Subject – Math(Higher Level) Topic - Vector Year - Nov 2011 – Nov 2019 Paper -2

Question 1

[Maximum mark: 7]

Given the following system of linear equations,

```
ax + y + z = 1x + ay + z = ax + y + az = a<sup>2</sup>
```

find the values of the real constant, a, for which the system has a unique solution.

Question 2

[Maximum mark: 16]

Two planes Π_1 and Π_2 have equations $2x + y + z = 1$ and $3x + y - z = 2$ respectively.			
(a)	Find the vector equation of L, the line of intersection of Π_1 and Π_2 .	[6 marks]	
(b)	Show that the plane Π_3 which is perpendicular to Π_1 and contains L, has equation $x - 2z = 1$.	[4 marks]	
(c)	The point P has coordinates $(-2, 4, 1)$, the point Q lies on Π_3 and PQ is perpendicular to Π_2 . Find the coordinates of Q.	[6 marks]	

Question 3

[Maximum mark: 5]

The planes 2x + 3y - z = 5 and x - y + 2z = k intersect in the line 5x + 1 = 9 - 5y = -5z. Find the value of k.

[Maximum mark: 24]

The coordinates of points A, B and C are given as (5, -2, 5), (5, 4, -1) and (-1, -2, -1) respectively.

Show that AB = AC and that $B\hat{A}C = 60^{\circ}$. [4 marks] (a) (b) Find the Cartesian equation of Π , the plane passing through A, B, and C. [4 marks] (c) (i) Find the Cartesian equation of Π_1 , the plane perpendicular to (AB) passing through the midpoint of [AB]. Find the Cartesian equation of Π_2 , the plane perpendicular to (AC) passing (ii) [4 marks] through the midpoint of [AC]. (d) Find the vector equation of L, the line of intersection of Π_1 and Π_2 , and show that it is perpendicular to Π . [3 marks] A methane molecule consists of a carbon atom with four hydrogen atoms symmetrically placed around it in three dimensions.

The positions of the centres of three of the hydrogen atoms are A, B and C as given. The position of the centre of the fourth hydrogen atom is D.

- Using the fact that AB = AD, show that the coordinates of one of the possible (e) [3 marks] positions of the fourth hydrogen atom is (-1, 4, 5).
- (f) Letting D be (-1, 4, 5), show that the coordinates of G, the position of the centre of the carbon atom, are (2, 1, 2). Hence calculate DGA, the bonding angle of carbon. [6 marks]

[Maximum mark: 24]

(a) Find the values of k for which the following system of equations has no solutions and the value of k for the system to have an infinite number of solutions.

$$x-3y+z=3$$
$$x+5y-2z=1$$
$$16y-6z=k$$

[5 marks]

[4 marks]

- (b) Given that the system of equations can be solved, find the solutions in the form of a vector equation of a line, $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where the components of \mathbf{b} are integers. [7 marks]
- (c) The plane \div is parallel to both the line in part (b) and the line $\frac{x-4}{3} = \frac{y-6}{-2} = \frac{z-2}{0}$. Given that \div contains the point (1, 2, 0), show that the Cartesian equation of \div is 16x + 24y - 11z = 64. [5 marks]
- (d) The z-axis meets the plane ÷ at the point P. Find the coordinates of P. [2 marks]
- (e) Find the angle between the line $\frac{x-2}{3} = \frac{y+5}{4} = \frac{z}{2}$ and the plane \div . [5 marks]

Question 6

[Maximum mark: 24]

Consider the planes $\pi_1: x - 2y - 3z = 2$ and $\pi_2: 2x - y - z = k$.

