> Subject - Math (Higher Level)
> Topic - Functions and Equations
> Year - Nov 2011 - Nov 2017
> Paper -2

Question 1
(a)

AlA1A1

Note: Award A1 for shape,
A1 for x-intercept is 0.820 , accept $\sin (-3)$ or $-\sin (3)$
A1 for y-intercept is -0.141 .

Question 2
(a) $y=\frac{1}{1+\mathrm{e}^{-x}}$

$$
y\left(1+\mathrm{e}^{-x}\right)=1
$$

$1+\mathrm{e}^{-x}=\frac{1}{y} \Rightarrow \mathrm{e}^{-x}=\frac{1}{y}-1$
$\Rightarrow x=-\ln \left(\frac{1}{y}-1\right)$
$f^{-1}(x)=-\ln \left(\frac{1}{x}-1\right) \quad\left(=\ln \left(\frac{x}{1-x}\right)\right)$
A1
domain: $0<x<1$
A1AI
Note: Award $\boldsymbol{A 1}$ for endpoints and $\boldsymbol{A 1}$ for strict inequalities.
(b) 0.659

A1

Question 3

$$
\begin{aligned}
& h(x)=f(x-3)-2=\ln (x-3)-2 \\
& g(x)=-h(x)=2-\ln (x-3)
\end{aligned}
$$

te: Award M1 only if it is clear the effect of the reflection in the x-axis: the expression is correct $\boldsymbol{O R}$
there is a change of signs of the previous expression $O R$ there's a graph or an explanation making it explicit

$$
\begin{array}{ll}
=\ln \mathrm{e}^{2}-\ln (x-3) & \boldsymbol{M 1} \\
=\ln \left(\frac{\mathrm{e}^{2}}{x-3}\right) & \boldsymbol{A 1}
\end{array}
$$

Question 4

(a)

A1A1A1A1

Question 5

$$
\begin{array}{lr}
\Delta=(5-k)^{2}+4(k+2) \\
=k^{2}-6 k+33 \\
=(k-3)^{2}+24 \text { which is positive for all } k & \text { M1A1 } \\
\text { (A1) }
\end{array}
$$

te: Accept analytical, graphical or other correct methods. In all cases only award $R 1$ if a reason is given in words or graphically. Award M1A1A0R1 if mistakes are made in the simplification but the argument given is correct.

Question 6
(a)

A correct graph shape for $0<x \leq 10$.
maxima $(3.78,0.882)$ and $(9.70,1.89)$

```
minimum (6.22, -0.885 )A1
```

x-axis intercepts $(1.97,0),(5.24,0)$ and $(7.11,0) \quad \boldsymbol{A} 2$
Note: Award A1 if two x-axis intercepts are correct.
(b) $0<x \leq 1.97$

A1
$5.24 \leq x \leq 7.11$

Question 7

(a) METHOD 1

sketch showing where the lines cross or zeros of $y=x(x+2)^{6}-x$
(M1)
$x=0$
(A1)
$x=-1$ and $x=-3$
(A1)
the solution is $-3<x<-1$ or $x>0$
A1A1
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 2

separating into two cases $x>0$ and $x<0$
if $x>0$ then $(x+2)^{6}>1 \Rightarrow$ always true
if $x<0$ then $(x+2)^{6}<1 \Rightarrow-3<x<-1$
so the solution is $-3<x<-1$ or $x>0$
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 3

$f(x)=x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+64 x$
solutions to $x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+63 x=0$ are (M1)
$x=0, x=-1$ and $x=-3$
so the solution is $-3<x<-1$ or $x>0$
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 4

$f(x)=x$ when $x(x+2)^{6}=x$
either $x=0$ or $(x+2)^{6}=1$
if $(x+2)^{6}=1$ then $x+2= \pm 1$ so $x=-1$ or $x=-3$
the solution is $-3<x<-1$ or $x>0$
A1A1
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

