Subject - Math(Higher Level)
 Topic - Circular trigonometry
 Year - Nov 2011 - Nov 2019
 Paper 2

Question 1

(a) $\tan \left(\arctan \frac{1}{2}-\arctan \frac{1}{3}\right)=\tan (\arctan a)$ (M1)

$$
\begin{equation*}
a=0.14285 \ldots=\frac{1}{7} \tag{A1}
\end{equation*}
$$

(b) $\arctan \left(\frac{1}{7}\right)=\arcsin (x) \Rightarrow x=\sin \left(\arctan \frac{1}{7}\right) \approx 0.141$

Note: Accept exact value of $\left(\frac{1}{\sqrt{50}}\right)$.

Question 2
(a)

Note: Accept 2 separate triangles. The diagram(s) should show that one triangle has an acute angle and the other triangle has an obtuse angle. The values $9.63,7.5$ and 45.7 and/or the letters, $\mathrm{A}, \mathrm{B} \mathrm{C}^{\prime}$ and C should be correctly marked on the diagram(s).
(b) METHOD 1

$$
\begin{aligned}
& \frac{\sin 45.7}{7.5}=\frac{\sin C}{9.63} \\
& \Rightarrow \hat{C}=66.77 \ldots, 113.2 \ldots \\
& \Rightarrow \hat{B}=67.52 \ldots, 21.07 \ldots \\
& \frac{b}{\sin B}=\frac{7.5}{\sin 45.7} \Rightarrow b=9.68(\mathrm{~cm}), b=3.77(\mathrm{~cm})
\end{aligned}
$$

Note: If only the acute value of \hat{C} is found, award $\boldsymbol{M 1 (A 1) (A 0) (A 0) A 1 A 0 .}$

METHOD 2

$$
\begin{aligned}
& 7.5^{2}=9.63^{2}+b^{2}-2 \times 9.63 \times b \cos 45.7^{\circ} \\
& b^{2}-13.45 \ldots b+36.48 \ldots=0 \\
& b=\frac{13.45 \ldots \pm \sqrt{13.45 \ldots{ }^{2}-4 \times 36.48 \ldots}}{2} \\
& \mathrm{AC}=9.68(\mathrm{~cm}), \mathrm{AC}=3.77(\mathrm{~cm})
\end{aligned}
$$

M1A1
(M1)(A1)
A1A1
[6 marks]
Total [8 marks]

Question 3

$\mathrm{AC}=\mathrm{BD}=\sqrt{13^{2}-3^{2}}=12.64$.
$\cos \alpha=\frac{3}{13} \Rightarrow \alpha=1.337 \ldots(76.65 \ldots$.
attempt to find either arc length $A B$ or arc length $C D$
arc length $\mathrm{AB}=5(\pi-2 \times 0.232 \ldots)(=13.37 \ldots)$
(M1)
arc length $\mathrm{CD}=8(\pi+2 \times 0.232 \ldots)(=28.85 \ldots)$
length of string $=13.37 \ldots+28.85 \ldots+2(12.64 \ldots)$
(M1)
$=67.5(\mathrm{~cm})$
[8 marks]

Question 4

$$
\begin{array}{lr}
\frac{1}{2} r^{2} \times 1=7 & \text { M1 } \\
r=3.7 \ldots(=\sqrt{14})(\text { or } 37 \ldots \mathrm{~mm}) & \text { (A1) } \\
\text { height }=2 r \cos \left(\frac{\pi-1}{2}\right)\left(\text { or } 2 r \sin \frac{1}{2}\right) & \text { (M1) }(\text { A1) } \\
3.59 \text { or anything that rounds to } 3.6 & \text { A1 } \\
\text { so the dimensions are } 3.7 \text { by } 3.6(\mathrm{~cm} \text { or } 37 \text { by } 36 \mathrm{~mm}) & \text { A1 }
\end{array}
$$

Question 5

(a) let the distance the cable is laid along the seabed be y

$$
\begin{align*}
& y^{2}=x^{2}+200^{2}-2 \times x \times 200 \cos 60^{\circ} \\
& \text { (or equivalent method) } \\
& y^{2}=x^{2}-200 x+40000 \\
& \text { cost }=C=80 y+20 x \tag{A1}\\
& C=80\left(x^{2}-200 x+40000\right)^{\frac{1}{2}}+20 x
\end{align*}
$$