- (a) Find the angle between the planes π_1 and π_2 .
- (b) The planes π_1 and π_2 intersect in the line L_1 . Show that the vector equation of

$$L_{1} \text{ is } \mathbf{r} = \begin{pmatrix} 0\\2-3k\\2k-2 \end{pmatrix} + t \begin{pmatrix} 1\\5\\-3 \end{pmatrix}.$$
 [5 marks]

(c) The line L_2 has Cartesian equation 5 - x = y + 3 = 2 - 2z. The lines L_1 and L_2 intersect at a point X. Find the coordinates of X. [5 marks]

(d) Determine a Cartesian equation of the plane π_3 containing both lines L_1 and L_2 . [5 marks]

(e) Let Y be a point on L₁ and Z be a point on L₂ such that XY is perpendicular to YZ and the area of the triangle XYZ is 3. Find the perimeter of the triangle XYZ. [5 marks]

[Maximum mark: 5]

Find the value of k such that the following system of equations does not have a unique solution.

$$kx + y + 2z = 4$$
$$-y + 4z = 5$$
$$3x + 4y + 2z = 1$$

Question 8

[Maximum mark: 20]

Consider the points P(-3, -1, 2) and Q(5, 5, 6).

Find a vector equation for the line, L_1 , which passes through the points P and Q. [3 marks] (a)

The line L_2 has equation

$$\mathbf{r} = \begin{pmatrix} -4\\0\\4 \end{pmatrix} + s \begin{pmatrix} 5\\2\\0 \end{pmatrix}$$

(b)	Show that L_1 and L_2 intersect at the point R(1, 2, 4).	[4 marks]	
(c)	Find the acute angle between L_1 and L_2 .	[3 marks]	
Let S be a point on L_2 such that $ \vec{RP} = \vec{RS} $.			
(d)	Show that one of the possible positions for S is $S_1(-4, 0, 4)$ and find the coordinates of the other possible position, S_2 .	[6 marks]	
(e)	Find a vector equation of the line which passes through R and bisects $\overline{PRS_1}$.	[4 marks]	

[Maximum mark: 5]

Consider the system of equations

0.1x - 1.7y + 0.9z = -4.4-2.4x + 0.3y + 3.2z = 1.2 2.5x + 0.6y - 3.7z = 0.8.

(a) Express the system of equations in matrix form. [2 marks]

[3 marks]

[3]

(b) Find the solution to the system of equations.

Question 10

[Maximum mark: 6]

The vectors \boldsymbol{a} and \boldsymbol{b} are such that $\boldsymbol{a} = (3\cos\theta + 6)\boldsymbol{i} + 7\boldsymbol{j}$ and $\boldsymbol{b} = (\cos\theta - 2)\boldsymbol{i} + (1 + \sin\theta)\boldsymbol{j}$.

Given that *a* and *b* are perpendicular,

- (a) show that $3\sin^2\theta 7\sin\theta + 2 = 0$; [3]
- (b) find the smallest possible positive value of θ .

Question 11

[Maximum mark: 7]

A line L_1 has equation $\mathbf{r} = \begin{pmatrix} -5 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$

A line L_2 passing through the origin intersects L_1 and is perpendicular to L_1 .

- (a) Find a vector equation of L_2 . [5]
- (b) Determine the shortest distance from the origin to L_1 . [2]

[Maximum mark: 6]

A system of equations is given below.

$$x + 2y - z = 2$$
$$2x + y + z = 1$$
$$-x + 4y + az = 4$$

- (a) Find the value of *a* so that the system does not have a unique solution. [4]
- (b) Show that the system has a solution for any value of *a*. [2]

Question 13

[Maximum mark: 6]

Consider the two planes

$$\pi_1 : 4x + 2y - z = 8$$

$$\pi_2 : x + 3y + 3z = 3$$

Find the angle between π_1 and π_2 , giving your answer correct to the nearest degree.

Question 14

[Maximum mark: 8]

The lines l_1 and l_2 are defined as

$$l_1: \frac{x-1}{3} = \frac{y-5}{2} = \frac{z-12}{-2}$$
$$l_2: \frac{x-1}{8} = \frac{y-5}{11} = \frac{z-12}{6}.$$

The plane π contains both l_1 and l_2 .