Question 8

(a) (i) $f(0)=-1$
(M1)A1

Note: Award M1 for evidence that the lower part of the graph has been reflected and $\boldsymbol{A 1}$ correct shape with y-intercept below 4 .
(b) (i)

Note: Award M1 for any translation of $y=|x|$.
(ii) ± 1

A1
Note: Do not award the $\boldsymbol{A 1}$ if coordinates given, but do not penalise in the rest of the question
(c) (i)

(M1)A1

Note: Award M1 for evidence that lower part of (b) has been reflected in the x-axis and translated.
(ii) $0, \pm 2$
(d) (i) $\pm 1, \pm 3$
(e) (i) $(1,3),(2,5), \ldots$
(ii) $0, \pm 2, \pm 4$
(iii) $0, \pm 2, \pm 4, \pm 6, \pm 8$

$$
A 1
$$

[3 marks]

$$
A 1
$$

$$
A 1
$$

$$
A 1
$$

$N=2 n+1$
(ii) Using the formula of the sum of an arithmetic series
[3 marks]
(M1)
A1

EITHER
$4(1+2+3+\ldots+n)=\frac{4}{2} n(n+1)$
$=2 n(n+1)$

OR
$2(2+4+6+\ldots+2 n)=\frac{2}{2} n(2 n+2)$
$=2 n(n+1)$

Question 9

(a)

Note: Award $\boldsymbol{A 1}$ for correct shape, $\boldsymbol{A 1}$ for $\boldsymbol{x}=2$ clearly stated and $\boldsymbol{A 1}$ for $y=-3$ clearly stated.

$$
x \text { intercept }(2.33,0) \text { and } y \text { intercept }(0,-3.5)
$$

Note: Accept -3.5 and 2.33 (7/3) marked on the correct axes.
(b) $x=-3+\frac{1}{y-2}$

Note: Award $\boldsymbol{M 1}$ for interchanging x and y (can be done at a later stage).

$$
\begin{align*}
& x+3=\frac{1}{y-2} \\
& y-2=\frac{1}{x+3} \tag{M1}
\end{align*}
$$

Note: Award $\boldsymbol{M} 1$ for attempting to make y the subject.

$$
f^{-1}(x)=2+\frac{1}{x+3}\left(=\frac{2 x+7}{x+3}\right), x \neq-3
$$

Note: Award $\boldsymbol{A 1}$ only if $f^{-1}(x)$ is seen. Award $\boldsymbol{A 1}$ for the domain.

Question 10

$$
\begin{aligned}
& \text { using } p(a)=-7 \text { to obtain } 3 a^{3}+a^{2}+5 a+7=0 \\
& (a+1)\left(3 a^{2}-2 a+7\right)=0
\end{aligned}
$$

Note: Award M1 for a cubic graph with correct shape and A1 for clearly showing that the above cubic crosses the horizontal axis at $(-1,0)$ only.
$a=-1$

EITHER

showing that $3 a^{2}-2 a+7=0$ has no real (two complex) solutions for a
OR
showing that $3 a^{3}+a^{2}+5 a+7=0$ has one real (and two complex)
solutions for a R1

Note: Award $\boldsymbol{R} \mathbf{1}$ for solutions that make specific reference to an appropriate graph.

Question 11

(a)

as roots of $f(x)=0$ are $-1,1,5$
(M1)
solution is $]-\infty,-1[\cup] 1,5[\quad(x<-1$ or $1<x<5)$

Award $\boldsymbol{A 1 A O}$ for closed intervals.
(b) METHOD 1
(graphs of $g(x)$ and $\frac{1}{g(x)}$)

roots of $g(x)=0$ are -3 and 2
(M1)(A1)
Notes: Award M1 if quadratic graph is drawn or two roots obtained.
Roots may be indicated anywhere eg asymptotes on graph or in inequalities below.
the intersections of the graphs $g(x)$ and of $1 / g(x)$
are $-3.19,-2.79,1.79,2.19$
(M1)(A1)
Note: Award A1 for at least one of the values above seen anywhere.
solution is $]-3.19,-3[\cup]-2.79,1.79[\cup] 2,2.19[$
($-3.19<x<-3$ or $-2.79<x<1.79$ or $2<x<2.19$)
Note: Award A1A1A0 for closed intervals.

