Subject – Math(Higher Level) Topic - Vector Year - Nov 2011 – Nov 2019

Question 1

(a)	(i)	a-b = a+b		
		$\Rightarrow (a-b) \bullet (a-b) = (a+b) \bullet (a+b)$	(M1)	
		$\Rightarrow \mathbf{a} ^2 - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} ^2 = \mathbf{a} ^2 + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} ^2$	A1	
		$\Rightarrow 4a \cdot b = 0 \Rightarrow a \cdot b = 0$	A1	
		therefore a and b are perpendicular	R1	
	Not	te: Allow use of 2-d components.		
	Not	te: Do not condone sloppy vector notation, so we must see something to the effect that $ c ^2 = c.c$ is clearly being used for the <i>M1</i> .		
	Not	te: Allow a correct geometric argument, for example that the diagonals of a parallelogram have the same length only if it is a rectangle.		
	(ii)	$ \boldsymbol{a} \times \boldsymbol{b} ^2 = (\boldsymbol{a} \boldsymbol{b} \sin\theta)^2 = \boldsymbol{a} ^2 \boldsymbol{b} ^2 \sin^2\theta$	MIAI	
		$ a ^{2} b ^{2} - (a \cdot b)^{2} = a ^{2} b ^{2} - a ^{2} b ^{2} \cos^{2}\theta$	M1	
		$= a ^2 b ^2 (1 - \cos^2 \theta)$	A1	
		$= \mathbf{a} ^2 \mathbf{b} ^2 \sin^2 \theta$		
		$\Rightarrow \mathbf{a} \times \mathbf{b} ^2 = \mathbf{a} ^2 \mathbf{b} ^2 - (\mathbf{a} \cdot \mathbf{b})^2$	AG	
		$\Rightarrow u \land v - u v - (u \cdot v)$	AU	[8 marks]
				[
(b)	(i)	area of triangle = $\frac{1}{2} \vec{AB} \times \vec{AC} $	(M1)	
		$=\frac{1}{2} (b-a)\times(c-a) $	A 1	
		$=\frac{1}{2} b\times c+b\times -a+-a\times c+-a\times -a $	AI	
		$b \times -a = a \times b$; $c \times a = -a \times c$; $-a \times -a = 0$	M1	
		hence, area of triangle is $\frac{1}{2} \boldsymbol{a} \times \boldsymbol{b} + \boldsymbol{b} \times \boldsymbol{c} + \boldsymbol{c} \times \boldsymbol{a} $	AG	
	(ii)	D is the foot of the perpendicular from B to AC		
		area of triangle $ABC = \frac{1}{2} \vec{AC} \vec{BD} $	A1	
		therefore		
		$\frac{1}{2} \vec{AC} \vec{BD} = \frac{1}{2} \vec{AB} \times \vec{AC} $	M1	
		hence, $ \vec{BD} = \frac{ \vec{AB} \times \vec{AC} }{ \vec{AC} }$	A1	
		$=\frac{ a \times b + b \times c + c \times a }{ c - a }$	AG	
				[7 marks]
			Total	[15 marks]
				- ,

perpendicular when $\begin{pmatrix} 1\\ 2\cos x\\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1\\ 2\sin x\\ 1 \end{pmatrix} = 0$	(M1)
$\Rightarrow -1 + 4\sin x \cos x = 0$	A1
$\Rightarrow \sin 2x = \frac{1}{2}$	M1
$\implies 2x = \frac{\pi}{6}, \frac{5\pi}{6}$	
$\Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}$	AIAI

ote: Accept answers in degrees.

[5 marks]

METHOD 1

(a)	$9t_A = 7 - 4t_B$ and $3 - 6t_A = -6 + 7t_B$	M1A1	
	solve simultaneously		
	$t_A = \frac{1}{3}, t_B = 1$	A1	
Not	te: Only need to see one time for the A1.		
	therefore meet at (3, 1)	A1	[4 marks]
(b)	boats do not collide because the two times $\left(t_A = \frac{1}{3}, t_B = 1\right)$	(A1)	
	are different	R1	[2 marks]
		Tota	ıl [6 marks]

	Tota	l [6 marks]
METHOD 2		
(a) path of A is a straight line: $y = -\frac{2}{3}x + 3$	M1A1	
Note: Award <i>M1</i> for an attempt at simultaneous equations.		
path of B is a straight line: $y = -\frac{7}{4}x + \frac{25}{4}$	A1	
$-\frac{2}{3}x+3=-\frac{7}{4}x+\frac{25}{4}$ ($\Rightarrow x=3$)		
so the common point is (3, 1)	A1	
		[4 marks]
(b) for boat A, $9t = 3 \Rightarrow t = \frac{1}{3}$ and for boat B, $7 - 4t = 3 \Rightarrow t = 1$	A1	
times are different so boats do not collide	R1AG	
		[2 marks]
	Tota	l [6 marks]

(i) $\vec{AB} = \vec{OB} - \vec{OA} = 5i - j - 2k$ (or in column vector form)	(<i>A</i> 1)	
Note: Award A1 if any one of the vectors, or its negative, representing the sides of the triangle is seen.		
$ \overrightarrow{AB} = 5i - j - 2k = \sqrt{30}$		
$ \overrightarrow{\mathrm{BC}} = -i-3j+k = \sqrt{11}$		
$ \vec{\mathbf{CA}} = -4\mathbf{i} + 4\mathbf{j} + \mathbf{k} = \sqrt{33}$	A2	
Note: Award AI for two correct and $A\theta$ for one correct.		
(ii) METHOD 1		
$\cos BAC = \frac{20+4+2}{\sqrt{30}\sqrt{33}}$	MIA1	
Note: Award MI for an attempt at the use of the scalar product for two vectors representing the sides AB and AC, or their		
negatives, A1 for the correct computation using their vectors.		
$=\frac{26}{\sqrt{990}}\left(=\frac{26}{3\sqrt{110}}\right)$	Al	
Note: Candidates who use the modulus need to justify it – the angle is not stated in the question to be acute.		
METHOD 2		
using the cosine rule $\cos BAC = \frac{30 + 33 - 11}{2\sqrt{30}\sqrt{33}}$	M1A1	
$=\frac{26}{\sqrt{990}}\left(=\frac{26}{3\sqrt{110}}\right)$	Al	
$\sqrt{990}$ ($3\sqrt{110}$)		
4 990 (34 10)		[6 marks]
(i) $\vec{BC} \times \vec{CA} = \begin{vmatrix} i & j & k \\ -1 & -3 & 1 \\ -4 & 4 & 1 \end{vmatrix}$	AI	[6 marks]
(i) $\vec{BC} \times \vec{CA} = \begin{vmatrix} i & j & k \\ -1 & -3 & 1 \end{vmatrix}$	A1 M1A1 AG	[6 marks]
(i) $\vec{BC} \times \vec{CA} = \begin{vmatrix} i & j & k \\ -1 & -3 & 1 \\ -4 & 4 & 1 \end{vmatrix}$ = $((-3) \times 1 - 1 \times 4)i + (1 \times (-4) - (-1) \times 1)j + ((-1) \times 4 - (-3) \times (-4))k$	M1A1	[6 marks
(i) $\vec{BC} \times \vec{CA} = \begin{vmatrix} i & j & k \\ -1 & -3 & 1 \\ -4 & 4 & 1 \end{vmatrix}$ = $((-3) \times 1 - 1 \times 4)i + (1 \times (-4) - (-1) \times 1)j + ((-1) \times 4 - (-3) \times (-4))k$ = $-7i - 3j - 16k$	M1A1 AG	[6 marks]
(i) $\vec{BC} \times \vec{CA} = \begin{vmatrix} i & j & k \\ -1 & -3 & 1 \\ -4 & 4 & 1 \end{vmatrix}$ = $((-3) \times 1 - 1 \times 4)i + (1 \times (-4) - (-1) \times 1)j + ((-1) \times 4 - (-3) \times (-4))k$ = $-7i - 3j - 16k$ (ii) the area of $\Delta ABC = \frac{1}{2} \vec{BC} \times \vec{CA} $	M1A1 AG (M1)	[6 marks]

(c) attempt at the use of " $(r-a) \cdot n = 0$ " (M1)

using
$$r = xi + yj + zk$$
, $a = \overrightarrow{OA}$ and $n = -7i - 3j - 16k$ (A1)
 $7x + 3y + 16z = 47$ A1

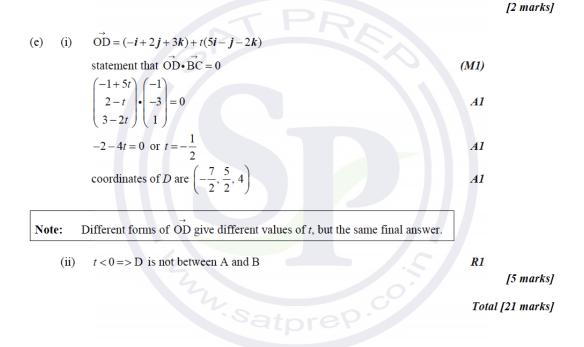
Note: Candidates who adopt a 2-parameter approach should be awarded, A1 for correct 2-parameter equations for x, y and z; M1 for a serious attempt at elimination of the parameters; A1 for the final Cartesian equation.

[3 marks]

(d)
$$\mathbf{r} = OA + tAB$$
 (or equivalent)
 $\mathbf{r} = (-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + t(5\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ A1

Note: Award M1A0 if "r =" is missing.

Note: Accept forms of the equation starting with B or with the direction reversed.