(a) Find the Cartesian equation of π .

[4]

The line l_3 passing through the point (4, 0, 8) is perpendicular to π .

(b) Find the coordinates of the point where l_3 meets π . [4]

[Maximum mark: 8]

Let
$$\boldsymbol{v} = \begin{pmatrix} 2\\ 3\\ 5 \end{pmatrix}$$
 and $\boldsymbol{w} = \begin{pmatrix} 4\\ \lambda\\ 10 \end{pmatrix}$

(a)	Find the value of λ for v and w to be parallel.	[2]
(b)	Find the value of λ for v and w to be perpendicular.	[2]
(C)	Find the two values of λ if the angle between $m{v}$ and $m{w}$ is $10^\circ.$	[4]
Quest	tion 16	
[Max	imum mark: 7]	

Consider the vectors given by u = i + 2j - 2k and v = ai + bj, where a and b are constants.

It is given that $\boldsymbol{u} \times \boldsymbol{v} = 4\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$, where *c* is a constant.

(a)	Find the value of each of the constants a , a	and c.	[5]
-----	---	--------	-----

(b) Hence find the Cartesian equation of the plane containing the vectors u and v and passing through the point (0, 0, 0). [2]

Question 17

[Maximum mark: 9]

Consider the following system of equations

2x + y + 6z = 0 4x + 3y + 14z = 4 $2x - 2y + (\alpha - 2)z = \beta - 12.$

- (a) Find conditions on α and β for which
 - (i) the system has no solutions;
 - (ii) the system has only one solution;
 - (iii) the system has an infinite number of solutions. [6]
- (b) In the case where the number of solutions is infinite, find the general solution of the system of equations in Cartesian form. [3]

[Maximum mark: 18]

The equations of the lines L_1 and L_2 are

$$L_1: \mathbf{r}_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix} + \lambda \begin{pmatrix} -1\\1\\2 \end{pmatrix}$$
$$L_2: \mathbf{r}_2 = \begin{pmatrix} 1\\2\\4 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\6 \end{pmatrix}.$$

(a) Show that the lines L_1 and L_2 are skew.

[4]

[4]

(b) Find the acute angle between the lines L_1 and L_2 .

- (c) (i) Find a vector perpendicular to both lines.
 - (ii) Hence determine an equation of the line L_3 that is perpendicular to both L_1 and L_2 and intersects both lines. [10]

Question 19

```
[Maximum mark: 4]
```

The three planes having Cartesian equations 2x + 3y - z = 11, x + 2y + z = 3and 5x - y - z = 10 meet at a point P. Find the coordinates of P.

Question 20

[Maximum mark: 8]

Ed walks in a straight line from point P(-1, 4) to point Q(4, 16) with constant speed. Ed starts from point P at time t = 0 and arrives at point Q at time t = 3, where t is measured in hours.

Given that, at time t, Ed's position vector, relative to the origin, can be given in the form, r = a + tb,

(a) find the vectors a and b.

[3]

Roderick is at a point C(11, 9). During Ed's walk from P to Q Roderick wishes to signal to Ed. He decides to signal when Ed is at the closest point to C.

(b) Find the time when Roderick signals to Ed.

[5]

[Maximum mark: 4]

The points A and B have position vectors
$$\vec{OA} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
 and $\vec{OB} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.

(a) Find $\vec{OA} \times \vec{OB}$. [2]

[2]

[4]

(b) Hence find the area of the triangle OAB.

Question 22

[Maximum mark: 8]

OACB is a parallelogram with OA = a and OB = b, where a and b are non-zero vectors.

- (a) Show that
 - (i) $|\vec{OC}|^2 = |a|^2 + 2a \cdot b + |b|^2;$
 - (ii) $|\vec{AB}|^2 = |\boldsymbol{a}|^2 2\boldsymbol{a}\cdot\boldsymbol{b} + |\boldsymbol{b}|^2$. [4]

(b) Given that $|\vec{OC}| = |\vec{AB}|$, prove that OACB is a rectangle.

