi(h+16)}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}$ (or equivalent)
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}$
(ii) $\frac{\mathrm{d} t}{\mathrm{~d} h}=-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}}$
$t=\int-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}} \mathrm{~d} h$
$t=\int-\frac{4 \pi^{2}\left(h^{2}+32 h+256\right)}{250 \sqrt{h}} \mathrm{~d} h$
$t=\frac{-4 \pi^{2}}{250} \int\binom{h^{3}}{h^{2}+32 h^{2}+256 h^{-\frac{1}{2}}} \mathrm{~d} h$
(iii) METHOD 1

$$
\begin{aligned}
& t=\frac{-4 \pi^{2}}{250} \int_{48}^{0}\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{\frac{1}{2}}\right) \mathrm{d} h \\
& t=2688.756 \ldots(\mathrm{~s}) \\
& 45 \text { minutes (correct to the nearest minute) }
\end{aligned}
$$

METHOD 2

$t=\frac{-4 \pi^{2}}{250}\left(\frac{2}{5} h^{\frac{5}{2}}+\frac{64}{3} h^{\frac{3}{2}}+512 h^{\frac{1}{2}}\right)+c$
when $t=0, h=48 \Rightarrow c=2688.756 \ldots\left(c=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)$
when $h=0, t=2688.756 \ldots\left(t=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)(\mathrm{s})$
45 minutes (correct to the nearest minute)

(c) EITHER

the depth stabilises when $\frac{\mathrm{d} V}{\mathrm{~d} t}=0$ ie $8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0$
R1
attempting to solve $8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0$ for h

OR

the depth stabilises when $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$ ie $\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0$
attempting to solve $\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0$ for h
(M1)

THEN

$$
h=5.06(\mathrm{~cm})
$$

A1
[3 marks]
Total [16 marks]

Question 29

$$
\int_{-1}^{1} \pi\left(\mathrm{e}^{-x^{2}}\right)^{2} \mathrm{~d} x \quad\left(\int_{-1}^{1} \pi \mathrm{e}^{-2 x^{2}} \mathrm{~d} x \text { or } \int_{0}^{1} 2 \pi \mathrm{e}^{-2 x^{2}} \mathrm{~d} x\right)
$$

e: Award $\boldsymbol{M} 1$ for integral involving the function given; $\boldsymbol{A} 1$ for correct limits; A1 for π and $\left(\mathrm{e}^{-x^{2}}\right)^{2}$

$$
=3.758249 \ldots=3.76
$$

Question 30

$$
V=200 \pi r^{2}
$$

ote: Allow $V=\pi h r^{2}$ if value of h is substituted later in the question.
EITHER
$\frac{\mathrm{d} V}{\mathrm{~d} t}=200 \pi 2 r \frac{\mathrm{~d} r}{\mathrm{~d} t}$
M1A1
ote: Award M1 for an attempt at implicit differentiation.
at $r=2$ we have $30=200 \pi 4 \frac{\mathrm{~d} r}{\mathrm{~d} t}$
OR
$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\frac{\mathrm{d} V}{\mathrm{~d} t}}{\frac{\mathrm{~d} V}{\mathrm{~d} r}}$
M1
$\frac{\mathrm{d} V}{\mathrm{~d} r}=400 \pi r$
M1
$r=2$ we have $\frac{\mathrm{d} V}{\mathrm{~d} r}=800 \pi$ A1

THEN
$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{30}{800 \pi}\left(=\frac{3}{80 \pi}=0.0119\right)\left(\mathrm{cm} \mathrm{s}^{-1}\right)$
A1
Total [5 marks]
Question 31

$$
f^{\prime}(x)=3 x^{2}+\mathrm{e}^{x} \quad \text { A1 }
$$

e: Accept labelled diagram showing the graph $y=f^{\prime}(x)$ above the x-axis; do not accept unlabelled graphs nor graph of $y=f(x)$.

EITHER

```
this is always > 0 R1
so the function is (strictly) increasing
R1
and thus 1-1
OR
```

```
this is always >0 (accept = 0)
```

