Subject - Math(Higher Level)
 Topic - Vector
 Year - Nov 2011 - Nov 2019

Question 1

[Maximum mark: 15]
(a) For non-zero vectors \boldsymbol{a} and \boldsymbol{b}, show that
(i) if $|\boldsymbol{a}-\boldsymbol{b}|=|\boldsymbol{a}+\boldsymbol{b}|$, then \boldsymbol{a} and \boldsymbol{b} are perpendicular;
(ii) $|\boldsymbol{a} \times \boldsymbol{b}|^{2}=|\boldsymbol{a}|^{2}|\boldsymbol{b}|^{2}-(\boldsymbol{a} \cdot \boldsymbol{b})^{2}$. [8 marks]
(b) The points A, B and C have position vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.
(i) Show that the area of triangle ABC is $\frac{1}{2}|\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{b} \times \boldsymbol{c}+\boldsymbol{c} \times \boldsymbol{a}|$.
(ii) Hence, show that the shortest distance from B to AC is

$$
\frac{|a \times b+b \times c+c \times a|}{|c-a|}
$$

Question 2

[Maximum mark: 5]

Find the values of x for which the vectors $\left(\begin{array}{c}1 \\ 2 \cos x \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 2 \sin x \\ 1\end{array}\right)$ are perpendicular, $0 \leq x \leq \frac{\pi}{2}$.

Question 3

[Maximum mark: 6]
Two boats, A and B, move so that at time t hours, their position vectors, in kilometres,
are $\boldsymbol{r}_{A}=(9 t) \boldsymbol{i}+(3-6 t) \boldsymbol{j}$ and $\boldsymbol{r}_{B}=(7-4 t) \boldsymbol{i}+(7 t-6) \boldsymbol{j}$.
(a) Find the coordinates of the common point of the paths of the two boats.
[4 marks]
(b) Show that the boats do not collide.

Question 4

[Maximum mark: 21]
The vertices of a triangle ABC have coordinates given by $\mathrm{A}(-1,2,3), \mathrm{B}(4,1,1)$ and $\mathrm{C}(3,-2,2)$.
(a) (i) Find the lengths of the sides of the triangle.
(ii) Find $\cos B \hat{A} C$.
[6 marks]
(b) (i) Show that $\overrightarrow{\mathrm{BC}} \times \overrightarrow{\mathrm{CA}}=-7 \boldsymbol{i}-3 \boldsymbol{j}-16 \boldsymbol{k}$.
(ii) Hence, show that the area of the triangle ABC is $\frac{1}{2} \sqrt{314}$. [5 marks]
(c) Find the Cartesian equation of the plane containing the triangle ABC . [3 marks]
(d) Find a vector equation of (AB).

The point D on $(A B)$ is such that $\overrightarrow{O D}$ is perpendicular to $\overrightarrow{B C}$ where O is the origin.
(e) (i) Find the coordinates of D.
(ii) Show that D does not lie between A and B .

Question 5

[Maximum mark: 20]

Consider the points $\mathrm{A}(1,0,0), \mathrm{B}(2,2,2)$ and $\mathrm{C}(0,2,1)$.
(a) Find the vector $\overrightarrow{C A} \times \overrightarrow{C B}$
(b) Find an exact value for the area of the triangle $A B C$.
(c) Show that the Cartesian equation of the plane Π_{1}, containing the triangle ABC , is $2 x+3 y-4 z=2$.

A second plane Π_{2} is defined by the Cartesian equation $\Pi_{2}: 4 x-y-z=4 . L_{1}$ is the line of intersection of the planes Π_{1} and Π_{2}.
(d) Find a vector equation for L_{1}.

A third plane Π_{3} is defined by the Cartesian equation $16 x+\alpha y-3 z=\beta$.
(e) Find the value of α if all three planes contain L_{1}.
(f) Find conditions on α and β if the plane Π_{3} does not intersect with L_{1}.