[4 marks]
(b) $x=55.2786 \ldots=55$ (m to the nearest metre)
$(x=100-\sqrt{2000})$
(A1)A1
[2 marks]
Total [6 marks]

Question 6
(a) EITHER

$$
\mathrm{AOB}=2 \arcsin \left(\frac{3}{4}\right) \text { or equivalent }\left(e g \mathrm{AOB}=2 \arctan \left(\frac{3}{\sqrt{7}}\right), \mathrm{AOB}=2 \arccos \left(\frac{\sqrt{7}}{4}\right)\right)(M 1)
$$

OR
$\cos \mathrm{AOB}=\frac{4^{2}+4^{2}-6^{2}}{2 \times 4 \times 4}\left(=-\frac{1}{8}\right)$
THEN

$$
=1.696(\text { correct to } 4 \mathrm{sf})
$$

(b) use of area of segment $=$ area of sector - area of triangle

$$
\begin{aligned}
& =\frac{1}{2} \times 4^{2} \times 1.696-\frac{1}{2} \times 4^{2} \times \sin 1.696 \\
& =5.63\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

(M1)

A1
[2 marks] (M1)

A1
[3 marks]
Total [5 marks]

Question 7

(a) attempting to solve for $\cos x$ or for u where $u=\cos x$ or for x graphically.

EITHER

$$
\begin{equation*}
\cos x=\frac{2}{3}(\text { and } 2) \tag{A1}
\end{equation*}
$$

OR
$x=48.1897 \ldots$..
THEN

$$
x=48^{\circ}
$$

$$
A 1
$$

Note: Award (M1)(A1)A0 for $x=48^{\circ}, 132^{\circ}$.
Note: Award (M1)(A1)A0 for 0.841 radians.
[3 marks]
(b) attempting to solve for $\sec x$ or for v where $v=\sec x$.

$$
\begin{align*}
& \sec x= \pm \sqrt{2}\left(\text { and } \pm \sqrt{\frac{2}{3}}\right) \tag{A1}\\
& \sec x= \pm \sqrt{2}
\end{align*}
$$

A1
[3 marks]

Question 8

(a) EITHER

$$
\theta=\pi-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right) \text { (or equivalent) }
$$

Note: Accept $\theta=180^{\circ}-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$ (or equivalent).

OR

$$
\theta=\arctan \left(\frac{x}{8}\right)+\arctan \left(\frac{20-x}{13}\right) \text { (or equivalent) }
$$

M1A1
[2 marks]
(b) (i) $\quad \theta=0.994\left(=\arctan \frac{20}{13}\right)$
(ii) $\quad \theta=1.19\left(=\arctan \frac{5}{2}\right)$
(c) correct shape. correct domain indicated.

Question 9
(a) METHOD 1

$$
\begin{array}{lc}
2 \arcsin \left(\frac{1.5}{4}\right) & \text { M1 } \\
\alpha=0.769^{c}\left(44.0^{\circ}\right) & A 1
\end{array}
$$

METHOD 2

using the cosine rule:
$3^{2}=4^{2}+4^{2}-2(4)(4) \cos \alpha \quad$ M1
$\alpha=0.769^{\circ}\left(44.0^{\circ}\right) \quad$ A1
[2 marks]
(b) one segment

$$
\begin{array}{rlr}
\mathrm{A}_{1} & =\frac{1}{2} \times 4^{2} \times 0.76879-\frac{1}{2} \times 4^{2} \times \sin (0.76879) \\
& =0.58819 \mathrm{~K} \\
2 \mathrm{~A}_{1} & =1.18\left(\mathrm{~cm}^{2}\right) & \boldsymbol{M 1 A 1} \\
\boldsymbol{A 1}) \\
\boldsymbol{A 1}
\end{array}
$$

Note: Award M1 only if both sector and triangle are considered.

Question 10

(a) each triangle has area $\frac{1}{8} x^{2} \sin \frac{2 \pi}{n}$ (use of $\frac{1}{2} a b \sin C$)
there are n triangles so $A=\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}$
$C=\frac{4\left(\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}\right)}{\pi x^{2}}$
so $C=\frac{n}{2 \pi} \sin \frac{2 \pi}{n}$
[3 marks]
(b) attempting to find the least value of n such that $\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99$
$n=26$
attempting to find the least value of n such that $\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99$
$n=21$ (and so a regular polygon with 21 sides)
Note: Award (M0) $\boldsymbol{A 0}(\boldsymbol{M 1}) \boldsymbol{A 1}$ if $\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99$ is not considered and $\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99$ is correctly considered. Award (M1)A1(M0)A0 for $n=26$.
(c) EITHER
for even and odd values of n, the value of C seems to increase towards the limiting value of the circle $(C=1)$ ie as n increases, the polygonal regions get closer and closer to the enclosing circular region

OR

the differences between the odd and even values of n illustrate that this measure of compactness is not a good one.