this is always >0 (accept = 0)
R1
R1
so there are no turning points
R1
and thus 1-1
R1

```
te: \(\boldsymbol{A 1}\) is dependent on the first R1.

Question 32
\[
\begin{aligned}
& x=0 \Rightarrow y=1 \\
& y^{\prime}(0)=1.367879 \ldots
\end{aligned}
\]

गte: The exact answer is \(y^{\prime}(0)=\frac{\mathrm{e}+1}{\mathrm{e}}=1+\frac{1}{\mathrm{e}}\).
so gradient of normal is \(\frac{-1}{1.367879 \ldots}(=-0.731058 \ldots)\)
(M1)(A1)
equation of normal is \(y=-0.731058 \ldots x+c\)
gives \(y=-0.731 x+1\)
te: The exact answer is \(y=-\frac{\mathrm{e}}{\mathrm{e}+1} x+1\).
Accept \(y-1=-0.731058 \ldots(x-0)\)

\section*{Question 33}
(a) \(x \rightarrow-\infty \Rightarrow y \rightarrow-\frac{1}{2}\) so \(y=-\frac{1}{2}\) is an asymptote (M1)A1 \(\mathrm{e}^{x}-2=0 \Rightarrow x=\ln 2\) so \(x=\ln 2(=0.693)\) is an asymptote (M1)A1
(b) (i) \(\quad f(x)=\frac{2\left(\mathrm{e}^{x}-2\right) \mathrm{e}^{2 x}-\left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}\)

\section*{M1A1}
\[
=\frac{\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}
\]
(ii) \(\boldsymbol{F}^{\prime}(x)=0\) when \(\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}=0\) M1
\(\mathrm{e}^{x}\left(\mathrm{e}^{2 x}-4 \mathrm{e}^{x}-1\right)=0\)
\(\mathrm{e}^{x}=0, \mathrm{e}^{x}=-0.236, \mathrm{e}^{x}=4.24\left(\right.\) or \(\left.e^{x}=2 \pm \sqrt{5}\right)\)
\[
A 1 A 1
\]

Note: Award A1 for zero, A1 for other two solutions.
Accept any answers which show a zero, a negative and a positive.
as \(\mathrm{e}^{x}>0\) exactly one solution
R1
Note: Do not award marks for purely graphical solution.
(iii) \((1.44,8.47)\)

A1A1
[8 marks]
(c) \(\quad f^{\prime}(0)=-4\)
so gradient of normal is \(\frac{1}{4}\)
fo) \(=-2\)
so equation of \(L_{1}\) is \(y=\frac{1}{4} x-2\)
(d) \(\gamma^{\prime}(x)=\frac{1}{4}\)
so \(x=1.46\)
(M1)A1
\(\mathcal{F}(1.46)=8.47\)
(A1)
equation of \(-8.47=\frac{1}{4}(x-1.46)\)
(or \(y=\frac{1}{4} x+8.11\) )

Question 34
(a)


EITHER
area of triangle \(=\frac{1}{2} \times 3 \times 4(=6)\)
area of sector \(=\frac{1}{2} \arcsin \left(\frac{4}{5}\right) \times 5^{2}(=11.5911 \ldots)\)
OR
\(\int_{0}^{4} \sqrt{25-x^{2}} d x\)
THEN
total area \(=17.5911 \ldots \mathrm{~m}^{2}\)
percentage \(=\frac{17.5911 \ldots}{40} \times 100=44 \%\)
(b) METHOD 1

area of triangle \(=\frac{1}{2} \times 4 \times \sqrt{a^{2}-16}\)
\(\theta=\arcsin \left(\frac{4}{a}\right)\)
area of sector \(=\frac{1}{2} r^{2} \theta=\frac{1}{2} a^{2} \arcsin \left(\frac{4}{a}\right)\)
therefore total area \(=2 \sqrt{a^{2}-16}+\frac{1}{2} a^{2} \arcsin \left(\frac{4}{a}\right)=20\) A1
rearrange to give: \(a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40\)
continued...

\section*{METHOD 2}
\(\int_{0}^{4} \sqrt{a^{2}-x^{2}} d x=20 \quad\) M1
use substitution \(x=a \sin \theta, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=a \cos \theta\)
\(\arcsin \left(\frac{4}{a}\right)\)
\(\int_{0} a^{2} \cos ^{2} \theta \mathrm{~d} \theta=20\)
\(\frac{a^{2}}{2} \int_{0}^{\arcsin \left(\frac{4}{a}\right)}(\cos 2 \theta+1) \mathrm{d} \theta=20\)
M1
\(a^{2}\left[\left(\frac{\sin 2 \theta}{2}+\theta\right)\right]_{0}^{\arcsin \left(\frac{4}{a}\right)}=40\)
A1
\(a^{2}[(\sin \theta \cos \theta+\theta)]_{0}^{\arcsin \left(\frac{4}{a}\right)}=40\)
\(a^{2} \arcsin \left(\frac{4}{a}\right)+a^{2}\left(\frac{4}{a}\right) \sqrt{\left(1-\left(\frac{4}{a}\right)^{2}\right)}=40\)
\(a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40\) AG
[4 marks]
(c) solving using GDC \(\Rightarrow a=5.53 \mathrm{~cm}\)

A2
[2 marks]

\section*{Question 35}
(a) attempt at implicit differentiation
\[
2 x-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
\]

Note: \(\boldsymbol{A 1}\) for differentiation of \(x^{2}-5 x y, \boldsymbol{A 1}\) for differentiation of \(y^{2}\) and 7 .
\(2 x-5 y+\frac{\mathrm{d} y}{\mathrm{~d} x}(2 y-5 x)=0\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 y-2 x}{2 y-5 x}\)
\(A G\)
[3 marks]
(b) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 \times 1-2 \times 6}{2 \times 1-5 \times 6}=\frac{1}{4}\)
gradient of normal \(=-4\)
equation of normal \(y=-4 x+c\)
substitution of \((6,1)\)
\[
y=-4 x+25
\]

Note: Accept \(y-1=-4(x-6)\)
(c) setting \(\frac{5 y-2 x}{2 y-5 x}=1\)
\(y=-x\)
substituting into original equation
\(x^{2}+5 x^{2}+x^{2}=7\)
\(7 x^{2}=7\)
\(x= \pm 1\)
points \((1,-1)\) and \((-1,1)\)
distance \(=\sqrt{8}(=2 \sqrt{2})\)
[4 marks]


A1
nI
(A1)

A1
(A1)

\section*{Question 36}

\section*{(a) METHOD 1}
\(\mathrm{s}=\int\left(9 t-3 t^{2}\right) \mathrm{d} t=\frac{9}{2} t^{2}-t^{3}(+c)\)
(M1)
(A1) A1 [3 marks]

\section*{METHOD 2}
\(s=3+\int_{0}^{4}\left(9 t-3 t^{2}\right) d t\)
\(s=11\)

\section*{(M1)(A1)}

A1
[3 marks]
(b) \(s=3+\frac{9}{2} t^{2}-t^{3}\)
correct shape over correct domain
A1
maximum at \((3,16.5)\)
A1
\(t\) intercept at 4.64, s intercept at 3 A1
(c) \(-9.5=a+b \cos 2 \pi\)
\(16.5=a+b \cos 3 \pi\)
(M1)
Note: Only award M1 if two simultaneous equations are formed over the correct domain.
\(a=\frac{7}{2}\)
\(b=-13\)
A1
[3 marks]
(d) at \(t_{1}\) :
\(3+\frac{9}{2} t^{2}-t^{3}=3\)
(M1)
\(t^{2}\left(\frac{9}{2}-t\right)=0\)
\(t_{1}=\frac{9}{2}\)
solving \(\frac{7}{2}-13 \cos \frac{2 \pi t}{5}=3\)
\(\mathrm{GDC} \Rightarrow t_{2}=6.22\)

Note: Accept graphical approaches.

\section*{Question 37}
(a) (i) \(\quad a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)\)
(ii) \(\quad \tau=10 \Rightarrow v=-100\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\)
(iii) \(s=\int-10 t \mathrm{~d} t=-5 t^{2}(+c)\)
\(s=1000\) for \(t=0 \Rightarrow c=1000\) (M1)
\(s=-5 t^{2}+1000\)
at \(\boldsymbol{\tau}=10, s=500(\mathrm{~m})\)

Note: Accept use of definite integrals.
(b) \(\frac{\mathrm{d} \boldsymbol{\tau} \boldsymbol{\mathrm { d }} v}{}=\frac{1}{(-10-5 v)}\)

A1
[1 mark]
(c) METHOD 1
\[
t=\int \frac{1}{-10-5 v} \mathrm{~d} v=-\frac{1}{5} \ln (-10-5 v)(+c)
\]

Note: Accept equivalent forms using modulus signs.
\[
\begin{aligned}
& t=10, v=-100 \\
& 10=-\frac{1}{5} \ln (490)+c \\
& c=10+\frac{1}{5} \ln (490) \\
& t=10+\frac{1}{5} \ln 490-\frac{1}{5} \ln (-10-5 v)
\end{aligned}
\]

Note: Accept equivalent forms using modulus signs.
\[
t=10+\frac{1}{5} \ln \left(\frac{98}{-2-v}\right)
\]

Note: Accept use of definite integrals.

\section*{METHOD 2}
\[
t=\int \frac{1}{-10-5 v} \mathrm{~d} v=-\frac{1}{5} \int \frac{1}{2+v} \mathrm{~d} v=-\frac{1}{5} \ln |2+v|(+c)
\]

