Subject – Math (Higher Level) Topic - Functions and Equations Year - Nov 2011 – Nov 2019 Paper -2

Question 1

[Maximum mark: 5]

Consider the graph of $y = x + \sin(x - 3)$, $-\pi \le x \le \pi$.

(a) Sketch the graph, clearly labelling the x and y intercepts with their values.

[3 marks]

Question 2

[Maximum mark: 7]

Given that $f(x) = \frac{1}{1 + e^{-x}}$

(a) find $f^{-1}(x)$, stating its domain;

[6 marks]

(b) find the value of x such that $f(x) = f^{-1}(x)$

[1 mark]

Question 3

[Maximum mark: 5]

Let $f(x) = \ln x$. The graph of f is transformed into the graph of the function g by a translation of $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$, followed by a reflection in the x-axis. Find an expression for g(x), giving your answer as a single logarithm.

Question 4

[Maximum mark: 8]

(a) Sketch the curve $y = \frac{\cos x}{\sqrt{x^2 + 1}}$, $-4 \le x \le 4$ showing clearly the coordinates of the x-intercepts, any maximum points and any minimum points. [4 m]

[4 marks]

Question 5

[Maximum mark: 4]

Show that the quadratic equation $x^2 - (5 - k) x - (k + 2) = 0$ has two distinct real roots for all real values of k.

[Maximum mark: 7]

Consider $f(x) = \ln x - e^{\cos x}$, $0 < x \le 10$.

- (a) Sketch the graph of y = f(x), stating the coordinates of any maximum and minimum points and points of intersection with the x-axis.
- (b) Solve the inequality $\ln x \le e^{\cos x}$, $0 < x \le 10$. [2]

[5]

Question 7

[Maximum mark: 10]

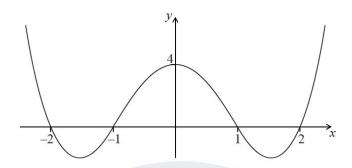
Let $f(x) = x(x+2)^6$.

- (a) Solve the inequality f(x) > x. [5]
- (b) Find $\int f(x) dx$. [5]

[Maximum mark: 18]

Let f(x) = |x| - 1.

(a) The graph of y = g(x) is drawn below.



- (i) Find the value of $(f \circ g)(1)$
- (ii) Find the value of $(f \circ g \circ g)(1)$.
- (iii) Sketch the graph of $y = (f \circ g)(x)$. [5]
- (b) (i) Sketch the graph of y = f(x).
 - (ii) State the zeros of f. [3]
- (c) (i) Sketch the graph of $y = (f \circ f)(x)$.
 - (ii) State the zeros of $f \circ f$. [3]
- (d) Given that we can denote $\underbrace{f \circ f \circ f \circ \dots \circ f}_{n \text{ times}}$ as f^n ,
 - (i) find the zeros of f^3 ;
 - (ii) find the zeros of f^4 ;
 - (iii) deduce the zeros of f^8 . [3]
- (e) The zeros of f^{2n} are $a_1, a_2, a_3, \ldots, a_N$.
 - (i) State the relation between n and N;
 - (ii) Find, and simplify, an expression for $\sum_{r=1}^{N} |a_r|$ in terms of n. [4]

[Maximum mark: 8]

The function f is defined as $f(x) = -3 + \frac{1}{x-2}$, $x \ne 2$.

- (a) (i) Sketch the graph of y = f(x), clearly indicating any asymptotes and axes intercepts.
 - (ii) Write down the equations of any asymptotes and the coordinates of any axes intercepts. [4]
- (b) Find the inverse function f^{-1} , stating its domain. [4]

Question 10

[Maximum mark: 6]

Consider $p(x) = 3x^3 + ax + 5a$, $a \in \mathbb{R}$.

The polynomial p(x) leaves a remainder of -7 when divided by (x-a).

Show that only one value of a satisfies the above condition and state its value.

Question 11

[Maximum mark: 10]

A function f is defined by f(x) = (x+1)(x-1)(x-5), $x \in \mathbb{R}$.

(a) Find the values of x for which f(x) < |f(x)|.

[3]

A function g is defined by $g(x) = x^2 + x - 6$, $x \in \mathbb{R}$.

(b) Find the values of
$$x$$
 for which $g(x) < \frac{1}{g(x)}$. [7]

Question 12

[Maximum mark: 5]

(a) Sketch the graph of
$$y = (x-5)^2 - 2|x-5| - 9$$
, for $0 \le x \le 10$. [3]

(b) Hence, or otherwise, solve the equation
$$(x-5)^2-2|x-5|-9=0$$
. [2]

[Maximum mark: 21]

The following graph represents a function y = f(x), where $-3 \le x \le 5$. The function has a maximum at (3, 1) and a minimum at (-1, -1).



