Subject - Math(Higher Level)
 Topic - Calculus
 Year - Nov 2011 - Nov 2019
 Paper-2

Question 1

[Maximum mark: 6]
A stalactite has the shape of a circular cone. Its height is 200 mm and is increasing at a rate of 3 mm per century. Its base radius is 40 mm and is decreasing at a rate of 0.5 mm per century. Determine if its volume is increasing or decreasing, and the rate at which the volume is changing.

Question 2
[Maximum mark: 5]
Consider the graph of $y=x+\sin (x-3),-\pi \leq x \leq \pi$.
(a) Sketch the graph, clearly labelling the x and y intercepts with their values.
(b) Find the area of the region bounded by the graph and the x and y axes.

Question 3

[Maximum mark: 22]

A particle moves in a straight line with velocity v metres per second. At any time t seconds, $0 \leq t<\frac{3 \pi}{4}$, the velocity is given by the differential equation $\frac{\mathrm{d} v}{\mathrm{~d} t}+v^{2}+1=0$. It is also given that $v=1$ when $t=0$.
(a) Find an expression for v in terms of t.
[7 marks]
(b) Sketch the graph of v against t, clearly showing the coordinates of any intercepts, and the equations of any asymptotes.
[3 marks]
(c) (i) Write down the time T at which the velocity is zero.
(ii) Find the distance travelled in the interval $[0, T]$.
[3 marks]
(d) Find an expression for s, the displacement, in terms of t, given that $s=0$ when $t=0$.
(e) Hence, or otherwise, show that $s=\frac{1}{2} \ln \frac{2}{1+v^{2}}$.

Question 4

[Maximum mark: 9]
A cone has height h and base radius r. Deduce the formula for the volume of this cone by rotating the triangular region, enclosed by the line $y=h-\frac{h}{r} x$ and the coordinate axes, through 2π about the y-axis.

Question 5

[Maximum mark: 14]
The function $f(x)=3 \sin x+4 \cos x$ is defined for $0<x<2 \pi$.
(a) Write down the coordinates of the minimum point on the graph of f.
(b) The points $\mathrm{P}(p, 3)$ and $\mathrm{Q}(q, 3), q>p$, lie on the graph of $y=f(x)$. Find p and q.
(c) Find the coordinates of the point, on $y=f(x)$, where the gradient of the graph is 3 .
(d) Find the coordinates of the point of intersection of the normals to the graph at the points P and Q .

Question 6

[Maximum mark: 5]
Given that the graph of $y=x^{3}-6 x^{2}+k x-4$ has exactly one point at which the gradient is zero, find the value of k.

Question 7

[Maximum mark: 8]
(a) Sketch the curve $y=\frac{\cos x}{\sqrt{x^{2}+1}},-4 \leq x \leq 4$ showing clearly the coordinates of the x-intercepts, any maximum points and any minimum points.
(b) Write down the gradient of the curve at $x=1$.
(c) Find the equation of the normal to the curve at $x=1$.

Question 8

[Maximum mark: 6]
A particle moves along a straight line so that after t seconds its displacement s, in metres, satisfies the equation $s^{2}+s-2 t=0$. Find, in terms of s, expressions for its velocity and its acceleration.

Question 9
[Maximum mark: 7]
By using the substitution $x=\sin t$, find $\int \frac{x^{3}}{\sqrt{1-x^{2}}} \mathrm{~d} x$.
Question 10
[Maximum mark: 7]
Find the area of the region enclosed by the curves $y=x^{3}$ and $x=y^{2}-3$.

Question 11

[Maximum mark: 18]
The diagram shows the plan of an art gallery a metres wide. [AB] represents a doorway, leading to an exit corridor b metres wide. In order to remove a painting from the art gallery, $\mathrm{CD}($ denoted by L) is measured for various values of α, as represented in the diagram.

(a) If α is the angle between [CD] and the wall, show that $L=\frac{a}{\sin \alpha}+\frac{b}{\cos \alpha}$, $0<\alpha<\frac{\pi}{2}$.
(b) If $a=5$ and $b=1$, find the maximum length of a painting that can be removed through this doorway.

Let $a=3 k$ and $b=k$.
(c) Find $\frac{\mathrm{d} L}{\mathrm{~d} \alpha}$.
(d) Find, in terms of k, the maximum length of a painting that can be removed from the gallery through this doorway.
(e) Find the minimum value of k if a painting 8 metres long is to be removed through this doorway.

Question 12
[Maximum mark: 6]

Let $f(x)=\sin (x-1), 0 \leq x \leq \frac{\pi}{2}+1$
Find the volume of the solid formed when the region bounded by $y=f(x)$, and the lines $x=0, y=0$ and $y=1$ is rotated by 2π about the y-axis.