METHOD 2

(graph of $g(x)-\frac{1}{g(x)}$)

asymptotes at $x=-3$ and $x=2$
(M1)(A1)
Note: May be indicated on the graph.
roots of graph are $-3.19,-2.79,1.79,2.19$
(M1)(A1)
Note: Award A1 for at least one of the values above seen anywhere.
solution is (when graph is negative)
]-3.19,-3[$\cup]-2.79,1.79[\cup] 2,2.19[$
$(-3.19<x<-3$ or $-2.79<x<1.79$ or $2<x<2.19)$
A1A1A1

Note: Award A1A1AO for closed intervals.

Question 12
(a)

general shape including 2 minimums, cusp correct domain and symmetrical about the middle $(x=5)$
(b) $x=9.16$ or $x=0.838$

Question 13
(a) (i) $-4 \leq y \leq-2$
(ii) $-5 \leq y \leq-1$
(iii) $-3 \leq 2 x-6 \leq 5$

A1A1

Note: Award M1 for $f(2 x-6)$.

$$
\begin{aligned}
& 3 \leq 2 x \leq 11 \\
& \frac{3}{2} \leq x \leq \frac{11}{2}
\end{aligned}
$$

(b) (i) any valid argument eg f is not one to one, f is many to one, fails horizontal line test, not injective
(ii) largest domain for the function $g(x)$ to have an inverse is $[-1,3]$
(iii)

y-intercept indicated (coordinates not required)
correct shape
A1
coordinates of end points $(1,3)$ and $(-1,-1)$
A1
Note: Do not award any of the above marks for a graph that is not one to one.

Question 14
(a) EITHER

$$
\begin{aligned}
& y=\ln (x-a)+b=\ln (5 x+10) \\
& y=\ln (x-a)+\ln c=\ln (5 x+10) \\
& y=\ln (c(x-a))=\ln (5 x+10)
\end{aligned}
$$

OR
$y=\ln (5 x+10)=\ln (5(x+2))$
$y=\ln (5)+\ln (x+2)$

THEN

$a=-2, b=\ln 5$
(c) (i) $y=\frac{2 x-5}{x+d}$

$$
(x+d) y=2 x-5
$$

Note: Award M1 for attempting to rearrange x and y in a linear expression.

$$
\begin{align*}
& x(y-2)=-d y-5 \\
& x=\frac{-d y-5}{y-2} \tag{A1}
\end{align*}
$$

(A1)

Note: x and y can be interchanged at any stage

$$
h^{-1}(x)=\frac{-d x-5}{x-2}
$$

Note: Award $\boldsymbol{A} 1$ only if $h^{-1}(x)$ is seen.
(ii) self Inverse $\Rightarrow h(x)=h^{-1}(x)$

$$
\begin{aligned}
& \frac{2 x-5}{x+d} \equiv \frac{-d x-5}{x-2} \\
& d=-2
\end{aligned}
$$

(iii) METHOD 1
$\frac{2 k(x)-5}{k(x)-2}=\frac{2 x}{x+1}$
$k(x)=\frac{x+5}{2}$

METHOD 2

$h^{-1}\left(\frac{2 x}{x+1}\right)=\frac{2\left(\frac{2 x}{x+1}\right)-5}{\frac{2 x}{x+1}-2}$
$k(x)=\frac{x+5}{2}$

Question 15
(a) $(x+2)^{2}-6$

A1A1
[2 marks]
(b) $(g \circ f)(x)=(x+2)^{2}-6$
$\Rightarrow g(x)=x^{2}-6$

A1
[2 marks]
Total [4 marks]