Question 6

[Maximum mark: 22]
(a) Show that the points $\mathrm{O}(0,0,0), \mathrm{A}(6,0,0), \mathrm{B}(6,-\sqrt{24}, \sqrt{12}), \mathrm{C}(0,-\sqrt{24}, \sqrt{12})$ form
a square.
(b) Find the coordinates of M, the mid-point of [OB].
(c) Show that an equation of the plane Π, containing the square OABC , is $y+\sqrt{2} z=0$. [3]
(d) Find a vector equation of the line L, through M , perpendicular to the plane Π.
(e) Find the coordinates of D , the point of intersection of the line L with the plane whose equation is $y=0$.
(f) Find the coordinates of E , the reflection of the point D in the plane Π.
(g) (i) Find the angle ODA.
(ii) State what this tells you about the solid OABCDE.

Question 7

[Maximum mark: 6]
PQRS is a rhombus. Given that $\overrightarrow{\mathrm{PQ}}=\boldsymbol{a}$ and $\overrightarrow{\mathrm{QR}}=\boldsymbol{b}$,
(a) express the vectors $\overrightarrow{\mathrm{PR}}$ and $\overrightarrow{\mathrm{QS}}$ in terms of \boldsymbol{a} and \boldsymbol{b};
(b) hence show that the diagonals in a rhombus intersect at right angles.

Question 8

[Maximum mark: 18]
Given the points $\mathrm{A}(1,0,4), \mathrm{B}(2,3,-1)$ and $\mathrm{C}(0,1,-2)$,
(a) find the vector equation of the line L_{1} passing through the points A and B .

The line L_{2} has Cartesian equation $\frac{x-1}{3}=\frac{y+2}{1}=\frac{z-1}{-2}$.
(b) Show that L_{1} and L_{2} are skew lines.

Consider the plane Π_{1}, parallel to both lines L_{1} and L_{2}. Point C lies in the plane Π_{1}.
(c) Find the Cartesian equation of the plane Π_{1}.

The line L_{3} has vector equation $r=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}k \\ 1 \\ -1\end{array}\right)$.
The plane Π_{2} has Cartesian equation $x+y=12$.

The angle between the line L_{3} and the plane Π_{2} is 60°.
(d) (i) Find the value of k.
(ii) Find the point of intersection P of the line L_{3} and the plane Π_{2}.

Question 9

[Maximum mark: 5]
A point P , relative to an origin O , has position vector $\overrightarrow{\mathrm{OP}}=\left(\begin{array}{l}1+s \\ 3+2 s \\ 1-s\end{array}\right), s \in \mathbb{R}$.

Find the minimum length of $\overrightarrow{O P}$.

Question 10

[Maximum mark: 14]
The position vectors of the points A, B and C are $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} respectively, relative to an origin O . The following diagram shows the triangle ABC and points $\mathrm{M}, \mathrm{R}, \mathrm{S}$ and T .

M is the midpoint of [AC].
R is a point on $[A B]$ such that $\overrightarrow{A R}=\frac{1}{3} \overrightarrow{A B}$.
S is a point on $[\mathrm{AC}]$ such that $\overrightarrow{\mathrm{AS}}=\frac{2}{3} \overrightarrow{\mathrm{AC}}$.
T is a point on $[\mathrm{RS}]$ such that $\overrightarrow{\mathrm{RT}}=\frac{2}{3} \overrightarrow{\mathrm{RS}}$.
(a) (i) Express $\overrightarrow{A M}$ in terms of \boldsymbol{a} and \boldsymbol{c}.
(ii) Hence show that $\overrightarrow{\mathrm{BM}}=\frac{1}{2} \boldsymbol{a}-\boldsymbol{b}+\frac{1}{2} \boldsymbol{c}$.
(b) (i) Express $\overrightarrow{\mathrm{RA}}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
(ii) Show that $\overrightarrow{\mathrm{RT}}=-\frac{2}{9} \boldsymbol{a}-\frac{2}{9} \boldsymbol{b}+\frac{4}{9} \boldsymbol{c}$.
(c) Prove that T lies on [BM].