(a)
$$\vec{CA} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
 (A1)
 $\vec{CB} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ (A1)

Note: If \overrightarrow{AC} and \overrightarrow{BC} found correctly award (A1) (A0).

$$\vec{CA} \times \vec{CB} = \begin{vmatrix} i & j & k \\ 1 & -2 & -1 \\ 2 & 0 & 1 \end{vmatrix}$$
(M1)

[4 marks]

(b) METHOD 1

$$\frac{1}{2} \left| \vec{CA} \times \vec{CB} \right| \qquad (M1)$$

$$= \frac{1}{2} \sqrt{(-2)^2 + (-3)^2 + 4^2} \qquad (A1)$$

$$= \frac{\sqrt{29}}{2} \qquad A1$$
METHOD 2
attempt to apply $\frac{1}{2} |CA| |CB| \sin C \qquad (M1)$

$$CA.CB = \sqrt{5}.\sqrt{6}\cos C \Rightarrow \cos C = \frac{1}{\sqrt{30}} \Rightarrow \sin C = \frac{\sqrt{29}}{\sqrt{30}}$$
(A1)
$$area = \frac{\sqrt{29}}{2}$$
A1

[3 marks]

(c) METHOD 1

$$\mathbf{r} \cdot \begin{pmatrix} -2 \\ -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -3 \\ 4 \end{pmatrix}$$

$$M1A1$$

$$\overrightarrow{} \quad 2\mathbf{r} \quad 3\mathbf{v} + 4\mathbf{r} = -2$$

$$\Rightarrow -2x - 3y + 4z = -2 \qquad AI \Rightarrow 2x + 3y - 4z = 2 \qquad AG$$

METHOD 2

-2x - 3y + 4z = d	
substituting a point in the plane	M1A1
d = -2	A1
$\Rightarrow -2x - 3y + 4z = -2$	
$\Rightarrow 2x + 3y - 4z = 2$	AG

Note: Accept verification that all 3 vertices of the triangle lie on the given plane.

[3 marks]

(d) **METHOD 1**

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -4 \\ 4 & -1 & -1 \end{vmatrix} = \begin{pmatrix} -7 \\ -14 \\ -14 \end{pmatrix}$$
MIA1

$$\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$z = 0 \Rightarrow y = 0, x = 1$$
(M1)(A1)

$$L_1 : \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
A1

Note: Do not award the final A1 if $\mathbf{r} = \mathbf{i}\mathbf{s}$ not seen.

METHOD 2

eliminate 1 of the variables, $eg x$ -7y + 7z = 0	M1 (A1)
introduce a parameter	<i>M1</i>
$\Rightarrow z = \lambda,$	
$y = \lambda$, $x = 1 + \frac{\lambda}{2}$	(A1)
$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ or equivalent	A1
(0) (2)	

Note: Do not award the final AI if $\mathbf{r} = \mathbf{i}\mathbf{s}$ not seen.

METHOD 3

Note: Do not award the final A1 if $\mathbf{r} = \mathbf{i}\mathbf{s}$ not seen.

[5 marks]

(e) METHOD 1

direction of the line is perpendicular to the normal of the plane

$\begin{pmatrix} 16 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	
$\alpha \cdot 2 = 0$	M1A1
$ \begin{pmatrix} 16\\ \alpha\\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = 0 $	

 $16 + 2\alpha - 6 = 0 \Longrightarrow \alpha = -5$ *A1*

METHOD 2

solving line/plane simultaneously $16(1+\lambda) + 2\alpha\lambda - 6\lambda = \beta$	M1A1
$16 + (10 + 2\alpha)\lambda = \beta$	
$\Rightarrow \alpha = -5$	AI

METHOD 3

$\begin{vmatrix} 2 & 3 & -4 \\ 4 & -1 & -1 \end{vmatrix} = 0$	<i>M1</i>
$ 16 \alpha -3 $	
$2(3+\alpha) - 3(-12+16) - 4(4\alpha+16) = 0$	<i>A1</i>
$\Rightarrow \alpha = -5$	<i>A1</i>
METHOD 4	

(f)

attempt to use row reduction on augmented matrix	M1
$\begin{pmatrix} 2 & 3 & -4 & 2 \end{pmatrix}$	
to obtain $0 -1 1 0$	A1
$\begin{pmatrix} 0 & 0 & \alpha+5 \mid \beta-16 \end{pmatrix}$	
$\Rightarrow \alpha = -5$	A1
	[3 marks]
$\alpha = -5$	AI
$\alpha = 5$ $\beta \neq 16$	Al
	[2 marks]
	Total [20 marks]

(a)
$$|\vec{OA}| = |\vec{CB}| = |\vec{OC}| = |\vec{AB}| = 6$$
 (therefore a rhombus) A1A1

Note: Award A1 for two correct lengths, A2 for all four.

Note: Award *A1A0* for
$$\vec{OA} = \vec{CB} = \begin{pmatrix} 6\\0\\0 \end{pmatrix}$$
 or $\vec{OC} = \vec{AB} = \begin{pmatrix} 0\\-\sqrt{24}\\\sqrt{12} \end{pmatrix}$ if no magnitudes are shown.

$$\vec{OA} \vec{gOC} = \begin{pmatrix} 6\\0\\0 \end{pmatrix} \vec{g} \begin{pmatrix} 0\\-\sqrt{24}\\\sqrt{12} \end{pmatrix} = 0 \quad \text{(therefore a square)} \qquad A1$$

Note: Other arguments are possible with a minimum of three conditions.

(b)
$$M\left(3, -\frac{\sqrt{24}}{2}, \frac{\sqrt{12}}{2}\right) \left(=\left(3, -\sqrt{6}, \sqrt{3}\right)\right)$$

A1

[3 marks]

[1 mark]

(c) METHOD 1

$$\vec{OA} \times \vec{OC} = \begin{pmatrix} 6\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\-\sqrt{24}\\\sqrt{12} \end{pmatrix} = \begin{pmatrix} 0\\-6\sqrt{12}\\-6\sqrt{24} \end{pmatrix} \begin{pmatrix} 0\\-12\sqrt{3}\\-12\sqrt{6} \end{pmatrix}$$
M1A1

Note: Candidates may use other pairs of vectors.

equation of plane is $-6\sqrt{12}y - 6\sqrt{24}z = d$ any valid method showing that d = 0 $\Pi : y + \sqrt{2}z = 0$ *M1*

METHOD 2

equation of plane is ax + by + cz = d(M1)substituting O to find d = 0(M1)substituting two points (A, B, C or M)M1eg $6a = 0, -\sqrt{24}b + \sqrt{12}c = 0$ A1 $\Pi : y + \sqrt{2}z = 0$ AG

(d) $r = \begin{pmatrix} 3 \\ -\sqrt{6} \\ \sqrt{3} \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ \sqrt{2} \end{pmatrix}$ A1	AIAI	
Note: Award A1 for $r = A1A1$ for two correct vectors.		
		[3 marks]
(e) Using $y = 0$ to find λ	M1	
Substitute their λ into their equation from part (d)	M1	
D has coordinates $(3, 0, 3\sqrt{3})$	<i>A1</i>	
		[3 marks]
(f) λ for point E is the negative of the λ for point D	(M1)	
Note: Other possible methods may be seen.		
E has coordinates $(3, -2\sqrt{6}, -\sqrt{3})$ Note: Award <i>A1</i> for each of the <i>y</i> and <i>z</i> coordinates.	A1A1	
		[3 marks]
(g) (i) $\vec{DA} \vec{gDO} = \begin{pmatrix} 3 \\ 0 \\ -3\sqrt{3} \end{pmatrix} \vec{g} \begin{pmatrix} -3 \\ 0 \\ -3\sqrt{3} \end{pmatrix} = 18$ $\cos \vec{ODA} = \frac{18}{\sqrt{36}\sqrt{36}} = \frac{1}{2}$	M1A1 M1	
$\sqrt{36}\sqrt{36}$ 2		
hence $ODA = 60^{\circ}$	A1	
Note: Accept method showing OAD is equilateral.		
(ii) OABCDE is a regular octahedron (accept equivalent description)	A2	
 Note: A2 for saying it is made up of 8 equilateral triangles Award A1 for two pyramids, A1 for equilateral triangles. (can be either stated or shown in a sketch – but there must be clear indication the triangles are equilateral) 		
		[6 marks]

(a)
$$\overrightarrow{PR} = a + b$$

 $\overrightarrow{QS} = b - a$

(b) $\overrightarrow{QS} = b - a$

[2 marks]

Note: Do not award the final A1 unless R1 is awarded.

hence the diagonals intersect at right angles

[4 marks]

AG

(a) direction vector
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$$
 or $\overrightarrow{BA} = \begin{pmatrix} -1 \\ -3 \\ 5 \end{pmatrix}$
 $r = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ or $r = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ or equivalent A1
Note: Do not award final A1 unless ' $r = K$ ' (or equivalent) seen.
Allow FT on direction vector for final A1.