R1

Question 11

(a) METHOD 1

squaring both equations
$9 \sin ^{2} B+24 \sin B \cos C+16 \cos ^{2} C=36$
$9 \cos ^{2} B+24 \cos B \sin C+16 \sin ^{2} C=1$
adding the equations and using $\cos ^{2} \theta+\sin ^{2} \theta=1$ to obtain
$9+24 \sin (B+C)+16=37$
$24(\sin B \cos C+\cos B \sin C)=12$
$24 \sin (B+C)=12$
$\sin (B+C)=\frac{1}{2}$

METHOD 2

substituting for $\sin B$ and $\cos B$ to obtain
$\sin (B+C)=\left(\frac{6-4 \cos C}{3}\right) \cos C+\left(\frac{1-4 \sin C}{3}\right) \sin C$
$=\frac{6 \cos C+\sin C-4}{3}$ (or equivalent)
substituting for $\sin C$ and $\cos C$ to obtain
$\sin (B+C)=\sin B\left(\frac{6-3 \sin B}{4}\right)+\cos B\left(\frac{1-3 \cos B}{4}\right)$
$=\frac{\cos B+6 \sin B-3}{4}$ (or equivalent)
Adding the two equations for $\sin (B+C)$:
$2 \sin (B+C)=\frac{(18 \sin B+24 \cos C)+(4 \sin C+3 \cos B)-25}{12}$
$\sin (B+C)=\frac{36+1-25}{24}$
$\sin (B+C)=\frac{1}{2}$
(b) $\sin A=\sin \left(180^{\circ}-(B+C)\right)$ so $\sin A=\sin (B+C) \quad$ R1
$\sin (B+C)=\frac{1}{2} \Rightarrow \sin A=\frac{1}{2}$
$\Rightarrow A=30^{\circ}$ or $A=150^{\circ}$
if $A=150^{\circ}$, then $B<30^{\circ}$
for example, $3 \sin B+4 \cos C<\frac{3}{2}+4<6$, ie a contradiction R1
only one possible value $\left(A=30^{\circ}\right)$

Question 12
(a) $\begin{aligned} A & =\frac{1}{2} \times 5 \times 12 \times \sin 100^{\circ} \\ & =29.5\left(\mathrm{~cm}^{2}\right)\end{aligned}$
(b) $\mathrm{AC}^{2}=5^{2}+12^{2}-2 \times 5 \times 12 \times \cos 100^{\circ}$
therefore $\mathrm{AC}=13.8(\mathrm{~cm})$

Question 13
(a)

EITHER

area of triangle $=\frac{1}{2} \times 3 \times 4(=6)$
area of sector $=\frac{1}{2} \arcsin \left(\frac{4}{5}\right) \times 5^{2}(=11.5911 \ldots)$
A1

OR
$\int_{0}^{4} \sqrt{25-x^{2}} \mathrm{~d} x$
M1A1

THEN

$\begin{array}{lr}\text { total area }=17.5911 \ldots \mathrm{~m}^{2} & \text { (A1) } \\ \text { percentage }=\frac{17.5911 \ldots}{40} \times 100=44 \% & \boldsymbol{A 1}\end{array}$
[4 marks]
(b) METHOD 1

area of triangle $=\frac{1}{2} \times 4 \times \sqrt{a^{2}-16}$
$\theta=\arcsin \left(\frac{4}{a}\right)$
area of sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2} a^{2} \arcsin \left(\frac{4}{a}\right)$
therefore total area $=2 \sqrt{a^{2}-16}+\frac{1}{2} a^{2} \arcsin \binom{4}{a}=20$
A1
rearrange to give: $a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40$ AG

Question 14

(a) (i) $A=-3$
(ii) period $=\frac{2 \pi}{B}$

A1

$$
B=2
$$

Note: Award as above for $A=3$ and $B=-2$.

$$
\text { (iii) } \quad C=2
$$

A1
[4 marks]
(b) $\quad x=1.74,2.97\left(x=\frac{1}{2}\left(\pi+\arcsin \frac{1}{3}\right), \frac{1}{2}\left(2 \pi-\arcsin \frac{1}{3}\right)\right)$

Note: Award (M1)AO if extra correct solutions eg $(-1.40,-0.170)$ are given outside the domain $0 \leq x \leq \pi$.