Question 13

[Maximum mark: 21]
A particle, A, is moving along a straight line. The velocity, $v_{A} \mathrm{~ms}^{-1}$, of A t seconds after its motion begins is given by

$$
v_{A}=t^{3}-5 t^{2}+6 t
$$

(a) Sketch the graph of $v_{A}=t^{3}-5 t^{2}+6 t$ for $t \geq 0$, with v_{A} on the vertical axis and t on the horizontal. Show on your sketch the local maximum and minimum points, and the intercepts with the t-axis.
[3 marks]
(b) Write down the times for which the velocity of the particle is increasing.
(c) Write down the times for which the magnitude of the velocity of the particle is increasing.

At $t=0$ the particle is at point O on the line.
(d) Find an expression for the particle's displacement, $x_{A} \mathrm{~m}$, from O at time t.
[3 marks]
A second particle, B , moving along the same line, has position $x_{B} \mathrm{~m}$, velocity $v_{B} \mathrm{~ms}^{-1}$ and acceleration, $a_{B} \mathrm{~ms}^{-2}$, where $a_{B}=-2 v_{B}$ for $t \geq 0$. At $t=0, x_{B}=20$ and $v_{B}=-20$.
(e) Find an expression for v_{B} in terms of t.
[4 marks]
(f) Find the value of t when the two particles meet.
[6 marks]
Question 14
[Maximum mark: 6]
(a) Find $\int x \sec ^{2} x \mathrm{~d} x$.
[4 marks]
(b) Determine the value of m if $\int_{0}^{m} x \sec ^{2} x \mathrm{~d} x=0.5$, where $m>0$.

Question 15

[Maximum mark: 6]
The acceleration of a car is $\frac{1}{40}(60-v) \mathrm{ms}^{-2}$, when its velocity is $v \mathrm{~ms}^{-1}$. Given the car starts from rest, find the velocity of the car after 30 seconds.

Question 16

[Maximum mark: 19]
A straight street of width 20 metres is bounded on its parallel sides by two vertical walls, one of height 13 metres, the other of height 8 metres. The intensity of light at point P at ground level on the street is proportional to the angle θ where $\theta=\mathrm{A} \hat{\mathrm{PB}}$, as shown in the diagram.

(a) Find an expression for θ in terms of x, where x is the distance of P from the base of the wall of height 8 m .
[2 marks]
(b) (i) Calculate the value of θ when $x=0$.
(ii) Calculate the value of θ when $x=20$.
[2 marks]
(c) Sketch the graph of θ, for $0 \leq x \leq 20$.
(d) Show that $\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{5\left(744-64 x-x^{2}\right)}{\left(x^{2}+64\right)\left(x^{2}-40 x+569\right)}$.
(e) Using the result in part (d), or otherwise, determine the value of x corresponding to the maximum light intensity at P . Give your answer to four significant figures.
(f) The point P moves across the street with speed $0.5 \mathrm{~ms}^{-1}$. Determine the rate of change of θ with respect to time when P is at the midpoint of the street.

Question 17

[Maximum mark: 7]
Consider $f(x)=\ln x-\mathrm{e}^{\cos x}, 0<x \leq 10$.
(a) Sketch the graph of $y=f(x)$, stating the coordinates of any maximum and minimum points and points of intersection with the x-axis.
(b) Solve the inequality $\ln x \leq \mathrm{e}^{\cos x}, 0<x \leq 10$.

Question 18

[Maximum mark: 7]
By using the substitution $x=2 \tan u$, show that $\int \frac{\mathrm{d} x}{x^{2} \sqrt{x^{2}+4}}=\frac{-\sqrt{x^{2}+4}}{4 x}+C$.

Question 19

[Maximum mark: 20]
(a) A particle P moves in a straight line with velocity $v \mathrm{~ms}^{-1}$. At time $t=0, P$ is at the point O and has velocity $12 \mathrm{~ms}^{-1}$. Its acceleration at time t seconds is given by $\frac{\mathrm{d} v}{\mathrm{~d} t}=3 \cos \frac{t}{4} \mathrm{~ms}^{-2},(t \geq 0)$.
(i) Find an expression for the particle's velocity v, in terms of t.
(ii) Sketch a velocity/time graph for the particle for $0 \leq t \leq 8 \pi$, showing clearly where the curve meets the axes and any maximum or minimum points.
(iii) Find the distance travelled by the particle before first coming to rest.
(b) Another particle Q moves in a straight line with displacement s metres and velocity $v \mathrm{~ms}^{-1}$. Its acceleration is given by $a=-\left(v^{2}+4\right) \mathrm{ms}^{-2},(0 \leq t \leq 1)$. At time $t=0, Q$ is at the point O and has velocity $2 \mathrm{~ms}^{-1}$.
(i) Show that the velocity v at time t is given by $v=2 \tan \left(\frac{\pi-8 t}{4}\right)$.
(ii) Show that $\frac{\mathrm{d} v}{\mathrm{~d} s}=-\frac{\left(v^{2}+4\right)}{v}$.
(iii) Find the distance travelled by the particle before coming to rest.