[2 marks]

(b) both lines expressed in parametric form: L_1 : x = 1 + ty = 3tz = 4 - 5t L_2 : x = 1 + 3sM1A1 y = -2 + sz = -2s + 1Notes: Award M1 for an attempt to convert L_2 from Cartesian to parametric form. Award A1 for correct parametric equations for L_1 and L_2 . Allow M1A1 at this stage if same parameter is used in both lines. M1 attempt to solve simultaneously for x and y: 1 + t = 1 + 3s3t = -2 + s $t = -\frac{3}{4}, \ s = -\frac{1}{4}$ A1 substituting both values back into z values respectively gives $z = \frac{31}{4}$ and $z = \frac{3}{2}$ so a contradiction **R1** therefore L_1 and L_2 are skew lines AG [5 marks] (c) finding the cross product:

$$\begin{pmatrix} 1\\3\\-5 \end{pmatrix} \times \begin{pmatrix} 3\\1\\-2 \end{pmatrix}$$

$$= -i - 13j - 8k$$
(M1)

Note: Accept i + 13j + 8k

$$-1(0) - 13(1) - 8(-2) = 3$$
 (M1)
 $\Rightarrow -x - 13y - 8z = 3$ or equivalent A1

[4 marks]

(d) (i)
$$(\cos \theta =) \frac{\begin{pmatrix} k \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}{\sqrt{k^2 + 1 + 1} \times \sqrt{1 + 1}}$$
 M1

Note: Award M1 for an attempt to use angle between two vectors formula.

 $\frac{\sqrt{3}}{2} = \frac{k+1}{\sqrt{2(k^2+2)}}$ A1

obtaining the quadratic equation $4(k+1)^2 = 6(k^2+2)$ $k^2 - 4k + 4 = 0$ $(k-2)^2 = 0$ k = 2A1
Note: Award M1A0M1A0 if cos 60° is used (k = 0 or k = -4).

(a) direction vector
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$$
 or $\overrightarrow{BA} = \begin{pmatrix} -1 \\ -3 \\ 5 \end{pmatrix}$
 $r = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ or $r = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ or equivalent A1
Note: Do not award final A1 unless ' $r = K$ ' (or equivalent) seen.
Allow FT on direction vector for final A1.

```
[2 marks]
```

M1A1

(b) both lines expressed in parametric form:

 $L_{1}:$ x = 1 + t y = 3t z = 4 - 5t $L_{2}:$ x = 1 + 3s y = -2 + s z = -2s + 1

z = -2s + 1		
Notes: Award <i>M1</i> for an attempt to convert L_2 from Cartesian to parametric form. Award <i>A1</i> for correct parametric equations for L_1 and L_2 . Allow <i>M1A1</i> at this stage if same parameter is used in both lines.		
attempt to solve simultaneously for x and y: 1+t=1+3s 3t=-2+s	M1	
$t = -\frac{3}{4}, s = -\frac{1}{4}$	A1	
substituting both values back into z values respectively gives $z = \frac{31}{4}$		
and $z = \frac{3}{2}$ so a contradiction	R1	
therefore L_1 and L_2 are skew lines	AG	
		[5 marks]

(ii)
$$r = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

substituting into the equation of the plane Π_2 :
 $3 + 2\lambda + \lambda = 12$
 $\lambda = 3$
point P has the coordinates:
 $(9, 3, -2)$
A1

Notes: Accept 9i + 3j - 2k and $\begin{pmatrix} 9\\ 3\\ -2 \end{pmatrix}$. Do not allow FT if two values found for k.

[7 marks]

Total [18 marks]

METHOD 1

$$\left| \vec{OP} \right| = \sqrt{(1+s)^2 + (3+2s)^2 + (1-s)^2} \quad (=\sqrt{6s^2 + 12s + 11})$$
 A1

te: Award *A1* if the square of the distance is found.

EITHER

attempt to differentiate:
$$\frac{d}{ds} \left| \vec{OP} \right|^2 (= 12s + 12)$$
 M1

attempting to solve
$$\frac{d}{ds} \left| \vec{OP} \right|^2 = 0$$
 for *s* (M1)

$$s = -1 \tag{A1}$$

OR

attempt to differentiate:
$$\frac{d}{ds} \left| \vec{OP} \right| \left(= \frac{6s+6}{\sqrt{6s^2 + 12s + 11}} \right)$$
 M1

attempting to solve
$$\frac{d}{ds} | \vec{OP} | = 0$$
 for s (M1)
 $s = -1$ (A1)

$$s = -1$$

OR

attempt at completing the square:
$$\left(\left|\vec{OP}\right|^2 = 6(s+1)^2 + 5\right)$$
 M1

(M1) (A1)

minimum value occurs at
$$s = -1$$

THEN

the minimum length of \vec{OP} is $\sqrt{5}$ *A1*

METHOD 2

	$\begin{pmatrix} 1 \end{pmatrix}$	
the length of \vec{OP} is a minimum when \vec{OP} is perpendicular to	2	(R1)
	-1	

(a) (i)
$$\vec{AM} = \frac{1}{2}\vec{AC}$$
 (M1)
= $\frac{1}{2}(c-a)$ A1

(ii)
$$\vec{BM} = \vec{BA} + \vec{AM}$$

= $a - b + \frac{1}{2}(c - a)$ A1

$$\vec{BM} = \frac{1}{2}a - b + \frac{1}{2}c \qquad AG$$

(b) (i)
$$\overrightarrow{RA} = \frac{1}{3}\overrightarrow{BA}$$

= $\frac{1}{3}(a-b)$ A1

(ii)	$\vec{RT} = \frac{2}{3}\vec{RS}$	
	$=\frac{2}{3}\left(\vec{RA}+\vec{AS}\right)$	(M1)
	$=\frac{2}{3}\left(\frac{1}{3}(\boldsymbol{a}-\boldsymbol{b})+\frac{2}{3}(\boldsymbol{c}-\boldsymbol{a})\right) \text{ or equivalent.}$	A1A1
	$=\frac{2}{9}(a-b)+\frac{4}{9}(c-a)$	A1
	$\vec{\mathrm{RT}} = -\frac{2}{9}\boldsymbol{a} - \frac{2}{9}\boldsymbol{b} + \frac{4}{9}\boldsymbol{c}$	AG
		[5 marks]

(c)
$$\vec{BT} = \vec{BR} + \vec{RT}$$

 $= \frac{2}{3}\vec{BA} + \vec{RT}$ (M1)
 $= \frac{2}{3}a - \frac{2}{3}b - \frac{2}{9}a - \frac{2}{9}b + \frac{4}{9}c$ A1
 $\vec{BT} = \frac{8}{9}\left(\frac{1}{2}a - b + \frac{1}{2}c\right)$ A1
point B is common to \vec{BT} and \vec{BM} and $\vec{BT} = \frac{8}{9}\vec{BM}$ R1R1
so T lies on [BM] AG
[5 marks]

Total [14 marks]

		[2 marks]
	$= (1 - \lambda + \mu)\mathbf{i} + (-1 - \lambda - \mu)\mathbf{j} + (-4 - \lambda + 2\mu)\mathbf{k}$	A1
	$\overrightarrow{PQ} = i - j - 4k - \lambda (i + j + k) + \mu (i - j + 2k)$	
	$\vec{PQ} = \vec{OQ} - \vec{OP}$	(M1)
	$\vec{OQ} = 2i + j - k + \mu(i - j + 2k)$	
(a)	$\vec{OP} = i + 2j + 3k + \lambda(i + j + k)$	

(b) METHOD 1

use of scalar product perpendicular to $i + j + k$ gives	М1
$(1 - \lambda + \mu) + (-1 - \lambda - \mu) + (-4 - \lambda + 2\mu) = 0$	
$\Rightarrow -3\lambda + 2\mu = 4$	A1
perpendicular to $i - j + 2k$ gives	
$(1 - \lambda + \mu) - (-1 - \lambda - \mu) + 2(-4 - \lambda + 2\mu) = 0$	
$\Rightarrow -2\lambda + 6\mu = 6$	A1
solving simultaneous equations gives $\lambda = -\frac{6}{2}$, $\mu = \frac{5}{2}$	A1A1

solving simultaneous equations gives $\lambda = -\frac{6}{7}$, $\mu = \frac{5}{7}$	A1A1
METHOD 2	
$\mathbf{v} \times \mathbf{w} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k}$	M1A1
$\overrightarrow{PQ} = a(3i - j - 2k)$	
$1 - \lambda + \mu = 3a$	
$-1 - \lambda - \mu = -a$ $-4 - \lambda + 2\mu = -2a$	A1
solving simultaneous equations gives $\lambda = -\frac{6}{7}$, $\mu = \frac{5}{7}$	A1A1

			[5 marks]
(c)	$\vec{PQ} = \frac{18}{7}i - \frac{6}{7}j - \frac{12}{7}k$	A1	
	shortest distance = $ \vec{PQ} = \frac{6}{7}\sqrt{3^2 + (-1)^2 + (-2)^2} = \frac{6}{7}\sqrt{14}$	M1A1	
			[3 marks]

(d)	METHOD 1		
	vector perpendicular to Π is given by vector product of v and w $v \times w = 3i - j - 2k$	(R1) (M1)A1	
	so equation of Π is $3x - y - 2z + d = 0$		
	through $(1, 2, 3) \Rightarrow d = 5$	M1	
	so equation is $3x - y - 2z + 5 = 0$	A1	

METHOD 2

from part (b) $\overrightarrow{PQ} = \frac{18}{7}i - \frac{6}{7}j - \frac{12}{7}k$ is a vector perpendicular to Π	R1A2
so equation of Π is $\frac{18}{7}x - \frac{6}{7}y - \frac{12}{7}z + c = 0$	
through $(1, 2, 3) \Longrightarrow c = \frac{30}{7}$	М1
so equation is $\frac{18}{7}x - \frac{6}{7}y - \frac{12}{7}z + \frac{30}{7} = 0$ (3x - y - 2z + 5 = 0)	A1

Note: Allow other methods *ie* via vector parametric equation.