Question 15
$21=\frac{1}{2} \cdot 6 \cdot 11 \cdot \sin A$
$\sin A=\frac{7}{11}$

EITHER

$\widehat{A}=0.6897 \ldots, 2.452 \ldots\left(\hat{A}=\arcsin \frac{7}{11}, \pi-\arcsin \frac{7}{11}=39.521 \ldots, 140.478 \ldots\right)$

OR

$$
\begin{equation*}
\cos A= \pm \frac{6 \sqrt{2}}{11}(= \pm 0.771 \ldots) \tag{A1}
\end{equation*}
$$

THEN

$\mathrm{BC}^{2}=6^{2}+11^{2}-2 \cdot 6 \cdot 11 \cos A$
$\mathrm{BC}=16.1$ or 7.43
: Award M1A1A0M1A1A0 if only one correct solution is given.

Question 16
attempting to use the area of sector formula (including for a semicircle)
semi-circle $\frac{1}{2} \pi \times 5^{2}=\frac{25 \pi}{2}=39.26990817 \ldots$
angle in smaller sector is $\pi-\theta$
area of sector $=\frac{1}{2} \times 2^{2} \times(\pi-\theta)$
attempt to total a sum of areas of regions to 44
$2(\pi-\theta)=44-39.26990817 \ldots$
$\theta=0.777\left(=\frac{29 \pi}{4}-22\right)$
Note: Award all marks except the final $\mathbf{A 1}$ for correct working in degrees.
Note: Attempt to solve with goat inside triangle should lead to nonsense answer and so should only receive a maximum of the two \boldsymbol{M} marks.

Question 17

$$
\begin{aligned}
& \mathrm{AC}^{2}=7.8^{2}+10.4^{2} \\
& \mathrm{AC}=13
\end{aligned}
$$

use of cosine rule eg, $\cos (\mathrm{ABC})=\frac{6.5^{2}+9.1^{2}-13^{2}}{2(6.5)(9.1)}$
$A \hat{B C}=111.804 \ldots{ }^{\circ}(=1.95134 \ldots)$
$=112^{\circ}$

Question 18
(a) METHOD 1
let $\mathrm{AC}=x$
$3^{2}=x^{2}+4^{2}-8 x \cos \frac{\pi}{9}$
attempting to solve for x
(M1)
$x=1.09,6.43$
A1A1

METHOD 2

let $\mathrm{AC}=x$
using the sine rule to find a value of $C \quad$ M1

$$
\begin{aligned}
& 4^{2}=x^{2}+3^{2}-6 x \cos \left(152.869 \ldots{ }^{\circ}\right) \Rightarrow x=1.09 \\
& 4^{2}=x^{2}+3^{2}-6 x \cos \left(27.131 \ldots{ }^{\circ}\right) \Rightarrow x=6.43
\end{aligned}
$$

METHOD 3

let $\mathrm{AC}=x$

using the sine rule to find a value of B and a value of C	M1
obtaining $B=132.869 \ldots, 7.131 \ldots \circ$ and $C=27.131 \ldots{ }^{\circ}, 152.869 \ldots{ }^{\circ}$	A1
$(B=2.319 \ldots, 0.124 \ldots$ and $C=0.473 \ldots, 2.668 \ldots$)	
attempting to find a value of x using the cosine rule	(M1)
$x=1.09,6.43$	A1A1

Note: Award M1AO(M1)A1AO for one correct value of x
(b) $\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi}{9}$ and $\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi}{9}$
(A1)
(4.39747 \ldots and $0.744833 \ldots$)
let D be the difference between the two areas
$D=\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi}{9}-\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi}{9}$
($D=4.39747 \ldots-0.744833 \ldots$)
$=3.65\left(\mathrm{~cm}^{2}\right)$

Question 19
(a) $A=2(\alpha-\sin \alpha) r^{2}+\frac{1}{2}(\theta-\sin \theta) r^{2}$

Note: Award M1A1A1 for alternative correct expressions eg. $A=4\left(\frac{\alpha}{2}-\sin \frac{\alpha}{2}\right) r^{2}+\frac{1}{2} \theta r^{2}$.