Question 11

[Maximum mark: 21]

Two lines l_{1} and l_{2} are given respectively by the equations $\boldsymbol{r}_{\mathbf{1}}=\overrightarrow{\mathrm{OA}}+\lambda \boldsymbol{v}$ and $\boldsymbol{r}_{2}=\overrightarrow{\mathrm{OB}}+\mu \boldsymbol{w}$ where $\overrightarrow{\mathrm{OA}}=\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}, \boldsymbol{v}=\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}, \overrightarrow{\mathrm{OB}}=2 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k}, \boldsymbol{w}=\boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}$ and O is the origin. Let P be a point on l_{1} and let Q be a point on l_{2}.
(a) Find $\overrightarrow{P Q}$, in terms of λ and μ.
(b) Find the value of λ and the value of μ for which $\overrightarrow{\mathrm{PQ}}$ is perpendicular to the direction vectors of both l_{1} and l_{2}.
(c) Hence find the shortest distance between l_{1} and l_{2}.
(d) Find the Cartesian equation of the plane Π, which contains line l_{1} and is parallel to the direction vector of line l_{2}.

$$
\text { Let } \overrightarrow{\mathrm{OT}}=\overrightarrow{\mathrm{OB}}+\eta(\boldsymbol{v} \times \boldsymbol{w})
$$

(e) Find the value of η for which the point T lies in the plane Π.
(f) For this value of η, calculate $|\overrightarrow{\mathrm{BT}}|$.
(g) State what you notice about your answers to (c) and (f), and give a geometrical interpretation of this result.

Question 12

[Maximum mark: 23]

Consider the triangle ABC . The points P, Q and R are the midpoints of the line segments $[\mathrm{AB}],[\mathrm{BC}]$ and $[\mathrm{AC}]$ respectively.

Let $\overrightarrow{\mathrm{OA}}=\boldsymbol{a}, \overrightarrow{\mathrm{OB}}=\boldsymbol{b}$ and $\overrightarrow{\mathrm{OC}}=\boldsymbol{c}$.
(a) Find $\overrightarrow{\mathrm{BR}}$ in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.
(b) (i) Find a vector equation of the line that passes through B and R in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} and a parameter λ.
(ii) Find a vector equation of the line that passes through A and Q in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} and a parameter μ.
(iii) Hence show that $\overrightarrow{\mathrm{OG}}=\frac{1}{3}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$ given that G is the point where $[B R]$ and $[A Q]$ intersect.
(c) Show that the line segment [CP] also includes the point G.

The coordinates of the points A, B and C are $(1,3,1),(3,7,-5)$ and $(2,2,1)$ respectively.
A point X is such that [GX] is perpendicular to the plane $A B C$.
(d) Given that the tetrahedron ABCX has volume 12 units 3, find possible coordinates of X .

Question 13

[Maximum mark: 21]
Two planes have equations

$$
\Pi_{1}: 4 x+y+z=8 \text { and } \Pi_{2}: 4 x+3 y-z=0
$$

(a) Find the cosine of the angle between the two planes in the form $\sqrt{\frac{p}{q}}$ where $p, q \in \mathbb{Z}$.

Let L be the line of intersection of the two planes.
(b) (i) Show that L has direction $\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$.
(ii) Show that the point $\mathrm{A}(1,0,4)$ lies on both planes.
(iii) Write down a vector equation of L.

B is the point on Π_{1} with coordinates $(a, b, 1)$.
(c) Given the vector $\overrightarrow{\mathrm{AB}}$ is perpendicular to L find the value of a and the value of b.
(d) Show that $\mathrm{AB}=3 \sqrt{2}$.