[5 marks]

[2 marks]

[2 marks]

M1A1

A1

- (e) $\vec{OT} = 2i + j k + \eta (3i j 2k)$ $T = (2 + 3\eta, 1 - \eta, -1 - 2\eta)$ lies on Π implies $3(2 + 3\eta) - (1 - \eta) - 2(-1 - 2\eta) + 5 = 0$ $\Rightarrow 12 + 14\eta = 0 \Rightarrow \eta = -\frac{6}{7}$ A1
- **Note:** If no marks awarded in (d) but correct vector product calculated in (e) award *M1A1* in (d).

(f)
$$|\vec{BT}| = \frac{6}{7}\sqrt{3^2 + (-1)^2 + (-2)^2} = \frac{6}{7}\sqrt{14}$$

(g) they agree

Note: FT is inappropriate here.

 \vec{BT} is perpendicular to both Π and l_2 so its length is the shortest distance between Π and l_2 which is the shortest distance between l_1 and l_2 **R1** [2 marks]

Total [21 marks]

(iii)

(a)
$$\vec{BR} = \vec{BA} + \vec{AR} \ (= \vec{BA} + \frac{1}{2}\vec{AC})$$
 (M1)
 $= (a - b) + \frac{1}{2}(c - a)$
 $= \frac{1}{2}a - b + \frac{1}{2}c$ A1
[2 marks]

(b) (i)
$$r_{BR} = \boldsymbol{b} + \lambda \left(\frac{1}{2}\boldsymbol{a} - \boldsymbol{b} + \frac{1}{2}\boldsymbol{c}\right) \left(=\frac{\lambda}{2}\boldsymbol{a} + (1-\lambda)\boldsymbol{b} + \frac{\lambda}{2}\boldsymbol{c}\right)$$
 A1A1

Note: Award **A1A0** if the r = is omitted in an otherwise correct expression/equation.

(ii)
$$\vec{AQ} = -a + \frac{1}{2}b + \frac{1}{2}c$$
 (A1)
 $r_{AQ} = a + \mu \left(-a + \frac{1}{2}b + \frac{1}{2}c\right) \left(= (1 - \mu)a + \frac{\mu}{2}b + \frac{\mu}{2}c\right)$ A1

$$\mathbf{r}_{AQ} = \mathbf{a} + \mu \left(-\mathbf{a} + \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c} \right) \left(= (1 - \mu)\mathbf{a} + \frac{\mu}{2}\mathbf{b} + \frac{\mu}{2}\mathbf{c} \right)$$
 A1

when AQ and BP intersect we will have
$$r_{BR} = r_{AQ}$$
 (M1)
 $\frac{\lambda}{2}a + (1 - \lambda)b + \frac{\lambda}{2}c = (1 - \mu)a + \frac{\mu}{2}b + \frac{\mu}{2}c$
attempt to equate the coefficients of the vectors a , b and c M1
 $\frac{\lambda}{2} = 1 - \mu$
 $1 - \lambda = \frac{\mu}{2}$
 $\frac{\lambda}{2} = \frac{\mu}{2}$
 $\lambda = \frac{2}{3}$ or $\mu = \frac{2}{3}$ A1
substituting parameters back into one of the equations M1
 $\overrightarrow{OG} = \frac{1}{2} \cdot \frac{2}{3}a + (1 - \frac{2}{3})b + \frac{1}{2} \cdot \frac{2}{3}c = \frac{1}{3}(a + b + c)$ AG

[9 marks]

AG

c)
$$\vec{CP} = \frac{1}{2}a + \frac{1}{2}b - c$$
 (M1)A1
so we have that $r_{CP} = c + \beta \left(\frac{1}{2}a + \frac{1}{2}b - c\right)$ and when $\beta = \frac{2}{3}$ the line
passes through
the point G (*ie*, with position vector $\frac{1}{3}(a + b + c)$) R1
hence [AQ], [BR] and [CP] all intersect in G AG
[3 marks]

(C

(d)
$$\vec{OG} = \frac{1}{3} \left(\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 7 \\ -5 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$$

Note: This independent mark for the vector may be awarded wherever the vector is calculated.

$$\vec{AB} \times \vec{AC} = \begin{pmatrix} 2\\4\\-6 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = \begin{pmatrix} -6\\-6\\-6 \\-6 \end{pmatrix}$$
M1A1
$$\vec{GX} = \alpha \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
(M1)

A1

(1) volume of Tetrahedron given by $\frac{1}{3} \times \text{Area ABC} \times \text{GX}$

$$= \frac{1}{3} \left(\frac{1}{2} \middle| \vec{AB} \times \vec{AC} \middle| \right) \times GX = 12$$
 (M1)(A1)

Note: Accept alternative methods, for example the use of a scalar triple product.

$$= \frac{1}{6}\sqrt{(-6)^{2} + (-6)^{2} + (-6)^{2}} \times \sqrt{\alpha^{2} + \alpha^{2} + \alpha^{2}} = 12$$

$$= \frac{1}{6}6\sqrt{3} |\alpha|\sqrt{3} = 12$$

$$\Rightarrow |\alpha| = 4$$
A1
Note: Condone absence of absolute value.
this gives us the position of X as $\begin{pmatrix} 2\\ 4\\ -1 \end{pmatrix} \pm \begin{pmatrix} 4\\ 4\\ 4 \end{pmatrix}$
X(6, 8, 3) or (-2, 0, -5)
A1
Note: Award A1 for either result.
[9 marks]
Total [23 marks]

(a) angle between planes is equal to the angles between the normal to the planes (M1)
 (4) (4)

$$\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \bullet \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} = 18$$
 (A1)

let θ be the angle between the normal to the planes

$$\cos\theta = \frac{18}{\sqrt{18}\sqrt{26}} = \sqrt{\frac{18}{26}} \left(\text{ or equivalent, for example } \sqrt{\frac{324}{468}} \quad \text{or } \sqrt{\frac{9}{13}} \right)$$
 M1A1

```
[4 marks]
```

R1AG

(b) (i) METHOD 1

$$\begin{pmatrix} 4\\1\\1 \end{pmatrix} \times \begin{pmatrix} 4\\3\\-1 \end{pmatrix} = \begin{pmatrix} -4\\8\\8 \end{pmatrix}$$
M1A1
which is a multiple of $\begin{pmatrix} -1\\2\\2 \end{pmatrix}$
R1AG

Note: Allow any equivalent wording or $\begin{pmatrix} -4\\8\\8 \end{pmatrix} = 4 \begin{pmatrix} -1\\2\\2 \end{pmatrix}$, do not allow $\begin{pmatrix} -4\\8\\8 \end{pmatrix}$	$ = \left(\begin{array}{c} -1 \\ 2 \\ 2 \end{array} \right). $
METHOD 2	
let $z = t$ (or equivalent)	
solve simultaneously to get	M1
y = t - 4, $x = 3 - 0.5t$	A1
(-0.5)	
hence direction vector is 1	

which is a multiple of $\begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$

METHOD 3

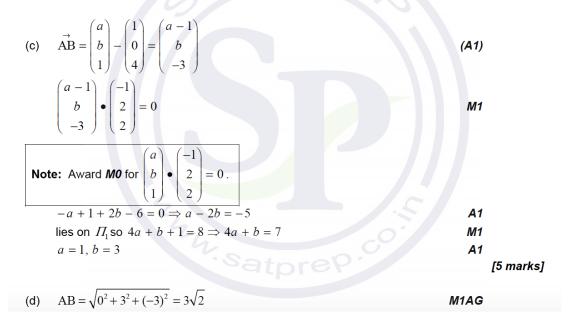
$$\begin{pmatrix} 4\\1\\1 \end{pmatrix} \bullet \begin{pmatrix} -1\\2\\2 \end{pmatrix} = -4 + 2 + 2 = 0$$
M1A1
$$\begin{pmatrix} 4\\3\\-1 \end{pmatrix} \bullet \begin{pmatrix} -1\\2\\2 \end{pmatrix} = -4 + 6 - 2 = 0$$
A1

Note: If only one scalar product is found award MOA0A0.

(ii)
$$\Pi_1: 4 + 0 + 4 = 8$$
 and $\Pi_2: 4 + 0 - 4 = 0$ **R1**

(iii)
$$r = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$
 A1A1

Note: *A1* for "r =" and a correct point on the line, *A1* for a parameter and a correct direction vector.



(e) METHOD 1

$$\left| \vec{AB} \right| = \left| \vec{AP} \right| = 3\sqrt{2}$$
 (M1)

$$\vec{AP} = t \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$
(A1)

$$\begin{aligned} |3t| &= 3\sqrt{2} \implies t = \pm\sqrt{2} \\ P(1 - \sqrt{2}, 2\sqrt{2}, 4 + 2\sqrt{2}) \text{ and } (1 + \sqrt{2}, -2\sqrt{2}, 4 - 2\sqrt{2}) \end{aligned}$$
(M1)A1

$$P(1-\sqrt{2}, 2\sqrt{2}, 4+2\sqrt{2})$$
 and $(1+\sqrt{2}, -2\sqrt{2}, 4-2\sqrt{2})$

METHOD 2

let P have coordinates $(1-\lambda, 2\lambda, 4+2\lambda)$

$$\vec{BA} = \begin{pmatrix} 0 \\ -3 \\ 3 \end{pmatrix}, \quad \vec{BP} = \begin{pmatrix} -\lambda \\ 2\lambda - 3 \\ 3 + 2\lambda \end{pmatrix}$$

$$\cos 45^{0} = \frac{\vec{BA} \bullet \vec{BP}}{|BA||BP|}$$
M1

Note: Award M1 even if AB rather than BA is used in the scalar product.