Question 16
(a) $f(-x)=\frac{3(-x)^{2}+10}{(-x)^{2}-4}$
$=\frac{3 x^{2}+10}{x^{2}-4}=f(x)$
$f(x)=f(-x) \quad$ R1
hence this is an even function $\quad \boldsymbol{A G}$
Note: Award A1R1 for the statement, all the powers are even hence $f(x)=f(-x)$.
Note: Just stating all the powers are even is AORO.
Note: Do not accept arguments based on the symmetry of the graph.
(b) (i)

correct shape in 3 parts which are asymptotic and symmetrical
A1
correct vertical asymptotes clear at 2 and -2
A1
correct horizontal asymptote clear at 3
A1
contınuea...
Question 5 continued
(ii) $\quad f(x)>3$

$$
f(x) \leq-2.5
$$

A1
A1
[5 marks]
Total [7 marks]
(a) valid method eg, sketch of curve or critical values found $x<-2.24, x>2.24$,
$-1<x<0.8$
(b)
(i) $(1.67,-5.14),(-1.74,-3.71)$

A1A1
Note: Award A1AO for any two correct terms.
(ii) $f^{\prime}(x)=4 x^{3}+0.6 x^{2}-11.6 x-1$
$f^{\prime \prime}(x)=12 x^{2}+1.2 x-11.6=0$
$-1.03,0.934$
A1A1
Note: M1 should be awarded if graphical method to find zeros of $f^{\prime \prime}(x)$ or turning points of $f^{\prime}(x)$ is shown.

[5 marks]

(c) (i) 1.67

A1
(ii)

Note: Award M1 for reflection of their $y=f(x)$ in the line $y=x$ provided their f is one-one.
$\boldsymbol{A 1}$ for (0,4), (4,0) (Accept axis intercept values) A1 for the other two sets of coordinates of other end points
(iii) $\quad x=f(1)$
$=-1.6$
(d) (i) $y=2 \sin (x-1)-3$
$x=2 \sin (y-1)-3$
$\left(g^{-1}(x)=\right) \arcsin \left(\frac{x+3}{2}\right)+1$
$-5 \leq x \leq-1$
Note: Award $\boldsymbol{A 1}$ for -5 and -1 , and $\boldsymbol{A 1}$ for correct inequalities if numbers are reasonable.
(ii) $f^{-1}(g(x))<1$
$g(x)>-1.6$
$x>g^{-1}(-1.6)=1.78$
Note: Accept $=$ in the above.
$1.78<x \leq \frac{\pi}{2}+1$
Note: A1 for $x>1.78($ allow $\geq)$ and $\boldsymbol{A 1}$ for $x \leq \frac{\pi}{2}+1$.

Question 18

(a)

correct shape passing through the origin and correct domain
Note: Endpoint coordinates are not required. The domain can be indicated by -1 and 1 marked on the x-axis.
($0.652,1.68$)
A1
two correct intercepts (coordinates not required)
Note: A graph passing through the origin is sufficient for $(0,0)$.
(b) $[-9.42,1.68]$ (or $[-3 \pi, 1.68])$
(c) attempting to solve either $|3 x \arccos (x)|>1$ (or equivalent) or $|3 x \arccos (x)|=1$ (or equivalent) (eg. graphically)

Note: Award AO for $x<-0.189$.

Question 19
$\begin{array}{ll}x^{2}-1>0 \\ x<-1 \text { or } x>1 & \text { (M1) } \\ & \text { A1 }\end{array}$
$x<-1$ or $x>1$
A1
[2 marks]
(b)

shape
A1
$x=1$ and $x=-1$
A1
x-intercepts
A1
[3 marks]
(c) EITHER
f is symmetrical about the y-axis
OR
$f(-x)=f(x)$
R1
[1 mark]
(d) EITHER
f is not one-to-one function
R1
OR
horizontal line cuts twice
R1
Note: Accept any equivalent correct statement.
(e) $\quad x=-1+\ln \left(\sqrt{y^{2}-1}\right)$
M1
$e^{2 x+2}=y^{2}-1$
M1
$g^{-1}(x)=\sqrt{e^{2 x+2}+1}, x \in \mathbb{R}$
A1A1