Question 20

[Maximum mark: 22]
A function f is defined by $f(x)=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right), x \in \mathbb{R}$.
(a) (i) Explain why the inverse function f^{-1} does not exist.
(ii) Show that the equation of the normal to the curve at the point P where $x=\ln 3$ is given by $9 x+12 y-9 \ln 3-20=0$.
(iii) Find the x-coordinates of the points Q and R on the curve such that the tangents at Q and R pass through $(0,0)$.
(b) The domain of f is now restricted to $x \geq 0$.
(i) Find an expression for $f^{-1}(x)$.
(ii) Find the volume generated when the region bounded by the curve $y=f(x)$ and the lines $x=0$ and $y=5$ is rotated through an angle of 2π radians about the y-axis.

Question 21

[Maximum mark: 8]
The shaded region S is enclosed between the curve $y=x+2 \cos x$, for $0 \leq x \leq 2 \pi$, and the line $y=x$, as shown in the diagram below.

(a) Find the coordinates of the points where the line meets the curve.

The region S is rotated by 2π about the x-axis to generate a solid.
(b) (i) Write down an integral that represents the volume V of the solid.
(ii) Find the volume V.

Question 22
[Maximum mark: 5]
Sand is being poured to form a cone of height $h \mathrm{~cm}$ and base radius $r \mathrm{~cm}$. The height remains equal to the base radius at all times. The height of the cone is increasing at a rate of $0.5 \mathrm{~cm} \mathrm{~min}^{-1}$.

Find the rate at which sand is being poured, in $\mathrm{cm}^{3} \mathrm{~min}^{-1}$, when the height is 4 cm .

Question 23
[Maximum mark: 8]

Consider the curve with equation $\left(x^{2}+y^{2}\right)^{2}=4 x y^{2}$.
(a) Use implicit differentiation to find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Find the equation of the normal to the curve at the point $(1,1)$.

Question 24
[Maximum mark: 12]
Particle A moves such that its velocity $v \mathrm{~ms}^{-1}$, at time t seconds, is given by $v(t)=\frac{t}{12+t^{4}}, t \geq 0$.
(a) Sketch the graph of $y=v(t)$. Indicate clearly the local maximum and write down its coordinates.
(b) Use the substitution $u=t^{2}$ to find $\int \frac{t}{12+t^{4}} \mathrm{~d} t$.
(c) Find the exact distance travelled by particle A between $t=0$ and $t=6$ seconds. Give your answer in the form $k \arctan (b), k, b \in \mathbb{R}$.

Particle B moves such that its velocity $v \mathrm{~ms}^{-1}$ is related to its displacement $s \mathrm{~m}$, by the equation $v(s)=\arcsin (\sqrt{s})$.
(d) Find the acceleration of particle B when $s=0.1 \mathrm{~m}$.

Question 25
[Maximum mark: 5]
Two cyclists are at the same road intersection. One cyclist travels north at $20 \mathrm{kmh}^{-1}$. The other cyclist travels west at $15 \mathrm{~km} \mathrm{~h}^{-1}$.

Use calculus to show that the rate at which the distance between the two cyclists changes is independent of time.

Question 26

[Maximum mark: 7]
A particle moves in a straight line such that its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, at time t seconds, is given by

$$
v(t)=\left\{\begin{array}{rr}
5-(t-2)^{2}, & 0 \leq t \leq 4 \\
3-\frac{t}{2}, & t>4
\end{array} .\right.
$$

(a) Find the value of t when the particle is instantaneously at rest.

The particle returns to its initial position at $t=T$.
(b) Find the value of T.

Question 27
[Maximum mark: 12]
Consider the triangle PQR where $\mathrm{Q} \hat{\mathrm{PR}}=30^{\circ}, \mathrm{PQ}=(x+2) \mathrm{cm}$ and $\mathrm{PR}=(5-x)^{2} \mathrm{~cm}$, where $-2<x<5$.
(a) Show that the area, $A \mathrm{~cm}^{2}$, of the triangle is given by $A=\frac{1}{4}\left(x^{3}-8 x^{2}+5 x+50\right)$.
(b) (i) State $\frac{\mathrm{d} A}{\mathrm{~d} x}$.
(ii) Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$.
(c) (i) Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$ and hence justify that $x=\frac{1}{3}$ gives the maximum area of triangle PQR .
(ii) State the maximum area of triangle $P Q R$.
(iii) Find $Q R$ when the area of triangle $P Q R$ is a maximum.