 $\vec{BA} \bullet \vec{BP} = 18$ $\frac{1}{\sqrt{2}} = \frac{18}{\sqrt{18}\sqrt{9\lambda^2 + 18}}$ $\lambda = \pm \sqrt{2}$ A1 $P(1-\sqrt{2}, 2\sqrt{2}, 4+2\sqrt{2})$ and $(1+\sqrt{2}, -2\sqrt{2}, 4-2\sqrt{2})$ **A1** Note: Accept answers given as position vectors.

[5 marks]

Total [21 marks]

Question 14

(a) $a \times b = -12i - 2j - 3k$ (M1)A1 [2 marks]

(b) METHOD 1

-12x - 2y - 3z = d	M1
$-12 \times 1 - 2 \times 0 - 3(-1) = d$	(M1)
$\Rightarrow d = -9$	A1
-12x - 2y - 3z = -9 (or $12x + 2y + 3z = 9$)	

METHOD 2

 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -12 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -12 \\ -2 \\ -3 \end{pmatrix}$ M1A1 -12x - 2y - 3z = -9 (or 12x + 2y + 3z = 9) A1

[3 marks]

Total [5 marks]

М1

(a) METHOD 1

$$l_1: \mathbf{r} = \begin{pmatrix} -3\\-2\\a \end{pmatrix} + \beta \begin{pmatrix} 1\\4\\2 \end{pmatrix} \Longrightarrow \begin{cases} x = -3 + \beta\\y = -2 + 4\beta\\z = a + 2\beta \end{cases}$$
M1

$$\frac{6-(-3+\beta)}{3} = \frac{(-2+4\beta)-2}{4} \Longrightarrow 4 = \frac{4\beta}{3} \Longrightarrow \beta = 3$$

$$\frac{6-(-3+\beta)}{3} = 1-(a+2\beta) \Longrightarrow 2 = -5-a \Longrightarrow a = -7$$
A1

METHOD 2

	$\begin{cases} -3 + \beta = 6 - 3\lambda \\ -2 + 4\beta = 4\lambda + 2 \\ a + 2\beta = 1 - \lambda \end{cases}$ attempt to solve $\lambda = 2, \ \beta = 3 \\ a = 1 - \lambda - 2\beta = -7 \end{cases}$	M1 M1 A1 A1	[4 marks]
(b)	$\vec{OP} = \begin{pmatrix} -3 \\ -2 \\ -7 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$	(M1)	
	$= \begin{pmatrix} 0\\10\\-1 \end{pmatrix}$ $\therefore P(0, 10, -1)$	A1	
			[2 marks]
		Tota	l [6 marks]

(a)	$\vec{AB} \times \vec{AD} = -i + 10j - 7k$	M1A1
	area = $\begin{vmatrix} \vec{AB} \times \vec{AD} \end{vmatrix} = \sqrt{l^2 + 10^2 + 7^2}$	
	$=5\sqrt{6}\left(\sqrt{150}\right)$	A1
		[3 marks]

(b) METHOD 1

$\overrightarrow{AB} \cdot \overrightarrow{AD} = -4 - 2 - 6$	M1A1
= -12	
considering the sign of the answer	
$\vec{AB}\cdot\vec{AD}<0$, therefore angle \hat{DAB} is obtuse	М1
(as it is a parallelogram), \hat{ABC} is acute	A1
	[4 marks]

METHOD 2

 $\vec{BA} \cdot \vec{BC} = +4 + 2 + 6$ = 12 considering the sign of the answer $\vec{BA} \cdot \vec{BC} > 0 \Rightarrow A\hat{B}C$ is acute

M1A1

M1 A1

[4 marks]

Total [7 marks]

(a)
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -8 \\ 17 \end{pmatrix}$$
 (A1)
 $r = \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -8 \\ 17 \end{pmatrix}$ or $r = \begin{pmatrix} 6 \\ -5 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -8 \\ 17 \end{pmatrix}$ M1A1

Note: Award ***M1A0*** if
$$r =$$
 is not seen (or equivalent).

(b) substitute line
$$L$$
 in Π : 4(6 λ) – 3(3 – 8 λ) + 2(-6 + 17 λ) = 20 M1
 $82\lambda = 41$
 $\lambda = \frac{1}{2}$ (A1)
 $r = \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 6 \\ -8 \\ 17 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ \frac{5}{2} \end{pmatrix}$ So coordinate is $\begin{pmatrix} 3, -1, \frac{5}{2} \end{pmatrix}$ A1
Note: Accept coordinate expressed as position vector $\begin{bmatrix} 3 \\ -1 \\ \frac{5}{2} \end{bmatrix}$ [3 marks]
Total [6 marks]

[3 marks]

(a) **EITHER**

$$\begin{pmatrix} 1 & 1 & 2 & | & -2 \\ 3 & -1 & 14 & | & 6 \\ 1 & 2 & 0 & | & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & | & -2 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

row of zeroes implies infinite solutions, (or equivalent). **R1**

Note: Award M1 for any attempt at row reduction.

OR

1	1	2	
3	-1	14 = 0	M1
1	2	0	
1	1		
3	-1	14 = 0 with one valid point	R1
1	2	0	

OR

x + y + 2z = -2 3x - y + 14z = 6 $x + 2y = -5 \implies x = -5 - 2y$

substitute x = -5 - 2y into the first two equations: -5 - 2y + y + 2z = -2 3(-5 - 2y) - y + 14z = 6 -y + 2z = 3-7y + 14z = 21

the latter two equations are equivalent (by multiplying by 7) therefore an infinite number of solutions. **R1**

*M*1

OR

for example, $7 \times R_1 - R_2$ gives 4x + 8y = -20 M1

this equation is a multiple of the third equation, therefore an infinite number of solutions. **R1**

(b) let y = t *M1* then x = -5 - 2t *A1*

$$z = \frac{t+3}{2}$$
 A1

OR

let
$$x = t$$

then $y = \frac{-5-t}{2}$
 $z = \frac{1-t}{4}$
A1
A1

OR

let $z = t$	M1
then $x = 1 - 4t$	A1
y = -3 + 2t	A1

OR

attempt to find cross product of two normal vectors:

 $eg: \begin{vmatrix} i & j & k \\ 1 & 1 & 2 \\ 1 & 2 & 0 \end{vmatrix} = -4i + 2j + k$ MIA1 x = 1 - 4t y = -3 + 2t z = t(or equivalent) A1 Total [5 marks]

EITHER

eliminating a variable, x, for example to obtain y + 3z = -16 and -5y - 3z = 8 **M1A1** attempting to find the value of one variable **M1** point of intersection is (-1, 2, -6) **A1A1A1**

OR

			[6 marks]
:e: Allow solution expressed as $x = -1$, $y = 2$,	z = -6 for final A marks.		
further attempt at reduction point of intersection is $(-1, 2, -6)$		M1 A1A1A1	
correct matrix with two zeroes in a column, <i>eg</i> .	$ \begin{pmatrix} 2 & 1 & -1 & 6 \\ 0 & 5 & 3 & -8 \\ 0 & 1 & 3 & -16 \end{pmatrix} $	A1	
attempting row reduction of relevant matrix, eg.		М1	

Question 20

$\boldsymbol{c}\boldsymbol{\cdot}(\boldsymbol{b}-\boldsymbol{a})=0$	M1
te: Allow $c \cdot \overrightarrow{AB} = 0$ or similar for M1 .	
$c \cdot b = c \cdot a$	A1
$\boldsymbol{b}\boldsymbol{\cdot}(\boldsymbol{c}-\boldsymbol{a})=0$	
$b \cdot c = b \cdot a$	A1
$c \cdot a = b \cdot a$	M1
$(\boldsymbol{c} - \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{a} = 0$	A1
hence \vec{a} is perpendicular to \vec{BC}	AG
te: Only award the final A1 if a dot is used throughout to indicate scalar product. Condone any lack of specific indication that the letters represent vectors.	
22 00	[5 marks]

(a) **EITHER**

$$n = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \text{ and } d = \begin{pmatrix} p \\ 2 \\ 1 \end{pmatrix}$$
and $n \neq kd$

$$R1$$

R1

OR

$$\boldsymbol{n} \times \boldsymbol{d} = \begin{pmatrix} -5\\ 3p-1\\ 2-p \end{pmatrix}$$
 M1A1

the vector product is non-zero for $p \in \mathbb{R}$

THEN

L is not perpendicular to Π	AG
	[3 marks]

METHOD 1 (b)

$(2+p\lambda) + (q+2\lambda) + 3(1+\lambda) = 9$	M1
$(q+5) + (p+5)\lambda = 9$	(A1)
p = -5 and $q = 4$	A1A1