(b) METHOD 1

consider for example triangle ADM where M is the midpoint of BD
$\sin \frac{\alpha}{4}=\frac{1}{4}$
$\frac{\alpha}{4}=\arcsin \frac{1}{4}$
$\alpha=4 \arcsin \frac{1}{4}$

METHOD 2

attempting to use the cosine rule (to obtain $1-\cos \frac{\alpha}{2}=\frac{1}{8}$)
$\sin \frac{\alpha}{4}=\frac{1}{4}$ (obtained from $\sin \frac{\alpha}{4}=\sqrt{\frac{1-\cos \frac{\alpha}{2}}{2}}$)
$\frac{\alpha}{4}=\arcsin \frac{1}{4}$
$\alpha=4 \arcsin \frac{1}{4}$
METHOD 3
$\sin \left(\frac{\pi}{2}-\frac{\alpha}{4}\right)=2 \sin \frac{\alpha}{2}$ where $\frac{\theta}{2}=\frac{\pi}{2}-\frac{\alpha}{4}$
$\cos \frac{\alpha}{4}=4 \sin \frac{\alpha}{4} \cos \frac{\alpha}{4}$
Note: Award $\boldsymbol{M} \mathbf{1}$ either for use of the double angle formula or the conversion from sine to cosine.
$\frac{1}{4}=\sin \frac{\alpha}{4}$
$\frac{\alpha}{4}=\arcsin \frac{1}{4}$
$\alpha=4 \arcsin \frac{1}{4}$
(c) (from triangle ADM), $\theta=\pi-\frac{\alpha}{2}\left(=\pi-2 \arcsin \frac{1}{4}=2 \arccos \frac{1}{4}=2.6362 \ldots\right)$
attempting to solve $2(\alpha-\sin \alpha) r^{2}+\frac{1}{2}(\theta-\sin \theta) r^{2}=4$
with $\alpha=4 \arcsin \frac{1}{4}$ and $\theta=\pi-\frac{\alpha}{2}\left(=2 \arccos \frac{1}{4}\right)$ for r
$r=1.69$

A1

Question 20
(a) $\quad x=\frac{\pi}{4}$
$x=\frac{5 \pi}{4}, x=-\frac{3 \pi}{4}$
A1
A1
[2 marks]
(b) reflection in the y-axis results in $y=\tan \left(-x+\frac{\pi}{4}\right)\left(=\cot \left(x+\frac{\pi}{4}\right)\right)$
vertical stretch gives $y=\frac{1}{2} \tan \left(-x+\frac{\pi}{4}\right)\left(=\frac{1}{2} \cot \left(x+\frac{\pi}{4}\right)\right)$
translation

$$
\begin{aligned}
& y=\frac{1}{2} \tan \left[-\left(x-\frac{\pi}{4}-\frac{\pi}{4}\right)\right]-3 \\
& =\frac{1}{2} \tan \left(-x+\frac{\pi}{2}\right)-3\left(=\frac{1}{2} \cot (x)-3\right)
\end{aligned}
$$

Notes: Award the A1s independently of each other.
Do not penalize the absence of $y=$.

Total [6 marks]

Question 21

> (a) $\quad p^{2}=12^{2}+r^{2}-2 \times 12 \times r \times \cos \left(30^{\circ}\right)$
> $r^{2}-12 \sqrt{3} r+144-p^{2}=0$

M1A1

AG
[2 marks]

(M1)

OR
using the sine rule
(M1)

THEN

$P Q=5.10(\mathrm{~cm})$ or
A1
$P Q=15.7(\mathrm{~cm})$
A1
[3 marks]
(c) area $=\frac{1}{2} \times 12 \times 5.1008 \ldots \times \sin \left(30^{\circ}\right)$
$=15.3\left(\mathrm{~cm}^{2}\right)$
(A1)
(A1)

A1A1

(b) EITHER
$r^{2}-12 \sqrt{3} r+80=0$

M1A1
A1
[3 marks]
(d) METHOD 1

EITHER

$$
\begin{array}{ll}
r^{2}-12 \sqrt{3} r+144-p^{2}=0 & \\
\text { discriminant }=(12 \sqrt{3})^{2}-4 \times\left(144-p^{2}\right) & \boldsymbol{M} 1 \\
=4\left(p^{2}-36\right) & \boldsymbol{A 1} \\
\left(p^{2}-36\right)>0 & \boldsymbol{M} 1 \\
p>6 & \boldsymbol{A 1}
\end{array}
$$