Question 28

[Maximum mark: 16]
The vertical cross-section of a container is shown in the following diagram.

The curved sides of the cross-section are given by the equation $y=0.25 x^{2}-16$. The horizontal cross-sections are circular. The depth of the container is 48 cm .
(a) If the container is filled with water to a depth of $h \mathrm{~cm}$, show that the volume, $V \mathrm{~cm}^{3}$, of the water is given by $V=4 \pi\left(\frac{h^{2}}{2}+16 h\right)$.

The container, initially full of water, begins leaking from a small hole at a rate given by $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{\pi(h+16)}$ where t is measured in seconds.
(b) (i) Show that $\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}$.
(ii) State $\frac{\mathrm{d} t}{\mathrm{~d} h}$ and hence show that $t=\frac{-4 \pi^{2}}{250} \int\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h$.
(iii) Find, correct to the nearest minute, the time taken for the container to become empty. (60 seconds $=1$ minute)

Once empty, water is pumped back into the container at a rate of $8.5 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. At the same time, water continues leaking from the container at a rate of $\frac{250 \sqrt{h}}{\pi(h+16)} \mathrm{cm}^{3} \mathrm{~s}^{-1}$.
(c) Using an appropriate sketch graph, determine the depth at which the water ultimately stabilizes in the container.

Question 29

[Maximum mark: 4]

The region R is enclosed by the graph of $y=\mathrm{e}^{-x^{2}}$, the x-axis and the lines $x=-1$ and $x=1$. Find the volume of the solid of revolution that is formed when R is rotated through 2π about the x-axis.

Question 30
[Maximum mark: 5]
A bicycle inner tube can be considered as a joined up cylinder of fixed length 200 cm and radius $r \mathrm{~cm}$. The radius r increases as the inner tube is pumped up. Air is being pumped into the inner tube so that the volume of air in the tube increases at a constant rate of $30 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate at which the radius of the inner tube is increasing when $r=2 \mathrm{~cm}$.

Question 31

[Maximum mark: 4]
A function f is defined by $f(x)=x^{3}+\mathrm{e}^{x}+1, x \in \mathbb{R}$. By considering $f^{\prime}(x)$ determine whether f is a one-to-one or a many-to-one function.

Question 32

[Maximum mark: 7]
Find the equation of the normal to the curve $y=\frac{\mathrm{e}^{x} \cos x \ln (x+\mathrm{e})}{\left(x^{17}+1\right)^{5}}$ at the point where $x=0$.
In your answer give the value of the gradient, of the normal, to three decimal places.

Question 33

[Maximum mark: 21]
Let $f(x)=\frac{\mathrm{e}^{2 x}+1}{\mathrm{e}^{x}-2}$.
(a) Find the equations of the horizontal and vertical asymptotes of the curve $y=f(x)$.
(b) (i) Find $f^{\prime}(x)$.
(ii) Show that the curve has exactly one point where its tangent is horizontal.
(iii) Find the coordinates of this point.
(c) Find the equation of L_{1}, the normal to the curve at the point where it crosses the y-axis.

The line L_{2} is parallel to L_{1} and tangent to the curve $y=f(x)$.
(d) Find the equation of the line L_{2}.

Question 34
[Maximum mark: 10]
Farmer Bill owns a rectangular field, 10 m by 4 m . Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.
(a) Given that the rope is 5 m long, calculate the percentage of Bill's field that Gruff is able to graze. Give your answer correct to the nearest integer.
(b) Bill replaces Gruff's rope with another, this time of length $a, 4<a<10$, so that Gruff can now graze exactly one half of Bill's field.

Show that a satisfies the equation

$$
\begin{equation*}
a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40 \tag{4}
\end{equation*}
$$

(c) Find the value of a.

Question 35
[Maximum mark: 15]
A curve is defined by $x^{2}-5 x y+y^{2}=7$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 y-2 x}{2 y-5 x}$.
(b) Find the equation of the normal to the curve at the point $(6,1)$.
(c) Find the distance between the two points on the curve where each tangent is parallel to the line $y=x$.

Question 36
[Maximum mark: 15]
A particle moves in a straight line, its velocity $v \mathrm{~ms}^{-1}$ at time t seconds is given by $v=9 t-3 t^{2}, 0 \leq t \leq 5$.

At time $t=0$, the displacement s of the particle from an origin O is 3 m .
(a) Find the displacement of the particle when $t=4$.
(b) Sketch a displacement/time graph for the particle, $0 \leq t \leq 5$, showing clearly where the curve meets the axes and the coordinates of the points where the displacement takes greatest and least values.

For $t>5$, the displacement of the particle is given by $s=a+b \cos \frac{2 \pi t}{5}$ such that s is continuous for all $t \geq 0$.
(c) Given further that $s=16.5$ when $t=7.5$, find the values of a and b.
(d) Find the times t_{1} and $t_{2}\left(0<t_{1}<t_{2}<8\right)$ when the particle returns to its starting point.