METHOD 2

direction vector of line is perpendicular to plane, so

$$\begin{pmatrix} p \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 0$$

$$p = -5$$

$$(2, q, 1) \text{ is common to both } L \text{ and } \Pi$$

$$\text{either } \begin{pmatrix} 2 \\ q \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 9 \text{ or by substituting into } x + y + 3z = 9$$

$$M1$$

$$q = 4$$

$$A1$$

$$[4 marks]$$

(c) (i) METHOD 1

 α is the acute angle between *n* and *L*

if
$$\sin \theta = \frac{1}{\sqrt{11}}$$
 then $\cos \alpha = \frac{1}{\sqrt{11}}$ (M1)(A1)
attempting to use $\cos \alpha = \frac{n \cdot d}{|n||d|}$ or $\sin \theta = \frac{n \cdot d}{|n||d|}$ M1

$$\frac{p+5}{\sqrt{11} \times \sqrt{p^2 + 5}} = \frac{1}{\sqrt{11}}$$
 A1A1

$$(p+5)^2 = p^2 + 5$$
 M1
 $10p = -20$ (or equivalent) A1
 $p = -2$ AG

METHOD 2

 α is the angle between *n* and *L* if $\sin\theta = \frac{1}{\sqrt{11}}$ then $\sin\alpha = \frac{\sqrt{10}}{\sqrt{11}}$ (M1)A1 attempting to use $\sin \alpha = \frac{|n \times d|}{|n||d|}$ $\frac{\sqrt{(-5)^2 + (3p-1)^2 + (2-p)^2}}{\sqrt{11} \times \sqrt{p^2 + 5}} = \frac{\sqrt{10}}{\sqrt{11}}$ М1 A1A1 $p^2 - p + 3 = p^2 + 5$ М1 -p + 3 = 5 (or equivalent) A1 p = -2AG (ii) $p = -2 \text{ and } z = -1 \Rightarrow \frac{x-2}{-2} = \frac{y-q}{2} = -2$ (A1) x = 6 and y = q - 4(A1) this satisfies Π so 6 + q - 4 - 3 = 9М1 q = 10A1 [11 marks] Total [18 marks]

METHOD 1

for eliminating one variable from two equations

eg,
$$\begin{cases} (x + y + z = 3) \\ 2x + 2z = 8 \\ 2x + 3z = 11 \end{cases}$$
 A1A1

(M1)

for finding correctly one coordinate

$$eg, \Rightarrow \begin{cases} (x + y + z = 3) \\ (2x + 2z = 8) \\ z = 3 \end{cases}$$
for finding correctly the other two coordinates A1

for finding correctly the other two coordinates

$$\Rightarrow \begin{cases} x = 1 \\ y = -1 \\ z = 3 \end{cases}$$

METHOD 2

\rightarrow $y = 1$	
$\int_{z=3}^{y=-1}$	
the intersection point has coordinates $(1, -1, 3)$	
METHOD 2	
for eliminating two variables from two equations or using row reduction (A	/1)
$eg, \begin{cases} (x+y+z=3) \\ -2y=2 \\ z=3 \end{cases} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$	
eg, $\begin{cases} -2y = 2 \text{ or } 0 -2 0 2 \end{cases}$ A1	A1
$z = 3$ $\begin{pmatrix} 0 & 0 & 1 \\ 3 \end{pmatrix}$	
for finding compatible the other constituates	
for finding correctly the other coordinates A1	A 1
$x = 1$ $\begin{pmatrix} 1 & 0 & 0 \\ 1 & \end{pmatrix}$	
$\Rightarrow \begin{cases} x = 1 \\ y = -1 \text{ or } \\ (z = 3) \end{cases} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$	
$(z = 3)$ $(0 \ 0 \ 1 \ 3)$	
the intersection point has coordinates $(1, -1, 3)$	

(a) **METHOD 1** $l_1: \mathbf{r} = \begin{pmatrix} -3 \\ -2 \\ a \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \Rightarrow \begin{cases} x = -3 + \beta \\ y = -2 + 4\beta \\ z = a + 2\beta \end{cases}$ M1

$$\frac{6 - (-3 + \beta)}{3} = \frac{(-2 + 4\beta) - 2}{4} \Rightarrow 4 = \frac{4\beta}{3} \Rightarrow \beta = 3$$

$$\frac{6 - (-3 + \beta)}{3} = 1 - (a + 2\beta) \Rightarrow 2 = -5 - a \Rightarrow a = -7$$
A1

METHOD 2

	[4 marks]
$a = 1 - \lambda - 2\beta = -7$	A1
$\lambda = 2, \ \beta = 3$	A1
attempt to solve	M1
$a+2\beta=1-\lambda$	
$\begin{cases} -2 + 4\beta = 4\lambda + 2 \end{cases}$	M1
$\int -3 + \beta = 6 - 3\lambda$	

METHOD 1

(a)	$\det \begin{pmatrix} 1 & 3 & a-1 \\ 2 & 2 & a-2 \\ 3 & 1 & a-3 \end{pmatrix}$	<i>M1</i>	
	= 1(2(a-3) - (a-2)) - 3(2(a-3) - 3(a-2)) + (a-1)(2-6)		
	(or equivalent)	<i>A1</i>	
	= 0 (therefore there is no unique solution)	A1	
		[3 marks	1

(b)
$$\begin{pmatrix} 1 & 3 & a-1 & | & 1 \\ 2 & 2 & a-2 & | & 1 \\ 3 & 1 & a-3 & | & b \end{pmatrix}$$
: $\begin{pmatrix} 1 & 3 & a-1 & | & 1 \\ 0 & -4 & -a & | & -1 \\ 0 & -8 & -2a & | & b-3 \end{pmatrix}$ *MIA1*
: $\begin{pmatrix} 1 & 3 & a-1 & | & 1 \\ 0 & -4 & -a & | & -1 \\ 0 & 0 & 0 & | & b-1 \end{pmatrix}$ *AI*
b = 1 *AI*

Note: Award *M1* for an attempt to use row operations.

[4 marks]

N2

```
METHOD 2
(a) \begin{pmatrix} 1 & 3 & a-1 & | & 1 \\ 2 & 2 & a-2 & | & 1 \\ 3 & 1 & a-3 & | & b \end{pmatrix}: \begin{pmatrix} 1 & 3 & a-1 & | & 1 \\ 0 & -4 & -a & | & -1 \\ 0 & -8 & -2a & | & b-3 \end{pmatrix}
                                                                                                                     M1A1
             (1 \ 3 \ a-1)
                                   1
         : 0 -4
                                     -1 (and 3 zeros imply no unique solution)
                          -a
                                                                                                                          A1
                                   b-1
             0
                  0
                            0
                                                                                                                                  [3 marks]
(b) b = 1
                                                                                                                          A4
Note: Award A4 only if "b-1" seen in (a).
```

[4 marks]

Total [7 marks]

(a)
$$\vec{AB} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}, \vec{AC} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$$
 AIAN

Note: Award the above marks if the components are seen in the line below.

$$\vec{AB} \times \vec{AC} = \begin{vmatrix} i & j & k \\ 0 & -2 & 2 \\ 1 & -3 & 1 \end{vmatrix} = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix}$$
(M1)A1

(b) area
$$= \frac{1}{2} \left| \left(\vec{AB} \times \vec{AC} \right) \right|$$
 (M1)
 $= \frac{1}{2} \sqrt{4^2 + 2^2 + 2^2} = \frac{1}{2} \sqrt{24} (= \sqrt{6})$ A1

$$=\frac{1}{2}\sqrt{4^2+2^2+2^2}=\frac{1}{2}\sqrt{24}\left(=\sqrt{6}\right)$$

Note: Award M0A0 for attempts that do not involve the answer to (a).

[2 marks]

[4 marks]

Total [6 marks]

Question 26

(a

a)	(i)	a pair of opposite sides have equal length and are parallel hence $\ensuremath{\mathrm{ABCD}}$ is a parallelogram	R1 AG
	(ii)	attempt to rewrite the given information in vector form b-a=c-d rearranging $d-a=c-b$	M1 A1 M1
		hence $\vec{AD} = \vec{BC}$	AG

:e: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there are two pairs of parallel sides. [4 marks]

(b) **EITHER**

use of $\vec{AB} = \vec{DC}$	(M1)
$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} q+1 \end{pmatrix}$	
-3 = 1-r	A1A1
(p+3) (4)	

OR

use of $\vec{AD} = \vec{BC}$	(M1)
$\begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} q-3 \\ 2 \end{pmatrix}$	A1A1
$\begin{pmatrix} -2\\r-2\\1 \end{pmatrix} = \begin{pmatrix} q-3\\2\\2-p \end{pmatrix}$	A1A1

THEN

attempt to compare coefficients of i, j , and k in their equation or statement		
to that effect	М1	
clear demonstration that the given values satisfy their equation	A1	
p = 1, q = 1, r = 4	AG	
		[5 marks]

(c) attempt at computing $\vec{AB} \times \vec{AD}$ (or equivalent) М1 -11-10 -2 A1

area =
$$\left| \overrightarrow{AB} \times \overrightarrow{AD} \right| \left(= \sqrt{225} \right)$$
 (M1)
= 15 A1

[4 marks]

(d) valid attempt to find
$$\vec{OM} \left(= \frac{1}{2} (a + c) \right)$$
 (M1)

$$\begin{array}{c} 1\\ \frac{3}{2}\\ -\frac{1}{2} \end{array}$$
 A1
the equation is

$$\boldsymbol{r} = \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \end{bmatrix} + t \begin{bmatrix} 10 \\ 2 \end{bmatrix} \text{ or equivalent}$$
 M1A1

Note: Award maximum *M1A0* if $\mathbf{r} = ... \mathbf{r}$ (or equivalent) is not seen.

[4 marks]

М1

(e) attempt to obtain the equation of the plane in the form ax + by + cz = d11x + 10y + 2z = 25A1A1

Note: A1 for right hand side, A1 for left hand side.