Note: Accept equivalent forms.
\[
t=10, v=-100
\]
\[
\begin{equation*}
10=-\frac{1}{5} \ln |-98|+c \tag{M1}
\end{equation*}
\]

Note: If \(\ln (-98)\) is seen do not award further A marks.
\[
\begin{aligned}
& c=10+\frac{1}{5} \ln 98 \\
& t=10+\frac{1}{5} \ln 98-\frac{1}{5} \ln |2+v|
\end{aligned}
\]
A1

Note: Accept equivalent forms.
\[
t=10+\frac{1}{5} \ln \left(\frac{98}{-2-v}\right)
\]

Note: Accept use of definite integrals.
(d) \(5(\boldsymbol{r}-10)=\ln \frac{98}{(-2-v)}\)
\(\frac{2+v}{98}=-\mathrm{e}^{-5(\gamma-10)}\)
\(v=-2-98 \mathrm{e}^{-5(x-10)}\)
A1
[2 marks]
(e) \(\frac{\mathrm{d} s}{\mathrm{~d} t}=-2-98 \mathrm{e}^{-5(r-10)}\)
\(s=-2 t+\frac{98}{5} \mathrm{e}^{-5(r-10)}(+k)\)
at \(\neq 10, s=500 \Rightarrow 500=-20+\frac{98}{5}+Z \Rightarrow k=500.4\)
\(s=-2 t+\frac{98}{5} \mathrm{e}^{-5(r-10)}+500.4\)
A1

Note: Accept use of definite integrals.

\section*{[5 marks]}
continued...
(M1)A1

\section*{Question 38}
(a) (i) area \(=\int_{2}^{4} \sqrt{y-2} \mathrm{~d} y \quad\) M1A1
\[
\text { (ii) }=1.886(4 \text { sf only }) \quad \boldsymbol{A 1}
\]
[3 marks]
(b) volume \(=\pi \int_{2}^{4}(y-2) \mathrm{d} y\)
\[
\begin{aligned}
& =\pi\left[\frac{y^{2}}{2}-2 y\right]_{2}^{4} \\
& =2 \pi \text { (exact only) }
\end{aligned}
\]

A1
[3 marks]
Total [6 marks]

Question 39
(a) \(t_{1}=1.77(\mathrm{~s})(=\sqrt{\pi}(\mathrm{s}))\) and \(t_{2}=2.51(\mathrm{~s})(=\sqrt{2 \pi}(\mathrm{~s}))\)

\section*{A1A1}
[2 marks]
(b) (i) attempting to find (graphically or analytically) the first \(t_{\max }\)
\[
t=1.25(\mathrm{~s})\left(=\sqrt{\frac{\pi}{2}}(\mathrm{~s})\right)
\]
(ii) attempting to find (graphically or analytically) the first \(t_{\min }\)
\[
t=2.17(\mathrm{~s})\left(=\sqrt{\frac{3 \pi}{2}}(\mathrm{~s})\right)
\]
(M1)
\[
A 1
\]
[4 marks]
(c) distance travelled \(=\left|\int_{1.772 \ldots}^{2.506 \ldots} 1-\mathrm{e}^{-\sin t^{2}} \mathrm{~d} t\right|\) (or equivalent)
\(=0.711(\mathrm{~m})\)

A1
[2 marks]

\section*{Question 40}
(a) \(f^{\prime}(x)=30 \mathrm{e}^{-\frac{x^{2}}{400}} \cdot-\frac{2 x}{400}\left(=-\frac{3 x}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\right)\)

Note: Award \(\boldsymbol{M 1}\) for attempting to use the chain rule.
\[
f^{\prime \prime}(x)=-\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}+\frac{3 x^{2}}{4000} \mathrm{e}^{-\frac{x^{2}}{400}}\left(=\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\left(\frac{x^{2}}{200}-1\right)\right)
\]

Note: Award M1 for attempting to use the product rule.
(b) the roof function has maximum gradient when \(f^{\prime \prime}(x)=0\)
(M1)
Note: Award (M1) for attempting to find \(f^{\prime \prime}(-\sqrt{200})\).

\section*{EITHER}
\(=0\)
OR
\(f^{\prime \prime}(x)=0 \Rightarrow x= \pm \sqrt{200}\)
THEN
valid argument for maximum such as reference to an appropriate graph or change in the sign of \(f^{\prime \prime}(x)\) eg \(f^{\prime \prime}(-15)=0.010 \ldots(>0)\) and \(f^{\prime \prime}(-14)=-0.001 \ldots(<0)\)
\(\Rightarrow x=-\sqrt{200}\)
(c) \(A=2 a \cdot 30 \mathrm{e}^{-\frac{a^{2}}{400}}\left(=60 a \mathrm{e}^{-\frac{a^{2}}{400}}=-400 f^{\prime}(a)\right)\)

EITHER
\[
\frac{\mathrm{d} A}{\mathrm{~d} a}=60 a \mathrm{e}^{-\frac{a^{2}}{400}} \cdot-\frac{a}{200}+60 \mathrm{e}^{-\frac{a^{2}}{400}}=0 \Rightarrow a=\sqrt{200}\left(-400 f^{\prime \prime}(a)=0 \Rightarrow a=\sqrt{200}\right)
\]

OR
by symmetry eg \(a=-\sqrt{200}\) found in (b) or \(A_{\max }\) coincides with \(f^{\prime \prime}(a)=0 \quad \boldsymbol{R 1}\)
\(\Rightarrow a=\sqrt{200}\)

\section*{THEN}
\(A_{\max }=60 \cdot \sqrt{200} \mathrm{e}^{-\frac{200}{400}}\)
\(=600 \sqrt{2} \mathrm{e}^{-\frac{1}{2}}\) \(A G\)
(d) (i) perimeter \(=4 a+60 \mathrm{e}^{-\frac{a^{2}}{400}}\)

Note: Condone use of \(x\).
(ii) \(I(a)=\frac{4 a+60 \mathrm{e}^{-\frac{a^{2}}{400}}}{60 a \mathrm{e}^{-\frac{a^{2}}{400}}}\)
graphing \(I(a)\) or other valid method to find the minimum \(a=12.6\)
(iii) area under roof \(=\int_{-20}^{20} 30 \mathrm{e}^{-\frac{x^{2}}{400}} \mathrm{~d} x\)
\(=896.18 \ldots\)
area of living space \(=60 \cdot(12.6 \ldots) \cdot \mathrm{e}^{-\frac{(12.6 \ldots)^{2}}{400}}=508.56 \ldots\)
percentage of empty space \(=43.3 \%\)

A1
[9 marks]

Question 41
(a) \(\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{\mathrm{e}^{-t}}{2-\mathrm{e}^{-t}}\left(=\frac{1}{2 \mathrm{e}^{t}-1}\right.\) or \(\left.-1+\frac{2}{2-\mathrm{e}^{-t}}\right)\)

M1A1
[2 marks]
(b) \(\quad a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)-\mathrm{e}^{-t} \times \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\left(=\frac{-2 \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\right)\)

Note:If simplified in part (a) award (M1)A1 for \(a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-2 \mathrm{e}^{t}}{\left(2 \mathrm{e}^{t}-1\right)^{2}}\).
Note: Award M1A1 for \(a=-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-2}\left(\mathrm{e}^{-t}\right)-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-1}\).
(c) \(\quad a=-2\left(\mathrm{~ms}^{-2}\right)\)

A1

\section*{Question 42}
(a) valid method eg, sketch of curve or critical values found \(x<-2.24, x>2.24\),
\(-1<x<0.8\)
Note: Award M1A1AO for correct intervals but with inclusive inequalities.
(b) (i) \(\quad(1.67,-5.14),(-1.74,-3.71)\)

A1A1
Note: Award A1AO for any two correct terms.
(ii) \(f^{\prime}(x)=4 x^{3}+0.6 x^{2}-11.6 x-1\)
\(f^{\prime \prime}(x)=12 x^{2}+1.2 x-11.6=0\)
\(-1.03,0.934\)
A1A1
Note: \(\boldsymbol{M} 1\) should be awarded if graphical method to find zeros of \(f^{\prime \prime}(x)\) or turning points of \(f^{\prime}(x)\) is shown.

\section*{[5 marks]}
(c) (i) 1.67

A1
(ii)


Note: Award M1 for reflection of their \(y=f(x)\) in the line \(y=x\) provided
their \(f\) is one-one.
A1 for ( 0,4 ), (4,0) (Accept axis intercept values) A1 for the other two sets of coordinates of other end points
(iii) \(\quad x=f(1)\)
\(=-1.6\)
(d) (i) \(y=2 \sin (x-1)-3\)
\[
x=2 \sin (y-1)-3
\]
\[
\left(g^{-1}(x)=\right) \arcsin \left(\frac{x+3}{2}\right)+1
\]
\[
-5 \leq x \leq-1
\]

\section*{Note: Award \(\boldsymbol{A 1}\) for -5 and -1 , and \(\boldsymbol{A 1}\) for correct inequalities if numbers are} reasonable.
(ii) \(f^{-1}(g(x))<1\)
\[
g(x)>-1.6
\]
\[
\begin{equation*}
x>g^{-1}(-1.6)=1.78 \tag{A1}
\end{equation*}
\]

Note: Accept \(=\) in the above.
\[
1.78<x \leq \frac{\pi}{2}+1
\]

Note: A1 for \(x>1.78(\) allow \(\geq)\) and A1 for \(x \leq \frac{\pi}{2}+1\).