ORconstruction of a right angle triangle(M1)$12 \sin 30^{\circ}=6$M1(A1)
hence for two triangles $p>6$ R1
THEN
$p<12$ A1
$144-p^{2}>0$ to ensure two positive solutions or valid geometric argument R1
$\therefore 6<\mathrm{p}<12$ A1
METHOD 2diagram showing two triangles(M1)
$12 \sin 30^{\circ}=6$ M1A1
one right angled triangle when $p=6$ (A1)$\therefore p>6$ for two trianglesR1
$p<12$ for two triangles A1$6<p<12$A1
[7 marks]
Total [15 marks]

Question 22

METHOD 1

area $=($ four sector areas radius 9$)+($ four sector areas radius 3$)$
(M1)

$$
=4\left(\frac{1}{2} 9^{2} \frac{\pi}{9}\right)+4\left(\frac{1}{2} 3^{2} \frac{7 \pi}{18}\right)
$$

$$
=18 \pi+7 \pi
$$

$$
=25 \pi\left(=78.5 \mathrm{~cm}^{2}\right)
$$

METHOD 2

area $=$
(area of circle radius 3$)+($ four sector areas radius 9$)-($ four sector areas radius 3$)($ M1)

$$
\pi 3^{2}+4\left(\frac{1}{2} 9^{2} \frac{\pi}{9}\right)-4\left(\frac{1}{2} 3^{2} \frac{\pi}{9}\right)
$$

(A1)(A1)
ote: Award $\boldsymbol{A 1}$ for the second term and $\boldsymbol{A 1}$ for the third term.
$=9 \pi+18 \pi-2 \pi$
$=25 \pi\left(=78.5 \mathrm{~cm}^{2}\right)$ $\boldsymbol{A 1}$
ote: Accept working in degrees.

Question 23
attempt to use tan, or sine rule, in triangle BXN or BXS
(M1)

$$
\begin{align*}
& \mathrm{NX}=80 \tan 55^{\circ}\left(=\frac{80}{\tan 35^{\circ}}=114.25\right) \tag{A1}\\
& \mathrm{SX}=80 \tan 65^{\circ}\left(=\frac{80}{\tan 25^{\circ}}=171.56\right)
\end{align*}
$$

$$
\mathrm{SN}^{2}=171.56^{2}+114.25^{2}-2 \times 171.56 \times 114.25 \cos 70^{\circ}
$$

$\mathrm{SN}=171(\mathrm{~m})$
Attempt to use cosine rule

Question 24

(a) $k^{2}-k-12<0$

$$
\begin{aligned}
& (k-4)(k+3)<0 \\
& -3<k<4
\end{aligned}
$$

(M1)
(b) $\quad \cos B=\frac{2^{2}+c^{2}-4^{2}}{4 c}\left(\right.$ or $\left.16=2^{2}+c^{2}-4 c \cos B\right)$

M1
$\Rightarrow \frac{c^{2}-12}{4 c}<\frac{1}{4}$
A1
$\Rightarrow c^{2}-c-12<0$
from result in (a)
$0<\mathrm{AB}<4$ or $-3<\mathrm{AB}<4$
(A1)
but AB must be at least 2
$\Rightarrow 2<A B<4$
A1
Note: Allow $\leq A B$ for either of the final two \boldsymbol{A} marks.

Total [6 marks]

Question 25
(a) (i) METHOD 1

$$
\begin{aligned}
& \mathrm{PC}=\frac{\sqrt{3}}{2} \text { or } 0.8660 \\
& \mathrm{PM}=\frac{1}{2} \mathrm{PC}=\frac{\sqrt{3}}{4} \text { or } 0.4330 \\
& \mathrm{AM}=\sqrt{\frac{1}{4}+\frac{3}{16}} \\
& =\frac{\sqrt{7}}{4} \text { or } 0.661(\mathrm{~m})
\end{aligned}
$$

Note: Award M1 for attempting to solve triangle AMP.