[3 marks] (f) putting two coordinates equal to zero (i) (M1) $X\left(\frac{25}{11}, 0, 0\right), Y\left(0, \frac{5}{2}, 0\right), Z\left(0, 0, \frac{25}{2}\right)$ A1 (ii) $YZ = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{25}{2}\right)^2}$ $=\sqrt{\frac{325}{2}} \left(= \frac{5\sqrt{104}}{4} = \frac{5\sqrt{26}}{2} \right)$ М1 A1

[4 marks]

Total [24 marks]

Question 27

$$\cos \theta = \frac{(3i - 4j - 5k) \cdot (5i - 4j + 3k)}{|3i - 4j - 5k| |5i - 4j + 3k|}$$
(M1)
= $\frac{16}{\sqrt{50}\sqrt{50}}$ A1A1

e: A1 for correct numerator and A1 for correct denominator.

$$=\frac{8}{25}\left(=\frac{16}{50}=0.32\right)$$
 A1

[4 marks]

(a) recognising normal to plane or attempting to find cross product of two vectors lying in the plane (M1) for example, $\vec{AB} \times \vec{AD} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ (A1) $\Pi_l : x + z = 1$ A1 [3 marks]

(b) **EITHER**

OR

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix} \times \begin{pmatrix} 0\\1\\1 \end{pmatrix} = \sqrt{3} = \sqrt{2}\sqrt{2}\sin\theta$$

Note: M1 is for an attempt to find the scalar or vector product of the two normal vectors.

$$\Rightarrow \theta = 60^{\circ} \left(= \frac{\pi}{3} \right)$$
angle between faces is $120^{\circ} \left(= \frac{2\pi}{3} \right)$
(c) $\overrightarrow{DB} = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$ or $\overrightarrow{BD} = \begin{pmatrix} -1\\ -1\\ 1 \end{pmatrix}$
(A1)
(A1)
(A1)
$$\Pi_3 : x + y - z = k$$
(M1)
$$\Pi_3 : x + y - z = 0$$
(M1)
(3 marks]

M1A1

Continue...

(d) METHOD 1

line AD: $(\mathbf{r} =) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ M1A1

intersects Π_3 when $\lambda - (1-\lambda) = 0$

	2		-			
so $\lambda = \frac{1}{2}$						A1
hence P is t	he midpoint	of AD				AG

METHOD 2

midpoint of AD is (0.5, 0, 0.5) substitute into $x + y - z = 0$	(M1)A1 M1
0.5 + 0 - 0.5 = 0	A1
hence \mathbf{P} is the midpoint of $\mathbf{A}\mathbf{D}$	AG

[4 marks]

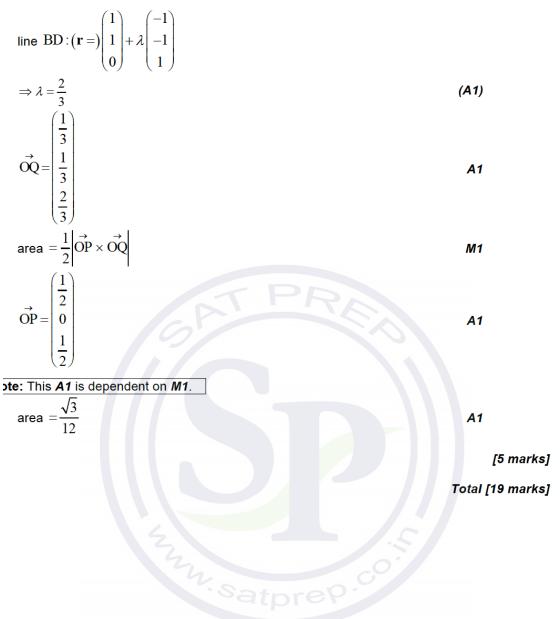
М1

(e) METHOD 1

$OP = \frac{1}{\sqrt{2}}, O\hat{P}Q = 90^\circ, O\hat{Q}P = 60^\circ$	A1A1A1
$PQ = \frac{1}{\sqrt{6}}$	A1
area $=\frac{1}{2\sqrt{12}}=\frac{1}{4\sqrt{3}}=\frac{\sqrt{3}}{12}$	A1
inue	

Continue...

METHOD 2



METHOD 1 (a) $\boldsymbol{n} = \begin{pmatrix} 0\\1\\2 \end{pmatrix} \times \begin{pmatrix} 2b\\0\\b-1 \end{pmatrix}$ (M1) $= \begin{pmatrix} b-1\\4b\\-2b \end{pmatrix}$ (M1)A1 (0, 0, 0) on Π so (b-1)x + 4by - 2bz = 0(M1)A1 **METHOD 2** using equation of the form px + qy + rz = 0(M1) (0, 1, 2) on $\Pi \Rightarrow q + 2r = 0$ (2b, 0, b-1) on $\Pi \Rightarrow 2bp + r(b-1) = 0$ (M1)A1 Note: Award (M1)A1 for both equations seen. solve for p, q, and r(M1) (b-1)x + 4by - 2bz = 0A1 [5 marks] M has coordinates $\left(b, 0, \frac{b-1}{2}\right)$ (b) (A1) $\begin{pmatrix} b \\ 0 \\ \underline{b-1} \end{pmatrix} + \lambda \begin{pmatrix} b-1 \\ 4b \\ -2b \end{pmatrix}$ *r* = **M1A1** Note: Award *M1A0* if r = (or equivalent) is not seen. Note: Allow equivalent forms such as $\frac{x-b}{b-1} = \frac{y}{4b} = \frac{2z-b+1}{-4b}$ [3 marks]

(c) METHOD 1

 $x = z = 0 \tag{M1}$

Note: Award *M1* for either x = 0 or z = 0 or both.

$$b + \lambda(b-1) = 0$$
 and $\frac{b-1}{2} - 2\lambda b = 0$ A1

М1

attempt to eliminate λ

$$\Rightarrow -\frac{b}{b-1} = \frac{b-1}{4b} \tag{A1}$$

$$-4b^2 = \left(b-1\right)^2$$

EITHER

consideration of the signs of LHS and RHS (M1) the LHS is negative and the RHS must be positive (or equivalent statement) R1

OR

 $-4b^2 = b^2 - 2b + 1$ $\Rightarrow 5b^2 - 2b + 1 = 0$ $\Delta = (-2)^2 - 4 \times 5 \times 1 = -16 (<0)$ М1 ∴ no real solutions R1 THEN so no point of intersection AG **METHOD 2** x = z = 0(M1) Note: Award *M1* for either x = 0 or z = 0 or both $b + \lambda(b-1) = 0$ and $\frac{b-1}{2} - 2\lambda b = 0$ A1 attempt to eliminate b М1 $\Rightarrow \frac{\lambda}{1+\lambda} = \frac{1}{1-4\lambda}$ (A1) $-4\lambda^2 = 1 \left(\Longrightarrow \lambda^2 = -\frac{1}{4} \right)$ A1 consideration of the signs of LHS and RHS (M1) there are no real solutions (or equivalent statement) **R1** so no point of intersection AG [7 marks] Total [15 marks]

(a)	$\boldsymbol{a}\boldsymbol{\cdot}\boldsymbol{b} = (1\times 0) + (1\times -t) + (t\times 4t)$	(M1)	
	$=-t+4t^2$	A1	
			[2 marks]

(b) recognition that $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ (M1) $\boldsymbol{a} \cdot \boldsymbol{b} < 0 \text{ or } -t + 4t^2 < 0 \text{ or } \cos \theta < 0$

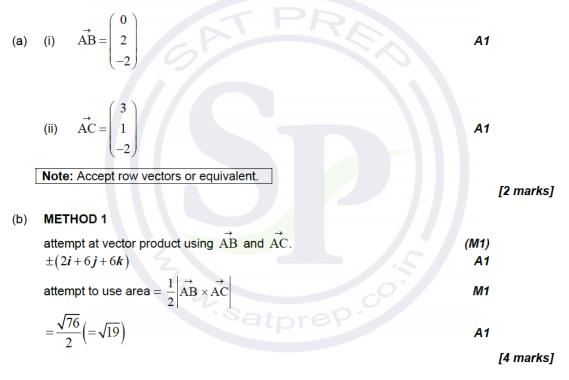
Note: Allow \leq for **R1**.

attempt to solve using sketch or sign diagram	(M1)
$0 < t < \frac{1}{4}$	A1
	[4 marks]

Total [6 marks]

R1

Question 31



Continue....

METHOD 2

METHO	D 2	
attempt	to use $\vec{AB} \cdot \vec{AC} = \left \vec{AB} \right \left \vec{AC} \right \cos \theta$	M1
	$ = \sqrt{0^2 + 2^2 + (-2)^2} \sqrt{3^2 + 1^2 + (-2)^2} \cos \theta $	
$6 = \sqrt{8}\sqrt{8}$		A1
	$\frac{6}{\sqrt{8}\sqrt{14}} = \frac{6}{\sqrt{112}}$	
attempt	to use area = $\frac{1}{2} \left \overrightarrow{AB} \right \left \overrightarrow{AC} \right \sin \theta$	M1
$=\frac{1}{2}\sqrt{8}\sqrt{2}$	$\sqrt{14}\sqrt{1-\frac{36}{112}} \left(= \frac{1}{2}\sqrt{8}\sqrt{14}\sqrt{\frac{76}{112}} \right)$	
$=\frac{\sqrt{76}}{2}(=$	$=\sqrt{19}$	A1
2		[4 marks]
		Total [6 marks]
Question	32	
(a) (i)	appreciation that two points distinct from P need to be chosen from each line ${}^{4}C_{2} \times {}^{3}C_{2}$	M1
	= 18	A1
(ii)	EITHER	
	consider cases for triangles including P or triangles not including P $3 \times 4 + 4 \times {}^{3}C_{2} + 3 \times {}^{4}C_{2}$	M1 (A1)(A1)
Not	e: Award A1 for 1 st term, A1 for 2 nd & 3 rd term.	
<u>.</u>	OR 2	
	consider total number of ways to select 3 points and subtract those	
	with 3 points on the same line	M1
	${}^{8}C_{3} - {}^{5}C_{3} - {}^{4}C_{3}$	(A1)(A1)
Not	e: Award A1 for 1 st term, A1 for 2 nd & 3 rd term.	