Question 43
(a) \(\begin{aligned} & a^{2}=5-1 \\ & a=2\end{aligned}\)
(M1)
\(a=2\)
A1
[2 marks]
(b) \(2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\right)=-\mathrm{e}^{x}\)

Note: Award M1 for an attempt at implicit differentiation, A1 for each part.
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-\mathrm{e}^{x}}{2(y-x)}\)
AG
[4 marks]
(c) at \(x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{4}\)
(A1)
finding the negative reciprocal of a number
(M1)
gradient of normal is \(-\frac{4}{3}\)
\(y=-\frac{4}{3} x+2\)
(d) substituting linear expression
(M1)
\(\left(-\frac{4}{x}+2\right)^{2}-2 x\left(-\frac{4}{3} x+2\right)+\mathrm{e}^{x}-5=0\) or equivalent
\(x=1.56\)
(M1)A1
\(y=-0.0779\)
A1
[4 marks]
(e) \(\frac{\mathrm{d} v}{\mathrm{~d} x}=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}\)
\(\frac{\mathrm{d} v}{\mathrm{~d} x}=3 \times 4 \times \frac{3}{4}=9\)
M1A1

A1
[3 marks]
Total [16 marks]

Question 44
(a) \(3 x^{2}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\)

\section*{M1A1}
\(\left(3 y^{2}-4 x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=4 y-3 x^{2}\)
A1
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 y-3 x^{2}}{3 y^{2}-4 x}\)
AG
[3 marks]
(b) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 4 y-3 x^{2}=0\)
substituting \(x=k\) and \(y=\frac{3}{4} k^{2}\) into \(x^{3}+y^{3}=4 x y\)
\(k^{3}+\frac{27}{64} k^{6}=3 k^{3}\)
attempting to solve \(k^{3}+\frac{27}{64} k^{6}=3 k^{3}\) for \(k\)
\(k=1.68\left(=\frac{4}{3} \sqrt[3]{2}\right)\)
A1

Note: Condone substituting \(y=\frac{3}{4} x^{2}\) into \(x^{3}+y^{3}=4 x y\) and solving for \(x\).

Question 45
(a) \(\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{\cos s}{\sin ^{2} s+1}\)
\(a=v \frac{\mathrm{~d} v}{\mathrm{~d} s}\)
\(a=\frac{\arctan (\sin s) \cos s}{\sin ^{2} s+1}\)
A1
[4 marks]
(b) EITHER

(M1)
OR

(M1)

\section*{THEN}
\[
s=0.296,0.918(\mathrm{~m})
\]

\section*{A1}
[2 marks]

\section*{Total [6 marks]}

\section*{Question 46}
(a) EITHER
\(\alpha=\arctan \frac{7}{10}-\arctan \frac{5}{10}\left(=34.992 \ldots-26.5651 \ldots{ }^{\circ}\right)\)
(M1)(A1)(A1)
Note: Award (M1) for \(\alpha=\) A \(\widehat{P}\) - BPTT, (A1) for a correct A \(\hat{P} T\) and (A1) for a correct BPT .
OR
\(\alpha=\arctan 2-\arctan \frac{10}{7}\left(=63.434 \ldots-55.008 \ldots{ }^{\circ}\right) \quad\) (M1)(A1)(A1)
Note: Award (M1) for \(\alpha=\mathrm{PB} \mathrm{T}-\mathrm{PA} \mathrm{T}\), (A1) for a correct PBT and (A1) for a correct PÂT
OR
\(\alpha=\arccos \left(\frac{125+149-4}{2 \times \sqrt{125} \times \sqrt{149}}\right) \quad\) (M1)(A1)(A1)
Note: Award (M1) for use of cosine rule, (A1) for a correct numerator and (A1) for a correct denominator.

\section*{THEN}
\(=8.43^{\circ} \quad \boldsymbol{A 1}\)
[4 marks]
(b) EITHER
\(\tan \alpha=\frac{\frac{7}{x}-\frac{5}{x}}{1+\left(\frac{7}{x}\right)\left(\frac{5}{x}\right)}\)
Note: Award \(\boldsymbol{M 1}\) for use of \(\tan (A-B)\), A1 for a correct numerator and \(\boldsymbol{A} 1\) for a correct denominator.
\[
=\frac{\frac{2}{x}}{1+\frac{35}{x^{2}}}
\]
M1

OR
\[
\tan \alpha=\frac{\frac{x}{5}-\frac{x}{7}}{1+\left(\frac{x}{5}\right)\left(\frac{x}{7}\right)}
\]

M1A1A1

Note: Award \(\boldsymbol{M} 1\) for use of \(\tan (A-B)\), \(\boldsymbol{A 1}\) for a correct numerator and \(\boldsymbol{A} 1\) for a correct denominator.
\[
=\frac{\frac{2 x}{35}}{1+\frac{x^{2}}{35}}
\]

OR
\[
\cos \alpha=\frac{x^{2}+35}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}
\]

Note: Award M1 for either use of the cosine rule or use of \(\cos (A-B)\).
\(\sin \alpha=\frac{2 x}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}\)
\(\tan \alpha=\frac{\frac{2 x}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}}{\frac{x^{2}+35}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}}\)
THEN
\(\tan \alpha=\begin{gathered}2 x \\ x^{2}+35\end{gathered}\)
(c) (i) \(\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)=\frac{2\left(x^{2}+35\right)-(2 x)(2 x)}{\left(x^{2}+35\right)^{2}}\left(=\frac{70-2 x^{2}}{\left(x^{2}+35\right)^{2}}\right)\)

M1A1A1

Note: Award M1 for attempting product or quotient rule differentiation, A1 for a correct numerator and A1 for a correct denominator.
(ii) METHOD 1

\section*{EITHER}
\(\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)=0 \Rightarrow 70-2 x^{2}=0\)
\(x=\sqrt{35}(\mathrm{~m})(=5.9161 \ldots(\mathrm{~m}))\)
\(\tan \alpha=\frac{1}{\sqrt{35}}(=0.16903 \ldots)\)
OR
attempting to locate the stationary point on the graph of \(\tan \alpha=\frac{2 x}{x^{2}+35}\)
\(x=5.9161 \ldots(\mathrm{~m})(=\sqrt{35}(\mathrm{~m}))\)
\(\tan \alpha=0.16903 \ldots\left(=\frac{1}{\sqrt{35}}\right)\)
THEN
\(\alpha=9.59^{\circ}\)

\section*{METHOD 2}

\section*{EITHER}
\(\alpha=\arctan \left(\frac{2 x}{x^{2}+35}\right) \Rightarrow \frac{\mathrm{d} \alpha}{\mathrm{d} x}=\frac{70-2 x^{2}}{\left(x^{2}+35\right)^{2}+4 x^{2}}\)
\(\frac{\mathrm{d} \alpha}{\mathrm{d} x}=0 \Rightarrow x=\sqrt{35}(\mathrm{~m})(=5.9161 \ldots(\mathrm{~m}))\)
OR
attempting to locate the stationary point on the graph of
\(\alpha=\arctan \left(\frac{2 x}{x^{2}+35}\right)\)
\(x=5.9161 \ldots(\mathrm{~m})(=\sqrt{35}(\mathrm{~m}))\)

\section*{THEN}
\(\alpha=0.1674 \ldots\left(=\arctan \frac{1}{\sqrt{35}}\right)\)
\(=9.59^{\circ}\)
(iii) \(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\tan \alpha)=\frac{\left(x^{2}+35\right)^{2}(-4 x)-(2)(2 x)\left(x^{2}+35\right)\left(70-2 x^{2}\right)}{\left(x^{2}+35\right)^{4}}\left(=\frac{4 x\left(x^{2}-105\right)}{\left(x^{2}+35\right)^{3}}\right)\)
substituting \(x=\sqrt{35}(=5.9161 \ldots)\) into \(\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}(\tan \alpha)\)
\(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\tan \alpha)<0(=-0.004829 \ldots)\) and so \(\alpha=9.59^{\circ}\) is the maximum
value of \(\alpha\)
\(\alpha\) never exceeds \(10^{\circ}\)
R1
AG
[11 marks]
(d) attempting to solve \(\frac{2 x}{x^{2}+35} \geq \tan 7^{\circ}\)
(M1)
Note: Award (M1) for attempting to solve \(\frac{2 x}{x^{2}+35}=\tan 7^{\circ}\).
\(x=2.55\) and \(x=13.7\)
\(2.55 \leq x \leq 13.7\) (m)

Question 47
(a) (i) \(\frac{1}{4\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)-2\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)}\)
\(=\frac{1}{2\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}\)
(A1)
\(=\frac{1}{\mathrm{e}^{x}+3 \mathrm{e}^{-x}}\)
A1