Question 23

[Maximum mark: 5]

Find the acute angle between the planes with equations x + y + z = 3 and 2x - z = 2.

Question 24

[Maximum mark: 6]

Find the Cartesian equation of plane Π containing the points A(6, 2, 1) and B(3, -1, 1) and perpendicular to the plane x + 2y - z - 6 = 0.

Question 25

[Maximum mark: 4]

Given that $a \times b = b \times c \neq 0$ prove that a + c = sb where *s* is a scalar.

[Maximum mark: 22]

The points $A,\,B$ and C have the following position vectors with respect to an origin $O\,.$

 $\vec{OA} = 2i + j - 2k$ $\vec{OB} = 2i - j + 2k$ $\vec{OC} = i + 3j + 3k$

(a)	Find the vector equation of the line (BC) .	[3]
(b)	Determine whether or not the lines (OA) and (BC) intersect.	[6]
(c)	Find the Cartesian equation of the plane Π_1 , which passes through C and is perpendicular to \overrightarrow{OA} .	[3]
(d)	Show that the line (BC) lies in the plane \varPi_1 .	[2]
The plane \varPi_2 contains the points O,A and B and the plane \varPi_3 contains the points O,A and $C.$		
(e)	Verify that $2\mathbf{j} + \mathbf{k}$ is perpendicular to the plane Π_2 .	[3]
(f)	Find a vector perpendicular to the plane Π_3 .	[1]
(g)	Find the acute angle between the planes Π_2 and Π_3 .	[4]

[Maximum mark: 15]

Two submarines A and B have their routes planned so that their positions at time t hours,

 $0 \le t < 20$, would be defined by the position vectors $r_A = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ -0.15 \end{pmatrix}$ and

 $\mathbf{r}_{B} = \begin{pmatrix} 0\\ 3.2\\ -2 \end{pmatrix} + t \begin{pmatrix} -0.5\\ 1.2\\ 0.1 \end{pmatrix}$ relative to a fixed point on the surface of the ocean (all lengths are

in kilometres).

(a) Show that the two submarines would collide at a point P and write down the coordinates of P.

[4]

To avoid the collision submarine B adjusts its velocity so that its position vector is now given by

$$\mathbf{r}_{B} = \begin{pmatrix} 0\\ 3.2\\ -2 \end{pmatrix} + t \begin{pmatrix} -0.45\\ 1.08\\ 0.09 \end{pmatrix}.$$

(b) (i) Show that submarine B travels in the same direction as originally planned.

(ii) Find the value of t when submarine B passes through P. [3]

(c) (i) Find an expression for the distance between the two submarines in terms of t.

- (ii) Find the value of t when the two submarines are closest together.
- (iii) Find the distance between the two submarines at this time. [8]

Question 28

[Maximum mark: 19]

The plane Π_1 contains the points P(1, 6, -7), Q(0, 1, 1) and R(2, 0, -4).

(a) Find the Cartesian equation of the plane containing P, Q and R. [6]

The Cartesian equation of the plane Π_2 is given by x - 3y - z = 3.

(b) Given that Π_1 and Π_2 meet in a line *L*, verify that the vector equation of *L* can be

given by
$$\mathbf{r} = \begin{pmatrix} \frac{5}{4} \\ 0 \\ -\frac{7}{4} \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{5}{2} \end{pmatrix}$$
. [3]

Continue..

The Cartesian equation of the plane Π_3 is given by ax + by + cz = 1.

(c) Given that Π_3 is parallel to the line L, show that a + 2b - 5c = 0. [1]

Consider the case that $\varPi_{\scriptscriptstyle 3}$ contains $L\,.$

- (d) (i) Show that 5a 7c = 4.
 - (ii) Given that Π_3 is equally inclined to both Π_1 and Π_2 , determine two distinct possible Cartesian equations for Π_3 . [9]