56-10-4

THEN

= 42

A1 [6 marks]

continue...

(b) METHOD 1

	substitution of $(4, 6, 4)$ into both equations	(M1)	
	$\lambda = 3$ and $\mu = 1$	A1A1	
	(4, 6, 4)	AG	
	METHOD 2		
	attempting to solve two of the three parametric equations	M1	
	$\lambda = 3 \text{ or } \mu = 1$	A1	
	check both of the above give $(4, 6, 4)$	M1AG	_
No	te: If they have shown the curve intersects for all three coordinates to check (4,6,4) with one of " λ " or " μ ".	they only need	
			[3 marks]
(c)	$\lambda = 2$	A1	
			[1 mark]
	(-1) (-5)		
(d)	$\vec{PA} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \vec{PB} = \begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix}$	A1A1	
	$\begin{pmatrix} -1 \end{pmatrix}$ $\begin{pmatrix} -2 \end{pmatrix}$		
e: Av	vard A1A0 if both are given as coordinates.		
			[2 marks]
		C	ontinued
(e)	METHOD 1		
	$1 \rightarrow \rightarrow$		
	area triangle $ABP = \frac{1}{2} \overrightarrow{PB} \times \overrightarrow{PA} $		M1
	$ \left(= \frac{1}{2} \begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix} \times \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} $		A1
	$\begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$		
	$\sqrt{29}$		A1
	2		~~~
	EITHER		
	$\vec{PC} = 3\vec{PA}, \vec{PD} = 3\vec{PB}$		(M1)
	$\Gamma C = J\Gamma A, \Gamma D = J\Gamma D$		

PC = 3PA, PD = 3PB	(M1)
area triangle $PCD = 9 \times area$ triangle ABP	(M1)A1
$=\frac{9\sqrt{29}}{2}$	A1

Continue...

D has coordinates (-11, -12, -2)area triangle PCD = $\frac{1}{2} |\vec{PD} \times \vec{PC}| = \frac{1}{2} \begin{vmatrix} -15 \\ -18 \\ -6 \end{vmatrix} \times \begin{pmatrix} -3 \\ -6 \\ -3 \end{vmatrix}$ M1A1

Note: A1 is for the correct vectors in the correct formula.

$$=\frac{9\sqrt{29}}{2}$$
 A1

THEN

area of CDBA =
$$\frac{9\sqrt{29}}{2} - \frac{\sqrt{29}}{2}$$

= $4\sqrt{29}$

A1 [8 marks]

continued...

METHOD 2

D has coordinates $(-11, -12, -2)$	A1
area $= \frac{1}{2} \left \vec{CB} \times \vec{CA} \right + \frac{1}{2} \left \vec{BC} \times \vec{BD} \right $	M1

Note: Award M1 for use of correct formula on appropriate non-overlapping triangles.

Note: Different triangles or vectors could be used.

$$\vec{CB} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \vec{CA} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$

$$\vec{CB} \times \vec{CA} = \begin{pmatrix} -4 \\ 6 \\ -8 \end{pmatrix}$$

$$\vec{A1}$$

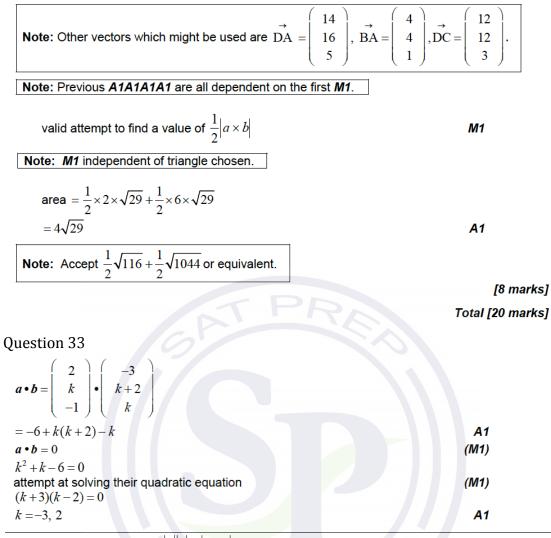
$$\vec{BC} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \vec{BD} = \begin{pmatrix} -10 \\ -12 \\ -4 \end{pmatrix}$$

$$\vec{A1}$$

$$\vec{BC} \times \vec{BD} = \begin{pmatrix} -12 \\ 18 \\ -24 \end{pmatrix}$$

$$A1$$

OR



te: Attempt at solving using $|a||b| = |a \times b|$ will be *M1A0A0A0* if neither answer found *M1(A1)A1A0* for one correct answer and *M1(A1)A1A1* for two correct answers. Total [4 marks]

Question 34

(a) (i)
$$\vec{AV} = \begin{pmatrix} p \\ p \\ p-10 \end{pmatrix}$$
 A1

$$\vec{AB} \times \vec{AV} = \begin{pmatrix} 0\\10\\-10 \end{pmatrix} \times \begin{pmatrix} p\\p\\p-10 \end{pmatrix} = \begin{pmatrix} 10(p-10)+10p\\-10p\\-10p\\-10p \end{pmatrix}$$
 A1

$$= \begin{pmatrix} 20p - 100 \\ -10p \\ -10p \end{pmatrix} = -10 \begin{pmatrix} 10 - 2p \\ p \\ p \end{pmatrix}$$
 AG

$$\vec{AC} \times \vec{AV} = \begin{pmatrix} 10\\0\\-10 \end{pmatrix} \times \begin{pmatrix} p\\p\\p-10 \end{pmatrix} = \begin{pmatrix} 10p\\100-20p\\10p \end{pmatrix} \begin{pmatrix} p\\10-2p\\p \end{pmatrix} = 10 \begin{pmatrix} p\\10-2p\\p \end{pmatrix} \end{pmatrix}$$
A1

(ii) attempt to find a scalar product

$$-10 \begin{pmatrix} 10-2p \\ p \\ p \end{pmatrix} \bullet 10 \begin{pmatrix} p \\ 10-2p \\ p \end{pmatrix} = 100 (3p^{2}-20p)$$
$$OR - \begin{pmatrix} 10-2p \\ p \\ p \end{pmatrix} \bullet \begin{pmatrix} p \\ 10-2p \\ p \end{pmatrix} = 3p^{2}-20p$$
A1

attempt to find magnitude of either $\vec{AB}\times\vec{AV}$ or $\vec{AC}\times\vec{AV}$ М1

$$-10 \begin{pmatrix} 10 - 2p \\ p \\ p \end{pmatrix} = \left| 10 \begin{pmatrix} p \\ 10 - 2p \\ p \end{pmatrix} \right| = 10 \sqrt{(10 - 2p)^2 + 2p^2}$$
 A1

$$\cos\theta = \frac{3p^2 - 20p}{(10 - 2p)^2 + 2p^2}$$
A1

Note: Award A1 for any intermediate step leading to the correct answer.

$$= \frac{p(3p-20)}{6p^2 - 40p + 100}$$
AG Note: Do not allow FT marks from part (a)(i).
[8 marks]

(b) (i)
$$p(3p-20) = 0 \Rightarrow p = 0 \text{ or } p = \frac{20}{3}$$
 M1A1
coordinates are $(0,0,0)$ and $\left(\frac{20}{3}, \frac{20}{3}, \frac{20}{3}\right)$ A1
Note: Do not allow column vectors for the final A mark.

(c) (i) geometrical consideration or attempt to solve
$$-1 = \frac{p(3p-20)}{6p^2 - 40p + 100}$$
 (M1)
 $p = \frac{10}{2}, \theta = \pi \text{ or } \theta = 180^{\circ}$ A1A1

$$\frac{10}{3}$$
, $\theta = \pi$ or $\theta = 180^{\circ}$

(ii)
$$p \to \infty \Rightarrow \cos \theta \to \frac{1}{2}$$
 M1

hence the asymptote has equation $\theta = \frac{\pi}{3}$ A1 [5 marks]

a vector normal to
$$\Pi_p$$
 is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (A1)
te: Allow any scalar multiple of $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, including $\begin{pmatrix} p \\ 0 \\ 0 \end{pmatrix}$

attempt to find scalar product (or vector product) of direction vector of line

with any scalar multiple of 0

le of
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 M1

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 5\\\sin\theta\\\cos\theta \end{pmatrix} = 5 \text{ (or } \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 5\\\sin\theta\\\cos\theta \end{pmatrix} = \begin{pmatrix} 0\\-\cos\theta\\\sin\theta \end{pmatrix} \text{ (a)}$$

(if α is the angle between the line and the normal to the plane)

$$\cos \alpha = \frac{5}{1 \times \sqrt{25 + \sin^2 \theta + \cos^2 \theta}} (\text{ or } \sin \alpha = \frac{1}{1 \times \sqrt{25 + \sin^2 \theta + \cos^2 \theta}})$$

$$\Rightarrow \cos \alpha = \frac{5}{\sqrt{26}} \text{ or } \sin \alpha = \frac{1}{\sqrt{26}}$$
A1

 $\sqrt{26}$ $\sqrt{26}$ this is independent of p and θ , hence the angle between the line and the plane, $(90-\alpha)$, is also independent of p and θ

[6 marks]

R1