\(=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3}\)
AG
(ii) \(\quad u=\mathrm{e}^{x} \Rightarrow \mathrm{~d} u=\mathrm{e}^{x} \mathrm{~d} x\) A1
\(\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3} \mathrm{~d} x=\int \frac{1}{u^{2}+3} \mathrm{~d} u\) M1
(when \(x=0, u=1\) and when \(x=\ln 3, u=3\) )
\(\int_{1}^{3} \frac{1}{u^{2}+3} \mathrm{~d} u=\left[\frac{1}{\sqrt{3}} \arctan \left(\frac{u}{\sqrt{3}}\right)\right]_{1}^{3}\)
\(\left(=\left[\frac{1}{\sqrt{3}} \arctan \left(\frac{\mathrm{e}^{x}}{\sqrt{3}}\right)\right]_{0}^{\ln 3}\right)\)
\(=\frac{\pi \sqrt{3}}{9}-\frac{\pi \sqrt{3}}{18}\)
\(=\frac{\pi \sqrt{3}}{18}\)
(b) (i) \(\quad(n+1) \mathrm{e}^{2 x}-2 k \mathrm{e}^{x}+(n-1)=0\)
\(\mathrm{e}^{x}=\frac{2 k \pm \sqrt{4 k^{2}-4\left(n^{2}-1\right)}}{2(n+1)}\)
M1
\(x=\ln \left(\frac{k \pm \sqrt{k^{2}-n^{2}+1}}{n+1}\right)\)
M1A1
(ii) for two real solutions, we require \(k>\sqrt{k^{2}-n^{2}+1}\)
and we also require \(k^{2}-n^{2}+1>0\)
R1
\(k^{2}>n^{2}-1\)
A1
\(\Rightarrow k>\sqrt{n^{2}-1}\left(k \in \mathbb{R}^{+}\right)\)
(c) (i) METHOD 1
\[
\begin{aligned}
& t(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} \\
& t^{\prime}(x)=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \\
& t^{\prime}(x)=\frac{\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{2}}{\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}} \\
& =\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}
\end{aligned}
\]
\[
g^{\prime}(x)=f(x) \text { and } f^{\prime}(x)=g(x)
\]
\(=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}\)

\section*{METHOD 3}
\(t(x)=\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{-1}\)
\(t^{\prime}(x)=1-\frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\)
M1A1
\(=1-\frac{[g(x)]^{2}}{[f(x)]^{2}}\)
A1
\(=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}\)

\section*{METHOD 4}
\(t^{\prime}(x)=\frac{g^{\prime}(x)}{f(x)}-\frac{g(x) f^{\prime}(x)}{[f(x)]^{2}}\)
M1A1
\(g^{\prime}(x)=f(x)\) and \(f^{\prime}(x)=g(x)\) gives \(t^{\prime}(x)=1-\frac{[g(x)]^{2}}{[f(x)]^{2}}\)
\(=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}\)
AG
(ii) METHOD 1
\[
\begin{aligned}
& {[f(x)]^{2}>[g(x)]^{2} \text { (or equivalent) }} \\
& {[f(x)]^{2}>0} \\
& \text { hence } t^{\prime}(x)>0, x \in \mathbb{R}
\end{aligned}
\]
R1

Note: Award as above for use of either \(f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\) and \(g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) or \(\mathrm{e}^{x}+\mathrm{e}^{-x}\) and \(\mathrm{e}^{x}-\mathrm{e}^{-x}\).

\section*{METHOD 2}
\([f(x)]^{2}-[g(x)]^{2}=1\) (or equivalent) M1A1
\([f(x)]^{2}>0\)
hence \(t^{\prime}(x)>0, x \in \mathbb{R}\)
Note: Award as above for use of either \(f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\) and \(g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) or \(\mathrm{e}^{x}+\mathrm{e}^{-x}\) and \(\mathrm{e}^{x}-\mathrm{e}^{-x}\).

\section*{METHOD 3}
\[
\begin{aligned}
& t^{\prime}(x)=\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \\
& \left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}>0 \\
& \frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}>0 \\
& \text { hence } t^{\prime}(x)>0, x \in \mathbb{R}
\end{aligned}
\]

\section*{Question 48}

\section*{METHOD 1}
substituting for \(x\) and attempting to solve for \(y\) (or vice versa)
\(y=( \pm) 0.11821 \ldots\)

\section*{EITHER}
\(145 x+143 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{145 x}{143 y}\right)\)
M1A1

OR
\(145 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+143 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=0\)
M1A1

THEN
attempting to find \(\frac{\mathrm{d} y}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{145\left(3.2 \times 10^{-3}\right)}{143(( \pm) 0.11821 \ldots)} \times\left(7.75 \times 10^{-5}\right)\right)\)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}= \pm 2.13 \times 10^{-6}\)
Note: Award all marks except the final \(\boldsymbol{A 1}\) to candidates who do not consider \(\pm\).
METHOD 2
\(y=( \pm) \sqrt{\frac{1-72.5 x^{2}}{71.5}}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=( \pm) 0.0274 \ldots\)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}=( \pm) 0.0274 \ldots \times 7.75 \times 10^{-5}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}= \pm 2.13 \times 10^{-6}\)
Note: Award all marks except the final \(\boldsymbol{A 1}\) to candidates who do not consider \(\pm\).

\section*{Question 49}
(a) attempting to solve either \(2 \mathrm{e}^{x}-1=0\) or \(2 \mathrm{e}^{x}-1 \neq 0\) for \(x\)
\(D=\mathbb{R} \backslash\{-\ln 2\}\) (or equivalent eg \(x \neq-\ln 2\) )
Note: Accept \(D=\mathbb{R} \backslash\{-0.693\}\) or equivalent eg \(x \neq-0.693\).
[2 marks]
(b) considering \(\lim _{x \rightarrow-\ln 2} f(x)\)
\(x=-\ln 2 \quad(x=-0.693)\)
considering one of \(\lim _{x \rightarrow-\infty} f(x)\) or \(\lim _{x \rightarrow+\infty} f(x)\) M1
\(\lim _{x \rightarrow-\infty} f(x)=-2 \Rightarrow y=-2\) A1
\(\lim _{x \rightarrow+\infty} f(x)=-\frac{1}{2} \Rightarrow y=-\frac{1}{2}\) A1

Note: Award AOAO for \(y=-2\) and \(y=-\frac{1}{2}\) stated without any justification.
(c) \(f^{\prime}(x)=\frac{-\mathrm{e}^{x}\left(2 \mathrm{e}^{x}-1\right)-2 \mathrm{e}^{x}\left(2-\mathrm{e}^{x}\right)}{\left(2 \mathrm{e}^{x}-1\right)^{2}}\)

\section*{M1A1A1}
\(=-\frac{3 \mathrm{e}^{x}}{\left(2 \mathrm{e}^{x}-1\right)^{2}}\)
\(A G\)
[3 marks]
(d) \(\quad f^{\prime}(x)<0\) (for all \(\left.x \in D\right) \Rightarrow f\) is (strictly) decreasing

Note: Award \(\boldsymbol{R 1}\) for a statement such as \(f^{\prime}(x) \neq 0\) and so the graph of \(f\) has no turning points.
one branch is above the upper horizontal asymptote and the other branch is below the lower horizontal asymptote
\(f\) has an inverse
\(-\infty<x<-2 \cup-\frac{1}{2}<x<\infty\)
Note: Award A2 if the domain of the inverse is seen in either part (d) or in part (e).
(e) \(\quad x=\frac{2-\mathrm{e}^{y}}{2 \mathrm{e}^{y}-1}\)

Note: Award \(\boldsymbol{M 1}\) for interchanging \(x\) and \(y\) (can be done at a later stage).
\[
\begin{array}{ll}
2 x \mathrm{e}^{y}-x=2-\mathrm{e}^{y} & \text { M1 } \\
\mathrm{e}^{y}(2 x+1)=x+2 & \text { A1 } \\
f^{-1}(x)=\ln \left(\frac{x+2}{2 x+1}\right)\left(f^{-1}(x)=\ln (x+2)-\ln (2 x+1)\right) & \boldsymbol{A 1}
\end{array}
\]
(f) use of \(V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y\)
\[