METHOD 2

using the cosine rule
$\mathrm{AM}^{2}=1^{2}+\left(\frac{\sqrt{3}}{4}\right)^{2}-2 \times \frac{\sqrt{3}}{4} \times \cos \left(30^{\circ}\right)$
M1A1
$\mathrm{AM}=\frac{\sqrt{7}}{4}$ or $0.661(\mathrm{~m})$
A1
(ii) $\tan (\mathrm{AMP})=\frac{2}{\sqrt{3}}$ or equivalent

$$
=0.857
$$

A1
[5 marks]
(b) EITHER
$\frac{1}{2} \mathrm{AM}^{2}(2 \mathrm{~A} \hat{\mathrm{M}}-\sin (2 \mathrm{~A} \hat{\mathrm{M}}))$
(M1)A1

OR
$\frac{1}{2} \mathrm{AM}^{2} \times 2 \mathrm{AMP}-\frac{\sqrt{3}}{8}$
(M1)A1
$=0.158\left(\mathrm{~m}^{2}\right)$
A1
Note: Award M1 for attempting to calculate area of a sector minus area of a triangle.
[3 marks]
Total [8 marks]
Question 26

$$
\begin{aligned}
& \tan (x+\pi)=\tan x\left(=\frac{\sin x}{\cos x}\right) \\
& \frac{\cos \left(x-\frac{\pi}{2}\right)=\sin x}{\text { e: The two M1's can be awarded for observation or for expanding. }} \\
& \text { (M1)A1 } \\
& \tan (x+\pi) \cos \left(x-\frac{\pi}{2}\right)=\frac{\sin ^{2} x}{\cos x}
\end{aligned} \text { (M1)A1 }
$$

[5 marks]
Question 27
(a) METHOD 1
use of \tan
$\tan \theta=\frac{1}{8}$
(M1)
(A1)
$\theta_{\infty}=\arctan \left(\frac{1}{\infty}\right)$
A1

METHOD 2

$$
\begin{equation*}
\mathrm{AP}=\sqrt{\mathrm{s}^{2}+1} \tag{A1}
\end{equation*}
$$

use of \sin, cos, sine rule or cosine rule using the correct length of AP

$$
\theta_{\nabla}=\arcsin \left(\frac{1}{\sqrt{\rho^{2}+1}}\right) \text { or } \theta_{\nabla}=\arccos \left(\frac{\nabla}{\sqrt{p^{2}+1}}\right)
$$

(b) $\mathrm{QR}=1 \Rightarrow r=q+1$

Note: This may be seen anywhere.
$\tan \theta_{q}=\tan \left(\theta_{q}+\theta_{r}\right)$
attempt to use compound angle formula for tan M1
$\tan \theta_{p}=\frac{\tan \theta_{-}+\tan \theta_{r}}{1-\tan \theta_{q} \tan \theta_{r}}$
$\frac{1}{p}=\frac{\frac{1}{-}+\frac{1}{r}}{1-\left(\frac{1}{\square}\right)\left(\frac{1}{r}\right)}$
$\frac{1}{p}=\frac{\frac{1}{q}+\frac{1}{q+1}}{1-\left(\frac{1}{q}\right)\left(\frac{1}{\rightarrow+1}\right)}$ or $p=\frac{1-\left(\frac{1}{q}\right)\left(\frac{1}{q+1}\right)}{\frac{1}{q}+\frac{1}{q+1}}$
$\frac{1}{p}=\frac{q+q+1}{q(q+1)-1}$
Note: Award $\boldsymbol{M} \mathbf{1}$ for multiplying top and bottom by,$(q+1)$.

$$
p=\frac{\mathbf{z}^{2}+q-1}{2 q+1}
$$

(c)

increasing function with positive _ $_{\text {_ }}$-intercept
A1
Note: Accept curves which extend beyond the domain shown above.
$(0.618<)_{\rightarrow}<9$
\Rightarrow range is $(0<)<4.68$
$0 \ll 4.68$

Question 28

attempt to apply cosine rule M1
$\cos \mathrm{A}=\frac{5^{2}+11^{2}-14^{2}}{2 \times 5 \times 11}=-0.4545 \ldots$
$\Rightarrow A=117.03569 \ldots$.
$\Rightarrow \mathrm{A}=117.0^{\circ}$
attempt to apply sine rule or cosine rule:
$\frac{\sin 117.03569 \ldots}{14}=\frac{\sin B}{11}$
$\Rightarrow B=44.4153 \ldots$.
$\Rightarrow \mathrm{B}=44.4^{\circ}$
$\mathrm{C}=180^{\circ}-\mathrm{A}-\mathrm{B}$
$\mathrm{C}=18.5^{\circ}$
te: Candidates may attempt to find angles in any order of their choosing.