Question 37

[Maximum mark: 21]
Richard, a marine soldier, steps out of a stationary helicopter, 1000 m above the ground, at time $t=0$. Let his height, in metres, above the ground be given by $s(t)$. For the first 10 seconds his velocity, $v(t) \mathrm{ms}^{-1}$, is given by $v(t)=-10 t$.
(a) (i) Find his acceleration $a(t)$ for $t<10$.
(ii) Calculate $v(10)$.
(iii) Show that $s(10)=500$.

At $t=10$ his parachute opens and his acceleration $a(t)$ is subsequently given by $a(t)=-10-5 v, t \geq 10$.
(b) Given that $\frac{\mathrm{d} t}{\mathrm{~d} v}=\frac{1}{\frac{\mathrm{~d} v}{\mathrm{~d} t}}$, write down $\frac{\mathrm{d} t}{\mathrm{~d} v}$ in terms of v.

You are told that Richard's acceleration, $a(t)=-10-5 v$, is always positive, for $t \geq 10$.
(c) Hence show that $t=10+\frac{1}{5} \ln \left(\frac{98}{-2-v}\right)$.
(d) Hence find an expression for the velocity, v, for $t \geq 10$.
(e) Find an expression for his height, s, above the ground for $t \geq 10$.
(f) Find the value of t when Richard lands on the ground.

Question 38

[Maximum mark: 6]
A function is defined by $f(x)=x^{2}+2, x \geq 0$. A region R is enclosed by $y=f(x)$, the y-axis and the line $y=4$.
(a) (i) Express the area of the region R as an integral with respect to y.
(ii) Determine the area of R, giving your answer correct to four significant figures.
(b) Find the exact volume generated when the region R is rotated through 2π radians about the y-axis.

Question 39

[Maximum mark: 8]
A particle can move along a straight line from a point O . The velocity v, in $\mathrm{m} \mathrm{s}^{-1}$, is given by the function $v(t)=1-\mathrm{e}^{-\sin t^{2}}$ where time $t \geq 0$ is measured in seconds.
(a) Write down the first two times $t_{1}, t_{2}>0$, when the particle changes direction.
(b) (i) Find the time $t<t_{2}$ when the particle has a maximum velocity.
(ii) Find the time $t<t_{2}$ when the particle has a minimum velocity.
(c) Find the distance travelled by the particle between times $t=t_{1}$ and $t=t_{2}$.

Question 40

[Maximum mark: 21]
The following diagram shows a vertical cross section of a building. The cross section of the roof of the building can be modelled by the curve $f(x)=30 \mathrm{e}^{-\frac{x^{2}}{400}}$, where $-20 \leq x \leq 20$.

Ground level is represented by the x-axis.

(a) Find $f^{\prime \prime}(x)$.
(b) Show that the gradient of the roof function is greatest when $x=-\sqrt{200}$.

The cross section of the living space under the roof can be modelled by a rectangle CDEF with points $\mathrm{C}(-a, 0)$ and $\mathrm{D}(a, 0)$, where $0<a \leq 20$.
(c) Show that the maximum area A of the rectangle CDEF is $600 \sqrt{2} \mathrm{e}^{-\frac{1}{2}}$.
(d) A function I is known as the Insulation Factor of CDEF. The function is defined as $I(a)=\frac{P(a)}{A(a)}$ where $P=$ Perimeter and $A=$ Area of the rectangle.
(i) Find an expression for P in terms of a.
(ii) Find the value of a which minimizes I.
(iii) Using the value of a found in part (ii) calculate the percentage of the cross sectional area under the whole roof that is not included in the cross section of the living space.

Question 41

[Maximum mark: 5]
The displacement, s, in metres, of a particle t seconds after it passes through the origin is given by the expression $s=\ln \left(2-\mathrm{e}^{-t}\right), t \geq 0$.
(a) Find an expression for the velocity, v, of the particle at time t.
(b) Find an expression for the acceleration, a, of the particle at time t.
(c) Find the acceleration of the particle at time $t=0$.

Question 42

[Maximum mark: 22]
Let $f(x)=x^{4}+0.2 x^{3}-5.8 x^{2}-x+4, x \in \mathbb{R}$.
(a) Find the solutions of $f(x)>0$.
(b) For the curve $y=f(x)$.
(i) Find the coordinates of both local minimum points.
(ii) Find the x-coordinates of the points of inflexion.

The domain of f is now restricted to $[0, a]$.
(c) (i) Write down the largest value of a for which f has an inverse. Give your answer correct to 3 significant figures.
(ii) For this value of a sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
(iii) Solve $f^{-1}(x)=1$.