=\pi \int_{0}^{1}\left(\ln \left(\frac{y+2}{2 y+1}\right)\right)^{2} \mathrm{~d} y
\]

Note: Award (A1) for the correct integrand and (A1) for the limits.
\[
=0.331
\]

\section*{Question 50}
(a) \(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\)

\section*{M1A1A1}

Note: Award \(\boldsymbol{A 1}\) for the first two terms, \(\boldsymbol{A 1}\) for the third term and the 0 .
\[
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}}{1-x y} \tag{A1}
\end{equation*}
\]

Note: Accept \(\frac{-y^{2}}{\ln y}\).
Note: Accept \(\frac{-y}{x-\frac{1}{y}}\).
(b) \(m_{T}=\frac{\mathrm{e}^{2}}{1-\mathrm{e} \times \frac{2}{\mathrm{e}}}\)
\(m_{T}=-\mathrm{e}^{2}\)
\(y-\mathrm{e}=-\mathrm{e}^{2} x+2 \mathrm{e}\)
\(-\mathrm{e}^{2} x-y+3 \mathrm{e}=0\) or equivalent A1

Note: Accept \(y=-7.39 x+8.15\).

\section*{Question 51}
(a) METHOD 1
\[
\begin{aligned}
& 2 \arcsin (x-1)-\frac{\pi}{4}=\frac{\pi}{4} \\
& x=1+\frac{1}{\sqrt{2}}(=1.707 \ldots) \\
& \int_{0}^{1+\frac{1}{\sqrt{2}}} \frac{\pi}{4}-\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x
\end{aligned}
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for an attempt to find the difference between two functions, A1 for all correct.

\section*{METHOD 2}


Note: Award M1 for an attempt to find the inverse function.
\[
\int_{\frac{-5 \pi}{4}}^{\frac{\pi}{4}}\left(1+\sin \left(\frac{4 y+\pi}{8}\right)\right) d y
\]

A1

\section*{METHOD 3}
\[
\left|\int_{0}^{1.38 \ldots}\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x\right|+\int_{0}^{1.71 \cdots} \frac{\pi}{4} \mathrm{~d} x-\int_{1.38}^{1.71 \cdots}\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x \text { M1A1A1A1 }
\]

Note: Award \(\boldsymbol{M 1}\) for considering the area below the \(x\)-axis and above the \(x\)-axis and \(\boldsymbol{A 1}\) for each correct integral.
[4 marks]
(b) area \(=3.30\) (square units)

A2
[2 marks]

Question 52
(a) area of segment \(=\frac{1}{2} \times 0.5^{2} \times(\theta-\sin \theta)\)

M1A1

A1
[3 marks]
(b) METHOD 1
\(\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{5}{4}(1-\cos \theta) \frac{\mathrm{d} \theta}{\mathrm{d} t}\)
M1A1
\(0.0008=\frac{5}{4}\left(1-\cos \frac{\pi}{3}\right) \frac{\mathrm{d} \theta}{\mathrm{d} t}\)
(M1)
\(\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.00128\left(\mathrm{rad} s^{-1}\right)\)
A1

METHOD 2
\(\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}\)
(M1)
\(\frac{\mathrm{d} V}{\mathrm{~d} \theta}=\frac{5}{4}(1-\cos \theta)\)
A1
\(\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{4 \times 0.0008}{5\left(1-\cos \frac{\pi}{3}\right)}\)
\(\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.00128\left(\frac{4}{3125}\right)\left(\operatorname{rad} s^{-1}\right)\)
[4 marks]

\section*{Total [7 marks]}

Question 53
(a) \(x^{2}-1>0\) (M1) \(x<-1\) or \(x>1\)
(b)

shape A1
\(x=1\) and \(x=-1\)
\(x\)-intercepts
(c) EITHER
\(f\) is symmetrical about the \(y\)-axis
OR
\(f(-x)=f(x)\)
[3 marks]

R1

R1
[1 mark]
(d) EITHER
\(f\) is not one-to-one function
R1
OR
horizontal line cuts twice
R1
Note: Accept any equivalent correct statement.
(e) \(\quad x=-1+\ln \left(\sqrt{y^{2}-1}\right)\)
\(e^{2 x+2}=y^{2}-1\)
\(g^{-1}(x)=\sqrt{e^{2 x+2}+1}, x \in \mathbb{R}\)

\section*{A1A1}
[4 marks]
(f) \(\quad g^{\prime}(x)=\frac{1}{\sqrt{x^{2}-1}} \times \frac{2 x}{2 \sqrt{x^{2}-1}}\)
\(g^{\prime}(x)=\frac{x}{x^{2}-1}\)

\section*{M1A1}

A1
[3 marks]
(g) (i) \(g^{\prime}(x)=\frac{x}{x^{2}-1}=0 \Rightarrow x=0\)
which is not in the domain of \(g\) (hence no solutions to \(g^{\prime}(x)=0\) )
M1
R1
(ii) \(\quad\left(g^{-1}\right)^{\prime}(x)=\frac{e^{2 x+2}}{\sqrt{e^{2 x+2}+1}}\) M1
as \(e^{2 x+2}>0 \Rightarrow\left(g^{-1}\right)^{\prime}(x)>0\) so no solutions to \(\left(g^{-1}\right)^{\prime}(x)=0\)
R1
Note: Accept: equation \(e^{2 x+2}=0\) has no solutions.

Question 54
(a) METHOD 1
\[
\begin{aligned}
& 4 x^{2}+y^{2}=7 \\
& 8 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{y}
\end{aligned}
\]

Note: Award M1A1 for finding \(\frac{\mathrm{d} y}{\mathrm{~d} x}=-2.309 \ldots\) using any alternative method.
hence gradient of normal \(=\frac{y}{4 x}\)
hence gradient of normal at \((1, \sqrt{3})\) is \(\frac{\sqrt{3}}{4}(=0.433)\)
hence equation of normal is \(y-\sqrt{3}=\frac{\sqrt{3}}{4}(x-1)\)
(M1)A1
\(\left(y=\frac{\sqrt{3}}{4} x+\frac{3 \sqrt{3}}{4}\right)(y=0.433 x+1.30)\)

\section*{METHOD 2}
\[
\begin{align*}
& 4 x^{2}+y^{2}=7 \\
& y=\sqrt{7-4 x^{2}} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{\sqrt{7-4 x^{2}}} \tag{A1}
\end{align*}
\]
(M1)

Note: Award M1A1 for finding \(\frac{\mathrm{d} y}{\mathrm{~d} x}=-2.309 \ldots\) using any alternative method.
hence gradient of normal \(=\frac{\sqrt{7-4 x^{2}}}{4 x}\)
hence gradient of normal at \((1, \sqrt{3})\) is \(\frac{\sqrt{3}}{4}(=0.433)\)
(A1)
hence equation of normal is \(y-\sqrt{3}=\frac{\sqrt{3}}{4}(x-1)\)
(M1)A1
\(\left(y=\frac{\sqrt{3}}{4} x+\frac{3 \sqrt{3}}{4}\right)(y=0.433 x+1.30)\)
(b) Use of \(V=\pi \int_{0}^{\frac{\sqrt{7}}{2}} y^{2} \mathrm{~d} x\)
\[
V=\pi \int_{0}^{\frac{\sqrt{7}}{2}}\left(7-4 x^{2}\right) \mathrm{d} x
\]

Note: Condone absence of limits or incorrect limits for \(\boldsymbol{M}\) mark. Do not condone absence of or multiples of \(\pi\).
\[
=19.4\left(=\frac{7 \sqrt{7} \pi}{3}\right)
\]

A1
[3 marks]
Total [9 marks]

\section*{Question 55}

\section*{EITHER}
\(x^{2}=2 \sec \theta\)
\(2 x \frac{d x}{d \theta}=2 \sec \theta \tan \theta\)
\(\int \frac{\mathrm{d} x}{x \sqrt{x^{4}-4}}\)
\(=\int \frac{\sec \theta \tan \theta \mathrm{d} \theta}{2 \sec \theta \sqrt{4 \sec ^{2} \theta-4}}\)
M1A1

OR
\[
\begin{aligned}
& x=\sqrt{2}(\sec \theta)^{\frac{1}{2}}\left(=\sqrt{2}(\cos \theta)^{-\frac{1}{2}}\right) \\
& \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sqrt{2}}{2}(\sec \theta)^{\frac{1}{2}} \tan \theta\left(=\frac{\sqrt{2}}{2}(\cos \theta)^{-\frac{3}{2}} \sin \theta\right)
\end{aligned}
\]
M1A1
\[
\int \frac{\mathrm{d} x}{x \sqrt{x^{4}-4}}
\]
\[
=\int \frac{\sqrt{2}(\sec \theta)^{\frac{1}{2}} \tan \theta \mathrm{~d} \theta}{2 \sqrt{2}(\sec \theta)^{\frac{1}{2}} \sqrt{4 \sec ^{2} \theta-4}}\left(=\int \frac{\sqrt{2}(\cos \theta)^{-\frac{3}{2}} \sin \theta \mathrm{~d} \theta}{2 \sqrt{2}(\cos \theta)^{-\frac{1}{2}} \sqrt{4 \sec ^{2} \theta-4}}\right)
\]

\section*{M1A1}

THEN
\(=\frac{1}{2} \int \frac{\tan \theta \mathrm{~d} \theta}{2 \tan \theta}\)
(M1)
\(=\frac{1}{4} \int \mathrm{~d} \theta\)