- (a) The functions u and v are defined as u(x) = x 3, v(x) = 2x where $x \in \mathbb{R}$.
 - (i) State the range of the function $u \circ f$.
 - (ii) State the range of the function $u \circ v \circ f$.
 - (iii) Find the largest possible domain of the function $f \circ v \circ u$.

[7]

- (b) (i) Explain why f does not have an inverse.
 - (ii) The domain of f is restricted to define a function g so that it has an inverse g^{-1} . State the largest possible domain of g.
 - (iii) Sketch a graph of $y = g^{-1}(x)$, showing clearly the y-intercept and stating the coordinates of the endpoints. [6]

Consider the function defined by $h(x) = \frac{2x-5}{x+d}$, $x \neq -d$ and $d \in \mathbb{R}$.

- (c) (i) Find an expression for the inverse function $h^{-1}(x)$.
 - (ii) Find the value of d such that h is a self-inverse function.

For this value of d, there is a function k such that $h\circ k(x)=\dfrac{2x}{x+1}$, $x\neq -1$.

(iii) Find k(x). [8]

Question 14

[Maximum mark: 6]

The graph of $y = \ln(5x + 10)$ is obtained from the graph of $y = \ln x$ by a translation of a units in the direction of the x-axis followed by a translation of b units in the direction of the y-axis.

(a) Find the value of a and the value of b.

[Maximum mark: 4]

(a) Express
$$x^2 + 4x - 2$$
 in the form $(x + a)^2 + b$ where $a, b \in \mathbb{Z}$. [2]

(b) If
$$f(x) = x + 2$$
 and $(g \circ f)(x) = x^2 + 4x - 2$ write down $g(x)$. [2]

Question 16

[Maximum mark: 7]

The function f is given by $f(x) = \frac{3x^2 + 10}{x^2 - 4}$, $x \in \mathbb{R}$, $x \neq 2$, $x \neq -2$.

- (a) Prove that f is an even function. [2]
- (b) (i) Sketch the graph y = f(x).
 - (ii) Write down the range of f. [5]

[Maximum mark: 22]

Let $f(x) = x^4 + 0.2x^3 - 5.8x^2 - x + 4$, $x \in \mathbb{R}$.

- (a) Find the solutions of f(x) > 0. [3]
- (b) For the curve y = f(x).
 - (i) Find the coordinates of both local minimum points.
 - (ii) Find the x-coordinates of the points of inflexion. [5]

The domain of f is now restricted to [0, a].

- (c) (i) Write down the largest value of a for which f has an inverse. Give your answer correct to 3 significant figures.
 - (ii) For this value of a sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
 - (iii) Solve $f^{-1}(x) = 1$. [6]

Let $g(x) = 2\sin(x-1) - 3$, $-\frac{\pi}{2} + 1 \le x \le \frac{\pi}{2} + 1$.

- (d) (i) Find an expression for $g^{-1}(x)$, stating the domain.
 - (ii) Solve $(f^{-1} \circ g)(x) < 1$. [8]

Question 18

[Maximum mark: 9]

Consider the function f defined by $f(x) = 3x \arccos(x)$ where $-1 \le x \le 1$.

- (a) Sketch the graph of f indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.
- [3]

(b) State the range of f.

[2]

[4]

(c) Solve the inequality $|3x \arccos(x)| > 1$.

[Maximum mark: 18]

Consider $f(x) = -1 + \ln(\sqrt{x^2 - 1})$.

(a) Find the largest possible domain D for f to be a function.

[2]

The function f is defined by $f(x) = -1 + \ln \left(\sqrt{x^2 - 1} \right), \, x \in D$.

(b) Sketch the graph of y = f(x) showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.

[3]

(c) Explain why f is an even function.

[1]

(d) Explain why the inverse function f^{-1} does not exist.

[1]

The function g is defined by $g(x) = -1 + \ln\Bigl(\sqrt{x^2 - 1}\Bigr), \, x \!\in\!]1, \, \infty\![$.

(e) Find the inverse function g^{-1} and state its domain.

[4]

Question 20

[Maximum mark: 13]

It is given that $f(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$ where a and b are positive integers.

(a) Given that $x^2 - 1$ is a factor of f(x) find the value of a and the value of b.

[4]

(b) Factorize f(x) into a product of linear factors.

[3]

(c) Sketch the graph of y = f(x), labelling the maximum and minimum points and the x and y intercepts.

[3]

(d) Using your graph state the range of values of c for which f(x) = c has exactly two distinct real roots.

[3]

[Maximum mark: 18]

Consider the expression $f(x) = \tan\left(x + \frac{\pi}{4}\right)\cot\left(\frac{\pi}{4} - x\right)$.