The point P lies on L and $\mathrm{ABP}=45^{\circ}$.
(e) Find the coordinates of the two possible positions of P .
[5]

Question 14

[Maximum mark: 5]
Consider the vectors $\boldsymbol{a}=\boldsymbol{i}-3 \boldsymbol{j}-2 \boldsymbol{k}, \boldsymbol{b}=-3 \boldsymbol{j}+2 \boldsymbol{k}$.
(a) Find $\boldsymbol{a} \times \boldsymbol{b}$.
(b) Hence find the Cartesian equation of the plane containing the vectors \boldsymbol{a} and \boldsymbol{b}, and passing through the point $(1,0,-1)$.

Question 15

[Maximum mark: 6]
Consider the lines l_{1} and l_{2} defined by
$l_{1}: r=\left(\begin{array}{c}-3 \\ -2 \\ a\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ and $l_{2}: \frac{6-x}{3}=\frac{y-2}{4}=1-z$ where a is a constant.

Given that the lines l_{1} and l_{2} intersect at a point P ,
(a) find the value of a;
(b) determine the coordinates of the point of intersection P .

Question 16

[Maximum mark: 7]

ABCD is a parallelogram, where $\overrightarrow{\mathrm{AB}}=-\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ and $\overrightarrow{\mathrm{AD}}=4 \boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}$.
(a) Find the area of the parallelogram ABCD .
(b) By using a suitable scalar product of two vectors, determine whether $A \hat{B} C$ is acute or obtuse.

Question 17

[Maximum mark: 6]
The points A and B are given by $\mathrm{A}(0,3,-6)$ and $\mathrm{B}(6,-5,11)$.
The plane Π is defined by the equation $4 x-3 y+2 z=20$.
(a) Find a vector equation of the line L passing through the points A and B .
(b) Find the coordinates of the point of intersection of the line L with the plane Π.

Question 18

[Maximum mark: 5]

(a) Show that the following system of equations has an infinite number of solutions.

$$
\begin{aligned}
x+y+2 z & =-2 \\
3 x-y+14 z & =6 \\
x+2 y & =-5
\end{aligned}
$$

The system of equations represents three planes in space.
(b) Find the parametric equations of the line of intersection of the three planes.

Question 19

[Maximum mark: 6]
The following system of equations represents three planes in space.

$$
\begin{gathered}
x+3 y+z=-1 \\
x+2 y-2 z=15 \\
2 x+y-z=6
\end{gathered}
$$

Find the coordinates of the point of intersection of the three planes.

Question 20

[Maximum mark: 5]
$\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C are distinct points such that $\overrightarrow{\mathrm{OA}}=\boldsymbol{a}, \overrightarrow{\mathrm{OB}}=\boldsymbol{b}$ and $\overrightarrow{\mathrm{OC}}=\boldsymbol{c}$.
It is given that c is perpendicular to $\overrightarrow{A B}$ and \boldsymbol{b} is perpendicular to $\overrightarrow{A C}$.
Prove that \boldsymbol{a} is perpendicular to $\overrightarrow{\mathrm{BC}}$.

Question 21

[Maximum mark: 18]
A line L has equation $\frac{x-2}{p}=\frac{y-q}{2}=z-1$ where $p, q \in \mathbb{R}$.
A plane Π has equation $x+y+3 z=9$.
(a) Show that L is not perpendicular to Π.
(b) Given that L lies in the plane Π, find the value of p and the value of q.

Consider the different case where the acute angle between L and Π is θ
where $\theta=\arcsin \left(\frac{1}{\sqrt{11}}\right)$.
(c) (i) Show that $p=-2$.
(ii) If L intersects Π at $z=-1$, find the value of q.

Question 22
[Maximum mark: 5]
Find the coordinates of the point of intersection of the planes defined by the equations $x+y+z=3, x-y+z=5$ and $x+y+2 z=6$.

Question 23

[Maximum mark: 6]
Consider the lines l_{1} and l_{2} defined by
$l_{1}: r=\left(\begin{array}{c}-3 \\ -2 \\ a\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ and $l_{2}: \frac{6-x}{3}=\frac{y-2}{4}=1-z$ where a is a constant.