\(=\frac{\theta}{4}+c\)
A1
\(x^{2}=2 \sec \theta \Rightarrow \cos \theta=\frac{2}{x^{2}}\)
te: This M1 may be seen anywhere, including a sketch of an appropriate triangle.
\[
\text { so } \frac{\theta}{4}+c=\frac{1}{4} \arccos \left(\frac{2}{x^{2}}\right)+c
\]

Question 56
(a) (i) attempt to use quotient rule or product rule
\[
f^{\prime}(x)=\frac{\sin x\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-\sqrt{x} \cos x}{\sin ^{2} x}\left(=\frac{1}{2 \sqrt{x} \sin x}-\frac{\sqrt{x} \cos x}{\sin ^{2} x}\right)
\]

Note: Award \(\boldsymbol{A 1}\) for \(\frac{1}{2 \sqrt{x} \sin x}\) or equivalent and \(\boldsymbol{A 1}\) for \(-\frac{\sqrt{x} \cos x}{\sin ^{2} x}\) or equivalent.
\[
\begin{aligned}
& \text { setting } f^{\prime}(x)=0 \\
& \frac{\sin x}{2 \sqrt{x}}-\sqrt{x} \cos x=0 \\
& \frac{\sin x}{2 \sqrt{x}}=\sqrt{x} \cos x \text { or equivalent } \\
& \tan x=2 x \\
& \text { (ii) } x=1.17 \\
& 0<x \leq 1.17
\end{aligned}
\]

Note: Award A1 for \(0<x\) and \(\boldsymbol{A 1}\) for \(x \leq 1.17\). Accept \(x<1.17\).
(b)

concave up curve over correct domain with one minimum point above the \(x\)-axis.A1 approaches \(x=0\) asymptotically
approaches \(x=\pi\) asymptotically
Note: For the final \(\boldsymbol{A 1}\) an asymptote must be seen, and \(\pi\) must be seen on the \(x\) axis or in an equation.
(c) \(f^{\prime}(x)\left(=\frac{\sin x\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-\sqrt{x} \cos x}{\sin ^{2} x}\right)=1\)
(A1)
(M1)
solve for \(x\)
A1
\(x=1.96\)

A1
[4 marks]
(d) \(\quad V=\pi \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{x \mathrm{~d} x}{\sin ^{2} x}\)
(M1)(A1)
Note: M1 is for an integral of the correct squared function (with or without limits and/or \(\pi\) ).
\[
=2.68(=0.852 \pi)
\]

A1
[3 marks]
Total [17 marks]

Question 57
(a) (i) \(\quad f^{\prime}(x)=4 \sin x \cos x+14 \cos 2 x+\sec ^{2} x\) (or equivalent)
(M1)A1
(ii)


A1A1A1A1
Note: Award A1 for correct behaviour at \(x=0, \boldsymbol{A 1}\) for correct domain and correct behaviour for \(x \rightarrow \frac{\pi}{2}, \boldsymbol{A 1}\) for two clear intersections with \(x\)-axis and minimum point, \(\boldsymbol{A} 1\) for clear maximum point.
(iii) \(x=0.0736\)

A1
A1
(b) (i) attempt to write \(\sin x\) in terms of \(u\) only
(ii) \(\quad \cos x=\frac{1}{\sqrt{1+u^{2}}}\)
attempt to use \(\sin 2 x=2 \sin x \cos x\left(=2 \frac{u}{\sqrt{1+u^{2}}} \frac{1}{\sqrt{1+u^{2}}}\right)\)
\(\sin 2 x=\frac{2 u}{1+u^{2}}\)
(iii) \(2 \sin ^{2} x+7 \sin 2 x+\tan x-9=0\)
\(\frac{2 u^{2}}{1+u^{2}}+\frac{14 u}{1+u^{2}}+u-9(=0)\)
M1
\(\frac{2 u^{2}+14 u+u\left(1+u^{2}\right)-9\left(1+u^{2}\right)}{1+u^{2}}=0\) (or equivalent)
\(u^{3}-7 u^{2}+15 u-9=0\)
(c) \(\quad u=1\) or \(u=3\)
\(x=\arctan (1)\)
,
\(x=\arctan (3)\)

\section*{Note: Only accept answers given the required form.}
[3 marks]

\section*{Total [18 marks]}

Question 58
(a) attempt to solve \(v(t)=0\) for \(t\) or equivalent
\[
t_{1}=0.441(\mathrm{~s})
\]
(b) (i) \(a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\mathrm{e}^{-t}-16 t \mathrm{e}^{-2 t}+16 t^{2} \mathrm{e}^{-2 t}\)
(M1)
A1
[2 marks]

M1A1

A1
[3 marks]
Total [5 marks]

\section*{Question59}
(a) attempt at implicit differentiation
\[
1+\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \sin (x y)=0
\]

Note: Award \(\boldsymbol{A} 1\) for first two terms. Award M1 for an attempt at chain rule \(\boldsymbol{A}\) 1 for last term.
\[
\begin{array}{ll}
(1+x \sin (x y)) \frac{\mathrm{d} y}{\mathrm{~d} x}=-1-y \sin (x y) \text { or equivalent } & \boldsymbol{A 1} \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(\frac{1+y \sin (x y)}{1+x \sin (x y)}\right) & \boldsymbol{A G}
\end{array}
\]
(b) (i) EITHER
when \(x y=-\frac{\pi}{2}, \cos x y=0\)
M1
\(\Rightarrow x+y=0\)

OR
\(x-\frac{\pi}{2 x}-\cos \left(\frac{-\pi}{2}\right)=0\) or equivalent
M1
\(x-\frac{\pi}{2 x}=0\)

\section*{THEN}
therefore \(x^{2}=\frac{\pi}{2}\left(x= \pm \sqrt{\frac{\pi}{2}}\right)(x= \pm 1.25)\)
\(\mathrm{P}\left(\sqrt{\frac{\pi}{2}},-\sqrt{\frac{\pi}{2}}\right), \mathrm{Q}\left(-\sqrt{\frac{\pi}{2}}, \sqrt{\frac{\pi}{2}}\right)\) or \(P(1.25,-1.25), Q(-1.25,1.25)\)
A1
(ii) \(\quad m_{1}=-\left(\frac{1-\sqrt{\frac{\pi}{2}} \times-1}{1+\sqrt{\frac{\pi}{2}} \times-1}\right)\)
\(m_{2}=-\left(\frac{1+\sqrt{\frac{\pi}{2}} \times-1}{1-\sqrt{\frac{\pi}{2}} \times-1}\right)\)
\(m_{1} m_{2}=1\)
Note: Award M1AOAO if decimal approximations are used.
(c) equate derivative to - 1
\(y=x, \sin (x y)=0\)
in the first case, attempt to solve \(2 x=\cos \left(x^{2}\right)\) A1
\((0.486,0.486)\)
in the second case, \(\sin (x y)=0 \Rightarrow x y=0\) and \(x+y=1\) A1 (M1)
\[
(0,1),(1,0)
\]

Question 60
(a) \(2 x^{3}-3 x+1=A x\left(x^{2}+1\right)+B x+C\)
\(\begin{array}{ll}A=2, C=1, & \text { A1 } \\ A+B=-3 \Rightarrow B=-5 & \text { A1 }\end{array}\)
[2 marks]
(b) \(\int \frac{2 x^{3}-3 x+1}{x^{2}+1} \mathrm{~d} x=\int\left(2 x-\frac{5 x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) \mathrm{d} x\)

M1M1

Note: Award \(\boldsymbol{M} \mathbf{1}\) for dividing by \(\left(X^{2}+1\right)\) to get \(2 x, \boldsymbol{M} \mathbf{1}\) for separating the \(5 x\) and 1 .
\(=x^{2}-\frac{5}{2} \ln \left(x^{2}+1\right)+\arctan x(+c)\)

\section*{(M1)A1A1}

Note: Award (M1)A1 for integrating \(\frac{5 x}{x^{2}+1}, A 1\) for the other two terms.

\section*{Question 61}
(a) differentiating implicitly:
\(2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}\)
Note: Award A1 for each side.
if \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) then either \(x=0\) or \(y=0\)
\(x=0 \Rightarrow\) two solutions for \(y(y= \pm \sqrt[4]{5})\)
\(R 1\)
\(y=0\) not possible (as \(0 \neq 5\) )
R1
hence exactly two points \(A G\)
Note: For a solution that only refers to the graph giving two solutions at \(x=0\) and no solutions for \(y=0\) award \(\boldsymbol{R 1}\) only.
(b) at \((2,1) 4+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}\)

M1
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}\)
gradient of normal is 2
(A1)
\(1=4+c\)
equation of normal is \(y=2 x-3\)
\(x^{2}(2 x-3)=5-(2 x-3)^{4}\) or \(\left(\frac{y+3}{2}\right)^{2} y=5-y^{4}\)
\(x=0.724\)
(d) recognition of two volumes
volume \(1=\pi \int_{1}^{\sqrt[4]{5}} \frac{5-y^{4}}{y} \mathrm{~d} y(=1.01 \pi=3.178 \ldots)\)
M1A1A1