Let $g(x)=2 \sin (x-1)-3,-\frac{\pi}{2}+1 \leq x \leq \frac{\pi}{2}+1$.
(d) (i) Find an expression for $g^{-1}(x)$, stating the domain.
(ii) Solve $\left(f^{-1} \circ g\right)(x)<1$.

Question 43

[Maximum mark: 16]
Consider the curve, C defined by the equation $y^{2}-2 x y=5-\mathrm{e}^{x}$. The point A lies on C and has coordinates $(0, a), a>0$.
(a) Find the value of a.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-\mathrm{e}^{x}}{2(y-x)}$.
(c) Find the equation of the normal to C at the point A .
(d) Find the coordinates of the second point at which the normal found in part (c) intersects C.
(e) Given that $v=y^{3}, y>0$, find $\frac{\mathrm{d} v}{\mathrm{~d} x}$ at $x=0$.

Question 44
[Maximum mark: 8]
Consider the curve with equation $x^{3}+y^{3}=4 x y$.
(a) Use implicit differentiation to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 y-3 x^{2}}{3 y^{2}-4 x}$.
[3]

The tangent to this curve is parallel to the x-axis at the point where $x=k, k>0$.
(b) Find the value of k.

Question 45
[Maximum mark: 6]
A particle moves such that its velocity $v \mathrm{~ms}^{-1}$ is related to its displacement $s \mathrm{~m}$, by the equation $v(s)=\arctan (\sin s), 0 \leq s \leq 1$. The particle's acceleration is $a \mathrm{~ms}^{-2}$.
(a) Find the particle's acceleration in terms of s.
(b) Using an appropriate sketch graph, find the particle's displacement when its acceleration is $0.25 \mathrm{~ms}^{-2}$.

Question 46

[Maximum mark: 22]
Points A, B and T lie on a line on an indoor soccer field. The goal, $[\mathrm{AB}]$, is 2 metres wide. A player situated at point P kicks a ball at the goal. [PT] is perpendicular to (AB) and is 6 metres from a parallel line through the centre of [AB]. Let PT be x metres and let $\alpha=\mathrm{A} \hat{\mathrm{P}} \mathrm{B}$ measured in degrees. Assume that the ball travels along the floor.

The maximum for $\tan \alpha$ gives the maximum for α.
(c) (i) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)$.
(ii) Hence or otherwise find the value of α such that $\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)=0$.
(iii) Find $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\tan \alpha)$ and hence show that the value of α never exceeds 10°.
(d) Find the set of values of x for which $\alpha \geq 7^{\circ}$.

Question 47

[Maximum mark: 23]
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, x \in \mathbb{R} \\
& g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, x \in \mathbb{R}
\end{aligned}
$$

(a) (i) Show that $\frac{1}{4 f(x)-2 g(x)}=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3}$.
(ii) Use the substitution $u=\mathrm{e}^{x}$ to find $\int_{0}^{\ln 3} \frac{1}{4 f(x)-2 g(x)} \mathrm{d} x$. Give your answer in the form $\frac{\pi \sqrt{a}}{b}$ where $a, b \in \mathbb{Z}^{+}$.
[9]

Let $h(x)=n f(x)+g(x)$ where $n \in \mathbb{R}, n>1$.
(b) (i) By forming a quadratic equation in e^{x}, solve the equation $h(x)=k$, where $k \in \mathbb{R}^{+}$.
(ii) Hence or otherwise show that the equation $h(x)=k$ has two real solutions provided that $k>\sqrt{n^{2}-1}$ and $k \in \mathbb{R}^{+}$.

Let $t(x)=\frac{g(x)}{f(x)}$.
(c) (i) Show that $t^{\prime}(x)=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}$ for $x \in \mathbb{R}$.
(ii) Hence show that $t^{\prime}(x)>0$ for $x \in \mathbb{R}$.

Question 48
[Maximum mark: 6]
An earth satellite moves in a path that can be described by the curve $72.5 x^{2}+71.5 y^{2}=1$ where $x=x(t)$ and $y=y(t)$ are in thousands of kilometres and t is time in seconds.
Given that $\frac{\mathrm{d} x}{\mathrm{~d} t}=7.75 \times 10^{-5}$ when $x=3.2 \times 10^{-3}$, find the possible values of $\frac{\mathrm{d} y}{\mathrm{~d} t}$.
Give your answers in standard form.
Question 49
[Maximum mark: 22]

Let the function f be defined by $f(x)=\frac{2-\mathrm{e}^{x}}{2 \mathrm{e}^{x}-1}, x \in D$.
(a) Determine D, the largest possible domain of f.
(b) Show that the graph of f has three asymptotes and state their equations.
[5]
(c) Show that $f^{\prime}(x)=-\frac{3 \mathrm{e}^{x}}{\left(2 \mathrm{e}^{x}-1\right)^{2}}$.
[3]
(d) Use your answers from parts (b) and (c) to justify that f has an inverse and state its domain.
(e) Find an expression for $f^{-1}(x)$.
(f) Consider the region R enclosed by the graph of $y=f(x)$ and the axes.