Given that the lines l_{1} and l_{2} intersect at a point P ,
(a) find the value of a;
(b) determine the coordinates of the point of intersection P .

Question 24
[Maximum mark: 7]
Consider the following equations, where $a, b \in \mathbb{R}$:

$$
\begin{aligned}
& x+3 y+(a-1) z=1 \\
& 2 x+2 y+(a-2) z=1 \\
& 3 x+y+(a-3) z=b .
\end{aligned}
$$

(a) If each of these equations defines a plane, show that, for any value of a, the planes do not intersect at a unique point.
(b) Find the value of b for which the intersection of the planes is a straight line.

Question 25

[Maximum mark: 6]
Consider the points $\mathrm{A}(1,2,3), \mathrm{B}(1,0,5)$ and $\mathrm{C}(2,-1,4)$.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Hence find the area of the triangle ABC .

Question 26

[Maximum mark: 24]
The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D have position vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{d}, relative to the origin O . It is given that $\overrightarrow{A B}=\overrightarrow{D C}$.
(a) (i) Explain why ABCD is a parallelogram
(ii) Using vector algebra, show that $\overrightarrow{A D}=\overrightarrow{B C}$.

The position vectors $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OC}}$ and $\overrightarrow{\mathrm{OD}}$ are given by

$$
\begin{aligned}
& a=i+2 \boldsymbol{j}-3 \boldsymbol{k} \\
& \boldsymbol{b}=3 \boldsymbol{i}-\boldsymbol{j}+p \boldsymbol{k} \\
& c=q \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k} \\
& \boldsymbol{d}=-\boldsymbol{i}+r \boldsymbol{j}-2 \boldsymbol{k}
\end{aligned}
$$

where p, q and r are constants.
(b) Show that $p=1, q=1$ and $r=4$.
(c) Find the area of the parallelogram ABCD .

The point where the diagonals of ABCD intersect is denoted by M .
(d) Find the vector equation of the straight line passing through M and normal to the plane Π containing ABCD.
(e) Find the Cartesian equation of Π.

The plane Π cuts the x, y and z axes at X, Y and Z respectively.
(f) (i) Find the coordinates of X, Y and Z .
(ii) Find YZ .

Question 27
[Maximum mark: 4]
The acute angle between the vectors $3 \boldsymbol{i}-4 \boldsymbol{j}-5 \boldsymbol{k}$ and $5 \boldsymbol{i}-4 \boldsymbol{j}+3 \boldsymbol{k}$ is denoted by θ. Find $\cos \theta$.

Question 28

[Maximum mark: 19]
The following figure shows a square based pyramid with vertices at $\mathrm{O}(0,0,0), \mathrm{A}(1,0,0)$, $\mathrm{B}(1,1,0), \mathrm{C}(0,1,0)$ and $\mathrm{D}(0,0,1)$.

(a) Find the Cartesian equation of the plane Π_{1}, passing through the points A, B and D .

The Cartesian equation of the plane Π_{2}, passing through the points B, C and D , is $y+z=1$.
(b) Find the angle between the faces ABD and BCD .

The plane Π_{3} passes through O and is normal to the line BD .
(c) Find the Cartesian equation of Π_{3}.
Π_{3} cuts AD and BD at the points P and Q respectively.
(d) Show that P is the midpoint of AD .
(e) Find the area of the triangle OPQ.

Question 29
[Maximum mark: 15]
Consider a triangle OAB such that O has coordinates $(0,0,0)$, A has coordinates $(0,1,2)$ and B has coordinates $(2 b, 0, b-1)$ where $b<0$.
(a) Find, in terms of b, a Cartesian equation of the plane Π containing this triangle.

Let M be the midpoint of the line segment $[\mathrm{OB}]$.
(b) Find, in terms of b, the equation of the line L which passes through M and is perpendicular to the plane Π.
(c) Show that L does not intersect the y-axis for any negative value of b.