Question 20
(a) $g(x)=3 x^{4}+a x^{3}+b x^{2}-7 x-4$
$g(1)=0 \Rightarrow a+b=8$
$g(-1)=0 \Rightarrow-a+b=-6$
$\Rightarrow a=7, \mathrm{~b}=1$
(b) $3 x^{4}+7 x^{3}+x^{2}-7 x-4=\left(x^{2}-1\right)\left(p x^{2}+q x+r\right)$
attempt to equate coefficients
$p=3, q=7, r=4$
$3 x^{4}+7 x^{3}+x^{2}-7 x-4=\left(x^{2}-1\right)\left(3 x^{2}+7 x+4\right)$
$=(x-1)(x+1)^{2}(3 x+4)$
Note: Accept any equivalent valid method.
(c)

A1 for correct shape (ie with correct number of max/min points)
A1 for correct x and y intercepts
A1 for correct maximum and minimum points
(d) $\quad c>0$
$-6.20<c<-0.0366$
A1A1

Question 21

(a) (i)

A1A1
A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.

Note: Axes intercepts and scales not required. A1 for correct domain
(ii) for each value of x there is a unique value of $f(x)$

Note: Accept "passes the vertical line test" or equivalent.

(iii) no inverse because the function fails the horizontal line test or equivalent

R1
Note: No FT if the graph is in degrees (one-to-one).
(iv) the expression is not valid at either of $x=\frac{\pi}{4}\left(\right.$ or $\left.-\frac{3 \pi}{4}\right)$

R1
(b) METHOD 1

$$
\begin{aligned}
& f(x)=\frac{\tan \left(x+\frac{\pi}{4}\right)}{\tan \left(\frac{\pi}{4}-x\right)} \\
& =\frac{1-\tan x \tan \frac{\pi}{4}}{\tan \frac{\pi}{4}-\tan x} \\
& \frac{1+\tan \frac{\pi}{4} \tan x}{\left(\frac{1+t}{1-t}\right)^{2}}
\end{aligned}
$$

METHOD 2

$$
\begin{aligned}
& f(x)=\tan \left(x+\frac{\pi}{4}\right) \tan \left(\frac{\pi}{2}-\frac{\pi}{4}+x\right) \\
& =\tan ^{2}\left(x+\frac{\pi}{4}\right)
\end{aligned}
$$

$$
g(t)=\left(\frac{\tan x+\tan \frac{\pi}{4}}{1-\tan x \tan \frac{\pi}{4}}\right)^{2}
$$

$$
=\left(\frac{1+t}{1-t}\right)^{2}
$$

(c)

for $t \leq 0$, correct concavity with two axes intercepts and with asymptote $y=1$ A1
t intercept at $(-1,0)$
y intercept at $(0,1)$
(d) (i) METHOD 1
α, β satisfy $\frac{(1+t)^{2}}{(1-t)^{2}}=k$
$1+t^{2}+2 t=k\left(1+t^{2}-2 t\right)$
$(k-1) t^{2}-2(k+1) t+(k-1)=0$ A1
attempt at using quadratic formula M1
$\alpha, \beta=\frac{k+1 \pm 2 \sqrt{k}}{k-1}$ or equivalent A1

METHOD 2
α, β satisfy $\frac{1+t}{1-t}=(\pm) \sqrt{k}$
$t+\sqrt{k} t=\sqrt{k}-1$
$t=\frac{\sqrt{k}-1}{\sqrt{k}+1}$ (or equivalent)
$t-\sqrt{k} t=-(\sqrt{k}+1)$ M1
$t=\frac{\sqrt{k}+1}{\sqrt{k}-1}$ (or equivalent) A1
so for eg, $\alpha=\frac{\sqrt{k}-1}{\sqrt{k}+1}, \beta=\frac{\sqrt{k}+1}{\sqrt{k}-1}$
(ii) $\quad \alpha+\beta=2 \frac{(k+1)}{(k-1)}\left(=-2 \frac{(1+k)}{(1-k)}\right)$
since $1+k>1-k$
$\alpha+\beta<-2$