- (a) (i) Sketch the graph of y = f(x) for $-\frac{5\pi}{8} \le x \le \frac{\pi}{8}$.
 - (ii) With reference to your graph, explain why f is a function on the given domain.
 - (iii) Explain why f has no inverse on the given domain.

(iv) Explain why
$$f$$
 is not a function for $-\frac{3\pi}{4} \le x \le \frac{\pi}{4}$. [5]

The expression f(x) can be written as g(t) where $t = \tan x$.

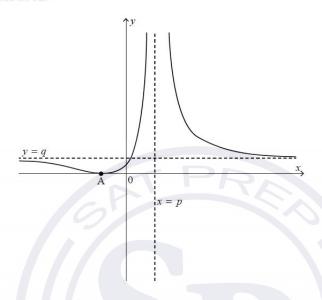
(b) Show that
$$g(t) = \left(\frac{1+t}{1-t}\right)^2$$
. [3]

- (c) Sketch the graph of y = g(t) for $t \le 0$. Give the coordinates of any intercepts and the equations of any asymptotes. [3]
- (d) Let α , β be the roots of g(t) = k, where 0 < k < 1.
 - (i) Find α and β in terms of k.
 - (ii) Show that $\alpha + \beta < -2$. [7]

[Maximum mark: 8]

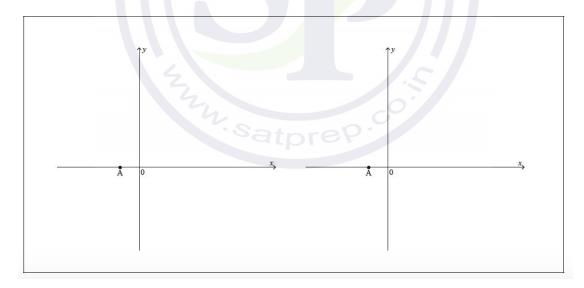
Consider the function $f(x) = \frac{ax+1}{bx+c}$, $x \neq -\frac{c}{b}$, where $a, b, c \in \mathbb{Z}$.

The following graph shows the curve $y = (f(x))^2$. It has asymptotes at x = p and y = q and meets the x-axis at A.



(a) On the following axes, sketch the two possible graphs of y = f(x) giving the equations of any asymptotes in terms of p and q.

[4]



(b) Given that $p=\frac{4}{3}$, $q=\frac{4}{9}$ and A has coordinates $\left(-\frac{1}{2},0\right)$, determine the possible sets of values for a, b and c.

[Maximum mark: 19]

The function f is defined by $f(x) = \frac{2 \ln x + 1}{x - 3}$, 0 < x < 3.

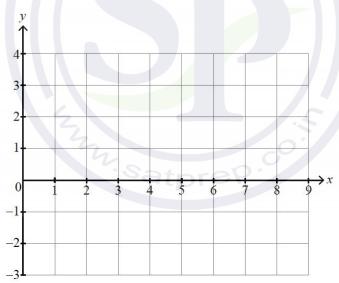
(a) Find
$$f'(x)$$
. [4]

- (b) Hence, or otherwise, find the coordinates of the point of inflexion on the graph of y = f(x). [4]
- (c) Draw a set of axes showing x and y values between -3 and 3. On these axes
 - (i) sketch the graph of y = f(x), showing clearly any axis intercepts and giving the equations of any asymptotes.
 - (ii) sketch the graph of $y = f^{-1}(x)$, showing clearly any axis intercepts and giving the equations of any asymptotes. [8]
- (d) Hence, or otherwise, solve the inequality $f(x) > f^{-1}(x)$. [3]

Question 24

[Maximum mark: 6]

(a) Sketch the graphs of $y = \sin^3 x + \ln x$ and $y = 1 + \cos x$ on the following axes for $0 < x \le 9$.



(b) Hence solve $\sin^3 x + \ln x - \cos x - 1 < 0$ in the range $0 < x \le 9$.

[4]

[2]

Question 25

[Maximum mark: 5]

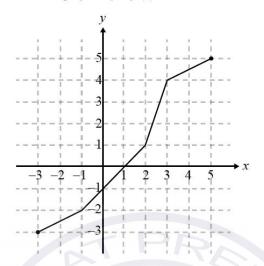
The function f is defined by $f(x) = \sec x + 2$, $0 \le x < \frac{\pi}{2}$.

(a) Write down the range of f. [1]

(b) Find $f^{-1}(x)$, stating its domain. [4]

[Maximum mark: 6]

The following diagram shows the graph of y = f(x), $-3 \le x \le 5$.



[2]

[2]

[2]

- (a) Find the value of $(f \circ f)(1)$.
- (b) Given that $f^{-1}(a) = 3$, determine the value of a.
- (c) Given that g(x) = 2f(x-1), find the domain and range of g.