Note: Award \(\boldsymbol{M} \mathbf{1}\) for attempt to use \(\pi \int \boldsymbol{x}^{2} \mathrm{~d} y, \boldsymbol{A} 1\) for limits, \(\boldsymbol{A} 1\) for \(\frac{5-y^{4}}{y}\). Condone omission of \(\pi\) at this stage.
volume 2

\section*{EITHER}
\(=\frac{1}{3} \pi \times 2^{2} \times 4(=16.75 \ldots)\)
(M1)(A1)

OR
\(=\pi \int_{-3}^{1}\left(\frac{y+3}{2}\right)^{2} d y\left(=\frac{16 \pi}{3}=16.75 \ldots\right)\)
(M1)(A1)

THEN
total volume \(=19.9\)

A1
[7 marks]

Question 62
\(f^{\prime}(x)=\int\left(15 \sqrt{x}+\frac{1}{(x+1)^{2}}\right) \mathrm{d} x=10 x^{\frac{3}{2}}-\frac{1}{x+1}(+c)\)
(M1)A1A1
e: \(\boldsymbol{A 1}\) for first term, \(\boldsymbol{A 1}\) for second term. Withhold one \(\boldsymbol{A 1}\) if extra terms are seen.
\[
\not \supset(x)=\int\left(10 x^{\frac{3}{2}}-\frac{1}{x+1}+c\right) \mathrm{d} x=4 x^{\frac{5}{2}}-\ln (x+1)+c x+d
\]
e: Allow FT from incorrect \(f(x)\) if it is of the form \(f^{\prime}(x)=A x^{\frac{3}{2}}+\frac{B}{x+1}+c\).
Accept \(\ln |x+1|\).
attempt to use at least one boundary condition in their \(\mathcal{\lambda}^{\prime}(x)\)
\(x=0, y=-4\)
\(\Rightarrow c_{d}^{\prime}=-4\)
\(x=1, y=0\)
\(\Rightarrow 0=4-\ln 2+c-4\)
\(\Rightarrow c=\ln 2(=0.693)\)
\(\partial(x)=4 x^{\frac{5}{2}}-\ln (x+1)+x \ln 2-4\)

Question 63
\[
\begin{aligned}
& \frac{f(x+h)-f(x)}{h} \\
& =\frac{\left(3(x+h)^{3}-(x+h)\right)-\left(3 x^{3}-x\right)}{h} \\
& =\frac{3\left((x+h)^{3}-x^{3}\right)+(x-(x+h))}{h} \\
& =\frac{3 h\left((x+h)^{2}+x(x+h)+x^{2}\right)-h}{h}
\end{aligned}
\]
cancelling \(h\)
\(=3\left((x+h)^{2}+x(x+h)+x^{2}\right)-1\)
then \(\lim _{h \rightarrow 0}\left(3\left((x+h)^{2}+x(x+h)+x^{2}\right)-1\right)\)
\(=9 x^{2}-1\)
te: Final \(\boldsymbol{A 1}\) dependent on all previous marks.
\(\frac{f(x+h)-f(x)}{h}\)
\[
=\frac{\left(3(x+h)^{3}-(x+h)\right)-\left(3 x^{3}-x\right)}{h}
\]
M1
\(=\frac{3\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x-h-3 x^{3}+x}{h}\)
\(=\frac{9 x^{2} h+9 x h^{2}+3 h^{3}-h}{h}\)
(A1)
A1
cancelling \(h\)
\(=9 x^{2}+9 x h+3 h^{2}-1\)
then \(\lim _{h \rightarrow 0}\left(9 x^{2}+9 x h+3 h^{2}-1\right)\)
\(=9 x^{2}-1\)

\section*{Question 64}
attempt to integrate \(a\) to find \(v\)
M1
\[
\begin{aligned}
& v=\int a \mathrm{~d} t=\int(2 t-1) \mathrm{d} t \\
& =t^{2}-t+c \\
& s=\int v \mathrm{~d} t=\int\left(t^{2}-t+c\right) \mathrm{d} t \\
& =\frac{t^{3}}{3}-\frac{t^{2}}{2}+c t+d
\end{aligned}
\]
A1
attempt at substitution of given values
at \(\mathrm{t}=6,18.25=72-18+6 c+d\)
at \(t=15,922.75=1125-112.5+15 c+d\)
solve simultaneously:
(M1)
\(c=-6 ; d=0.25\)
A1
\[
\Rightarrow s=\frac{t^{3}}{3}-\frac{t^{2}}{2}-6 t+\frac{1}{4}
\]

Question 65

\section*{METHOD 1}
equation of tangent is \(y=22.167 \ldots x-14.778 \ldots\) OR \(y-7.389 \ldots=22.167 \ldots(x-1)\)
(M1)(A1)
meets the \(x\)-axis when \(y=0\)
\(x=0.667\)
meets \(x\)-axis at \((0.667,0)\left(=\left(\frac{2}{3}, 0\right)\right)\)
A1A1
continue....

\section*{METHOD 2}

Attempt to differentiate
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}\)
when \(x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \mathrm{e}^{2}\)
equation of the tangent is \(y-\mathrm{e}^{2}=3 \mathrm{e}^{2}(x-1)\)
\(y=3 \mathrm{e}^{2} x-2 \mathrm{e}^{2}\)
meets \(x\)-axis at \(x=\frac{2}{3}\)
\(\left(\frac{2}{3}, 0\right)\)
A1A1
te: Award \(\boldsymbol{A 1}\) for \(x=\frac{2}{3}\) or \(x=0.667\) seen and \(\boldsymbol{A 1}\) for coordinates \((x, 0)\) given.

\section*{Total [4 marks]}

Question 66
METHOD 1
write as \(\int 1 \times(\ln x)^{2} \mathrm{~d} x\)
(M1)
\(=x(\ln x)^{2}-\int x x \frac{2(\ln x)}{x} \mathrm{~d} x\left(=x(\ln x)^{2}-\int 2 \ln x\right)\)
M1A1
\(=x(\ln x)^{2}-2 x \ln x+\int 2 \mathrm{~d} x\)
(M1)(A1)
A1
METHOD 2
let \(u=\ln x\)
M1
\(\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}\)
\(\int u^{2} e^{u} d u\)
A1
\(=u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u \quad\) M1
\(=u^{2} \mathbf{e}^{u}-2 u \mathbf{e}^{u}+\int 2 \mathrm{e}^{u} \mathrm{~d} u \quad\) A1
\(=u^{2} \mathbf{e}^{u}-2 u \mathbf{e}^{u}+2 \mathrm{e}^{\omega}+c\)
\(=x(\ln x)^{2}-2 x \ln x+2 x+c\)
METHOD 3
Setting up \(u=\ln x\) and \(\frac{\mathrm{d}_{v}}{\mathrm{~d} x}=\ln x\)
\(\ln x(x \ln x-x)-\int(\ln x-1) \mathrm{d} x \quad\) M1A1
\(=x(\ln x)^{2}-x \ln x-(x \ln x-x)+x+c \quad\) M1A1
\(=x(\ln x)^{2}-2 x \ln x+2 x+c\)

A1
Total [6 marks]

Question 67
volume \(=\pi \int_{0}^{9}\left(y^{\frac{1}{2}}+1\right)^{2} \mathrm{~d} y-\pi \int_{1}^{9}(y-1) \mathrm{d} y\)

\section*{(M1)(M1)(M1)(A1)(A1)}
: Award (M1) for use of formula for rotating about \(y\)-axis, (M1) for finding at least one inverse, (M1) for subtracting volumes, (A1)(A1)for each correct expression, including limits.
\(=268.6 \ldots-100.5 \ldots(85.5 \pi-32 \pi)\)
\(=168(=53.5 \pi)\)

\section*{Question 68}
(a) (i) \(\mathrm{A}(7.47,2.28)\) and \(\mathrm{B}(43.4,-2.45)\)
(ii) maximum speed is \(2.45\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\)

A1A1A1A1

A1
[5 marks]
(b) (i) \(\quad v=0 \Rightarrow t_{1}=25.1(\mathrm{~s})\)
(M1)A1
(ii) \(\int_{0}^{\bar{\tau}_{1}} v \mathrm{~d} t\)
(M1)
\[
=41.0(\mathrm{~m})
\]
(iii) \(a=\frac{\mathrm{d} v}{\mathrm{~d} t}\) at \(\tau=t_{1}=25.1\) (M1)
\[
a=-0.200\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
\]

A1
Note: Accept \(a=-0.2\).
[6 marks]
(c) attempt to integrate between 0 and 30
(M1)
Note: An unsupported answer of 38.6 can imply integrating from 0 to 30 .

\section*{EITHER}
\(\int_{0}^{30}|v| \mathrm{d} t\)
(A1)

OR
\(41.0-\int_{i_{1}}^{30} v \mathrm{~d} t\)
(A1)

\section*{THEN}
\[
=43.3(\mathrm{~m})
\]

\section*{Question 69}
(a) (i) valid attempt to differentiate implicitly
(M1)
\[
\begin{aligned}
& 4 x=3 \sin ^{2} y \cos y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 x}{3 \sin ^{2} y \cos y}
\end{aligned}
\]
(b) \(x=\sqrt{\frac{1}{2} \sin ^{3} y}\)

\section*{(M1)}
(A1)

A1
[3 marks]
(M1)
A1
\(=\int_{0}^{\pi} \frac{1}{2} \pi \sin ^{3} y \mathrm{~d} y\)
\(=\frac{1}{2} \pi \int_{0}^{\pi}\left(\sin y-\sin y \cos ^{2} y\right) \mathrm{d} y\)
Note: Condone absence of limits up to this point.
reasonable attempt to integrate
\(=\frac{1}{2} \pi\left[-\cos y+\left.\frac{1}{3} \cos ^{3} y\right|_{]_{0}} ^{\pi}\right.\)
Note: Award A1 for correct limits (not to be awarded if previous M1 has not been awarded) and \(\boldsymbol{A 1}\) for correct integrand.
\[
\begin{aligned}
& =\frac{1}{2} \pi\left(1-\frac{1}{3}\right)-\frac{1}{2} \pi\left(-1+\frac{1}{3}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
\] \(A G\)```