Find the volume of the solid obtained when R is rotated through 2π about the y-axis.

Question 50
[Maximum mark: 7]
The curve C is defined by equation $x y-\ln y=1, y>0$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Determine the equation of the tangent to C at the point $\left(\frac{2}{\mathrm{e}}, \mathrm{e}\right)$.

Question 51
[Maximum mark: 6]
The region A is enclosed by the graph of $y=2 \arcsin (x-1)-\frac{\pi}{4}$, the y-axis and the line $y=\frac{\pi}{4}$.
(a) Write down a definite integral to represent the area of A.
(b) Calculate the area of A.

Question 52
[Maximum mark: 7]
A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is θ radians.

diagram not to scale
(a) Find an expression for the volume of water $V\left(m^{3}\right)$ in the trough in terms of θ.

The volume of water is increasing at a constant rate of $0.0008 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(b) Calculate $\frac{\mathrm{d} \theta}{\mathrm{d} t}$ when $\theta=\frac{\pi}{3}$.

Question 53

[Maximum mark: 18]
Consider $f(x)=-1+\ln \left(\sqrt{x^{2}-1}\right)$.
(a) Find the largest possible domain D for f to be a function.

The function f is defined by $f(x)=-1+\ln \left(\sqrt{x^{2}-1}\right), x \in D$.
(b) Sketch the graph of $y=f(x)$ showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.
(c) Explain why f is an even function.
(d) Explain why the inverse function f^{-1} does not exist.

The function g is defined by $\left.g(x)=-1+\ln \left(\sqrt{x^{2}-1}\right), x \in\right] 1, \infty[$.
(e) Find the inverse function g^{-1} and state its domain.
(f) Find $g^{\prime}(x)$.
(g) Hence, show that there are no solutions to
(i) $g^{\prime}(x)=0$;
(ii) $\quad\left(g^{-1}\right)^{\prime}(x)=0$.
[4]
Question 54
[Maximum mark: 9]
Consider the curve defined by the equation $4 x^{2}+y^{2}=7$.
(a) Find the equation of the normal to the curve at the point $(1, \sqrt{3})$.
(b) Find the volume of the solid formed when the region bounded by the curve, the x-axis for $x \geq 0$ and the y-axis for $y \geq 0$ is rotated through 2π about the x-axis.

Question 55

[Maximum mark: 7]
By using the substitution $x^{2}=2 \sec \theta$, show that $\int \frac{\mathrm{d} x}{x \sqrt{x^{4}-4}}=\frac{1}{4} \arccos \left(\frac{2}{x^{2}}\right)+c$.
Question 56
[Maximum mark: 17]
Consider the function $f(x)=\frac{\sqrt{x}}{\sin x}, 0<x<\pi$.
(a) (i) Show that the x-coordinate of the minimum point on the curve $y=f(x)$ satisfies the equation $\tan x=2 x$.
(ii) Determine the values of x for which $f(x)$ is a decreasing function.
(b) Sketch the graph of $y=f(x)$ showing clearly the minimum point and any asymptotic behaviour.
(c) Find the coordinates of the point on the graph of f where the normal to the graph is parallel to the line $y=-x$.

Consider the region bounded by the curve $y=f(x)$, the x-axis and the lines $x=\frac{\pi}{6}, x=\frac{\pi}{3}$.
(d) This region is now rotated through 2π radians about the x-axis. Find the volume of revolution.

Question 57

[Maximum mark: 18]

Consider the function $f(x)=2 \sin ^{2} x+7 \sin 2 x+\tan x-9,0 \leq x<\frac{\pi}{2}$.
(a) (i) Determine an expression for $f^{\prime}(x)$ in terms of x.
(ii) Sketch a graph of $y=f^{\prime}(x)$ for $0 \leq x<\frac{\pi}{2}$.
(iii) Find the x-coordinate(s) of the point(s) of inflexion of the graph of $y=f(x)$, labelling these clearly on the graph of $y=f^{\prime}(x)$.
[8]
(b) Let $u=\tan x$.
(i) Express $\sin x$ in terms of u.
(ii) Express $\sin 2 x$ in terms of u.
(iii) Hence show that $f(x)=0$ can be expressed as $u^{3}-7 u^{2}+15 u-9=0$.
(c) Solve the equation $f(x)=0$, giving your answers in the form arctan k where $k \in \mathbb{Z}$.