Question 22
(a)

either graph passing through (or touching) A
correct shape and vertical asymptote with correct equation for either graph correct horizontal asymptote with correct equation for either graph two completely correct sketches
(b) $a\left(-\frac{1}{2}\right)+1=0 \Rightarrow a=2$
from horizontal asymptote, $\left(\frac{a}{b}\right)^{2}=\frac{4}{9}$
$\frac{a}{b}= \pm \frac{2}{3} \Rightarrow b= \pm 3$
from vertical asymptote, $\left(\frac{4}{3}\right)+c=0$
$b=3, c=-4$ or $b=-3, c=4$

Question 23
(a) METHOD 1
$f^{\prime}(x)=\frac{\frac{2(x-3)}{x}-(2 \ln x+1)}{(x-3)^{2}}\left(=\frac{2(x-3)-x(2 \ln x+1)}{x(x-3)^{2}}\right)$
Note: Award M1 for attempt at quotient rule, A1A1 for numerator and A1 for denominator.

METHOD 2

$f(x)=(2 \ln x+1)(x-3)^{-1}$
$f^{\prime}(x)=\left(\frac{2}{x}\right)(x-3)^{-1}-(2 \ln x+1)(x-3)^{-2}\left(=\frac{2(x-3)-x(2 \ln x+1)}{x(x-3)^{2}}\right)$ (M1)A1A1
Note: Award M1 for attempt at product rule, A1 for first term, A1 for second term.

[4 marks]

(b) finding turning point of $y=f^{\prime}(x)$ or finding root of $y=f^{\prime \prime}(x)$
$x=0.899$
$y=f(0.899048 \ldots)=-0.375 \quad$ A1
(M1)A1
($0.899,-0.375$)
Note: Do not accept $x=0.9$. Accept y-coordinates rounding to -0.37 or -0.375 but not -0.38 .
(c)

(i) smooth curve over the correct domain which does not cross the y-axis
and is concave down for $x>1$
x-intercept at 0.607 A1
equations of asymptotes given as $x=0$ and $x=3$ (the latter must be drawn)
(ii) attempt to reflect graph of f in $y=x$
smooth curve over the correct domain which does not cross the x-axis and is concave down for $y>1$
y-intercept at 0.607
A1
equations of asymptotes given as $y=0$ and $y=3$ (the latter must be drawn)

Note: For FT from (i) to (ii) award max M1A0A1A0.
(d) solve $f(x)=f^{-1}(x)$ or $f(x)=x$ to get $x=0.372$
$0<x<0.372$
Note: Do not award FT marks.

Question 24
(a)

Note: Award A1 for each correct curve, showing all local max \& mins.
Note: Award AOAO for the curves drawn in degrees.

Note: Award $\boldsymbol{M} 1$ for attempt to find points of intersections between two curves. $0<x<1.35$

Note: Accept $x<1.35$.
$4.35<x<6.64$
Note: Award A1 for correct endpoints, A1 for correct inequalities.
Note: Award M1FTA1FTA0FTAOFT for $0<x<7.31$.
Note: Accept $x<7.31$.

Question 25
(a) $\quad \vec{\prime}(x) \geq 3$

A1
[1 mark]
(b) $x=\sec y+2$
(M1)
Note: Exchange of variables can take place at any point.

$$
\begin{aligned}
& \cos y=\frac{1}{x-2} \\
& \boldsymbol{f}^{-1}(x)=\arccos \left(\frac{1}{x-2}\right), x \geq 3
\end{aligned}
$$

Note: Allow follow through from (a) for last $\boldsymbol{A 1}$ mark which is independent of earlier marks in (b).

Question 26
(a) $\Rightarrow(1)=0$
$\#(0)=-1$
(A1)
A1
[2 marks]
(b) $\quad=f(3)$
(M1)
$\Rightarrow=4$
A1
[2 marks]
(c) domain is $-2 \leq x \leq 6$
A1
A1
[2 marks]