Question 30

[Maximum mark: 6]
The vectors \boldsymbol{a} and \boldsymbol{b} are defined by $\boldsymbol{a}=\left(\begin{array}{l}1 \\ 1 \\ t\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}0 \\ -t \\ 4 t\end{array}\right)$, where $t \in \mathbb{R}$.
(a) Find and simplify an expression for $\boldsymbol{a} \cdot \boldsymbol{b}$ in terms of t.
(b) Hence or otherwise, find the values of t for which the angle between \boldsymbol{a} and \boldsymbol{b} is obtuse.

Question 31

[Maximum mark: 6]

Three points in three-dimensional space have coordinates $\mathrm{A}(0,0,2), \mathrm{B}(0,2,0)$ and $\mathrm{C}(3,1,0)$.
(a) Find the vector
(i) $\overrightarrow{\mathrm{AB}}$;
(ii) $\overrightarrow{\mathrm{AC}}$.
(b) Hence or otherwise, find the area of the triangle ABC .

Question 32
[Maximum mark: 20]
Two distinct lines, l_{1} and l_{2}, intersect at a point P . In addition to P , four distinct points are marked out on l_{1} and three distinct points on l_{2}. A mathematician decides to join some of these eight points to form polygons.
(a) (i) Find how many sets of four points can be selected which can form the vertices of a quadrilateral.
(ii) Find how many sets of three points can be selected which can form the vertices of a triangle.

The line l_{1} has vector equation $r_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \lambda \in \mathbb{R}$ and the line l_{2} has vector equation $r_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}5 \\ 6 \\ 2\end{array}\right), \mu \in \mathbb{R}$.

The point P has coordinates $(4,6,4)$.
(b) Verify that P is the point of intersection of the two lines.

The point A has coordinates $(3,4,3)$ and lies on l_{1}.
(c) Write down the value of λ corresponding to the point A .

The point B has coordinates $(-1,0,2)$ and lies on l_{2}.
(d) Write down $\overrightarrow{P A}$ and $\overrightarrow{P B}$.

Let C be the point on l_{1} with coordinates $(1,0,1)$ and D be the point on l_{2} with parameter $\mu=-2$.
(e) Find the area of the quadrilateral CDBA.

Question 33

[Maximum mark: 4]
Let $\boldsymbol{a}=\left(\begin{array}{c}2 \\ k \\ -1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}-3 \\ k+2 \\ k\end{array}\right), k \in \mathbb{R}$.
Given that \boldsymbol{a} and \boldsymbol{b} are perpendicular, find the possible values of k.

Question 34

[Maximum mark: 17]
Points $\mathrm{A}(0,0,10), \mathrm{B}(0,10,0), \mathrm{C}(10,0,0), V(p, p, p)$ form the vertices of a tetrahedron.
(a) (i) Show that $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AV}}=-10\left(\begin{array}{c}10-2 p \\ p \\ p\end{array}\right)$ and find a similar expression for $\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AV}}$.
(ii) Hence, show that, if the angle between the faces ABV and ACV is θ, then

$$
\cos \theta=\frac{p(3 p-20)}{6 p^{2}-40 p+100}
$$

(b) Consider the case where the faces ABV and ACV are perpendicular.
(i) Find the two possible coordinates of V.
(ii) Comment on the positions of V in relation to the plane ABC .
(c) The following diagram shows the graph of θ against p. The maximum point is shown by X .

(i) At X, find the value p and the value of θ.
(ii) Find the equation of the horizontal asymptote of the graph. Find the equation of the horizontal asymptote of the graph.

Question 35

[Maximum mark: 6]
A straight line, L_{θ}, has vector equation $r=\left(\begin{array}{l}5 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ \sin \theta \\ \cos \theta\end{array}\right), \lambda, \theta \in \mathbb{R}$.
The plane, Π_{p}, has equation $x=p, p \in \mathbb{R}$.
Show that the angle between L_{θ} and Π_{p} is independent of both θ and p.