Question 58
[Maximum mark: 5]
A point P moves in a straight line with velocity $v \mathrm{~ms}^{-1}$ given by $v(t)=\mathrm{e}^{-t}-8 t^{2} \mathrm{e}^{-2 t}$ at time t seconds, where $t \geq 0$.
(a) Determine the first time t_{1} at which P has zero velocity.
(b) (i) Find an expression for the acceleration of P at time t.
(ii) Find the value of the acceleration of P at time t_{1}.

Question 59
[Maximum mark: 19]
A curve C is given by the implicit equation $x+y-\cos (x y)=0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(\frac{1+y \sin (x y)}{1+x \sin (x y)}\right)$.
[5]
(b) The curve $x y=-\frac{\pi}{2}$ intersects C at P and Q .
(i) Find the coordinates of P and Q .
(ii) Given that the gradients of the tangents to C at P and Q are m_{1} and m_{2} respectively, show that $m_{1} \times m_{2}=1$.
(c) Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line $y=-x$.

Question 60
[Maximum mark: 7]
(a) Given that $2 x^{3}-3 x+1$ can be expressed in the form $A x\left(x^{2}+1\right)+B x+C$, find the values of the constants A, B and C.
[2]
(b) Hence find $\int \frac{2 x^{3}-3 x+1}{x^{2}+1} \mathrm{~d} x$.
[5]

Question 61

[Maximum mark: 22]
The following graph shows the two parts of the curve defined by the equation $x^{2} y=5-y^{4}$, and the normal to the curve at the point $\mathrm{P}(2,1)$.

(a) Show that there are exactly two points on the curve where the gradient is zero.
(b) Find the equation of the normal to the curve at the point P.
(c) The normal at P cuts the curve again at the point Q . Find the x-coordinate of Q .
(d) The shaded region is rotated by 2π about the y-axis. Find the volume of the solid formed.

Question 62

[Maximum mark: 7]
A function f satisfies the conditions $f(0)=-4, f(1)=0$ and its second derivative is $f^{\prime \prime}(x)=15 \sqrt{x}+\frac{1}{(x+1)^{2}}, x \geq 0$.
Find $f(x)$.

Question 63
[Maximum mark: 5]
Differentiate from first principles the function $f(x)=3 x^{3}-x$.
Question 64
[Maximum mark: 6]
A particle moves along a horizontal line such that at time t seconds, $t \geq 0$, its acceleration a is given by $a=2 t-1$. When $t=6$, its displacement s from a fixed origin O is 18.25 m .
When $t=15$, its displacement from O is 922.75 m . Find an expression for s in terms of t.
Question 65
[Maximum mark: 4]
Let l be the tangent to the curve $y=x \mathrm{e}^{2 x}$ at the point $\left(1, \mathrm{e}^{2}\right)$.
Find the coordinates of the point where l meets the x-axis.
Question 66
[Maximum mark: 6]
Use integration by parts to find $\int(\ln x)^{2} \mathrm{~d} x$.

Question 67
[Maximum mark: 7]
The function f is defined by $f(x)=(x-1)^{2}, x \geq 1$ and the function g is defined by $g(x)=x^{2}+1, x \geq 0$.
The region R is bounded by the curves $y=f(x), y=g(x)$ and the lines $y=0, x=0$ and $y=9$ as shown on the following diagram.

The shape of a clay vase can be modelled by rotating the region R through 360° about the y-axis.
Find the volume of clay used to make the vase.

Question 68

[Maximum mark: 14]
A body moves in a straight line such that its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, after t seconds is given by $v=2 \sin \left(\frac{t}{10}+\frac{\pi}{5}\right) \csc \left(\frac{t}{30}+\frac{\pi}{4}\right)$ for $0 \leq t \leq 60$.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

(a) (i) Determine the coordinates of point A and the coordinates of point B .
(ii) Hence, write down the maximum speed of the body.
(b) The body first comes to rest at time $t=t_{1}$. Find
(i) the value of t_{1};
(ii) the distance travelled between $t=0$ and $t=t_{1}$;
(iii) the acceleration when $t=t_{1}$.
(c) Find the distance travelled in the first 30 seconds.

Question 69

[Maximum mark: 17]
The following diagram shows part of the graph of $2 x^{2}=\sin ^{3} y$ for $0 \leq y \leq \pi$.

(a) (i) Using implicit differentiation, find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the equation of the tangent to the curve at the point $\left(\frac{1}{4}, \frac{5 \pi}{6}\right)$.
[8]

The shaded region R is the area bounded by the curve, the y-axis and the lines $y=0$ and $y=\pi$.
(b) Find the area of R.
[3]
The region R is now rotated about the y-axis, through 2π radians, to form a solid.
(c) By writing $\sin ^{3} y$ as $\left(1-\cos ^{2} y\right) \sin y$, show that the volume of the solid formed is $\frac{2 \pi}{3}$.