Question 29
(a) METHOD 1

$$
\begin{array}{l|l}
\text { LHS }=\frac{1+\sin 2 x}{\cos 2 x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} & \text { M1 } \\
=\frac{\left(\cos ^{2} x+\sin ^{2} x\right)+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} & \text { M1 } \\
=\frac{(\cos x+\sin x)^{2}}{(\cos x+\sin x)(\cos x-\sin x)} & \text { A1 } \\
=\frac{\cos x+\sin x}{\cos x-\sin x} & \mathbf{A 1} \\
=\frac{\cos x}{\cos x}+\frac{\sin x}{\cos x}-\frac{\sin x}{\cos x} & \mathbf{A G} \\
=\frac{1+\tan x}{1-\tan x} &
\end{array}
$$

$$
\mathrm{LHS}=\frac{1+\sin 2 x}{\cos 2 x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}
$$

dividing numerator and denominator by $\cos ^{2} x$
$=\frac{\sec ^{2} x+2 \tan x}{1-\tan ^{2} x}$
$=\frac{1+\tan ^{2} x+2 \tan x}{1-\tan ^{2} x}$
$=\frac{(\tan x+1)^{2}}{(1-\tan x)(1+\tan x)}$
$=\frac{1+\tan x}{1-\tan x}$
$A G$

Note: Candidates may start with RHS; apply MS in reverse.
(b) valid attempt to solve $\frac{1+\tan x}{1-\tan x}=\sqrt{3}$

$$
\begin{aligned}
& \tan x=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& x=0.262\left(=\frac{\pi}{12}\right), x=3.40\left(=\frac{13 \pi}{12}\right)
\end{aligned}
$$

Question 30
(a) $3,-3$
(b) stretch parallel to the y-axis (with x-axis invariant), scale factor $\frac{2}{3}$ translation of $\binom{-0.003}{0}$ (shift to the left by 0.003)

Note: Can be done in either order.
[2 marks]
(c)

correct shape over correct domain with correct endpoints first maximum at $(0.0035,4.76)$
first minimum at $(0.0085,-1.24)$
(d) $\quad p \geq 3$ between $t=0.0016762$ and 0.0053238 and $t=0.011676$ and 0.015324
Note: Award M1A1 for either interval.

$$
=0.00730
$$

(e) $\quad p_{a v}=\frac{1}{0.007} \int_{0}^{0.007} 6 \sin (100 \pi t) \sin (100 \pi(t+0.003)) \mathrm{d} t$

$$
=2.87
$$

(M1)(A1)
A1
A1
A1
[3 marks]

A1
[3 marks]
(M1)
A1
[2 marks]
continued...
(f) in each cycle the area under the t axis is smaller than area above the t axis $\boldsymbol{R} 1$ the curve begins with the positive part of the cycle
(g) $a=\frac{4.76-(-1.24)}{2}$

$$
a=3.00
$$

$$
d=\frac{4.76+(-1.24)}{2}
$$

$d=1.76$
$b=\frac{2 \pi}{0.01}$
$b=628(=200 \pi) \quad$ A1
$c=0.0035-\frac{0.01}{4}$
(M1)
$c=0.00100$
A1
[6 marks]

Total [20 marks]

Question 31

(a) each arc has length $-\theta=6 \times \frac{\pi}{3}=2 \pi(=6.283 \ldots)$
perimeter is therefore $6 \pi(=18.8)(\mathrm{cm})$
(b) area of sector, s, is $\frac{1}{2}{ }^{2} \theta=18 \times \frac{\pi}{3}=6 \pi(=18.84 \ldots)$
area of triangle, ., is $\frac{1}{2} \times 6 \times 3 \sqrt{3}=9 \sqrt{3}(=15.58 \ldots)$
(M1)
A1
[2 marks]
(A1)
(M1)(A1)
Note: area of segment, k, is $3.261 \ldots$ implies area of triangle
finding $3 s-2 t$ or $3 \tau+t$ or similar area $=3 s-2 t=18 \pi-18 \sqrt{3}(=25.4)\left(\mathrm{cm}^{2}\right)$
(M1)A1
[5 marks]
Total [7 marks]

