Subject – Math(Higher Level) Topic - Vector Year - Nov 2011 – Nov 2019 Paper 2

Question 1

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(M1)
$= a \begin{vmatrix} a & 1 \\ 1 & a \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & a \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	
$= a(a^{2}-1) - (a-1) + (1-a)$	(A1)
$=a^{3}-3a+2$	AI
set $a^3 - 3a + 2 = 0$	M1
$\Rightarrow a = -2; a = 1$	AIAI
hence the system has a unique solution for all reals such that	
$a \neq -2; a \neq 1$	RI

ote: Award *R1* for their values of *a*.

[7 marks]

(a)	METHOD 1	
	solving simultaneously (gdc)	(M1)
	x = 1 + 2z; $y = -1 - 5z$	AIAI
	$L: \boldsymbol{r} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-5\\1 \end{pmatrix}$	
	$L: \boldsymbol{r} = \begin{vmatrix} -1 \\ +\lambda \end{vmatrix} - 5$	AIAIAI
No	te: $1^{\text{st}}AI$ is for $r = .$	

[6 marks]

METHOD 2

direction of line = $\begin{vmatrix} i & j & k \\ 3 & 1 & -1 \\ 2 & 1 & 1 \end{vmatrix}$ (last two rows swapped)	MI	
=2i-5j+k	AI	
putting $z = 0$, a point on the line satisfies $2x + y = 1$, $3x + y = 2$	MI	
<i>i.e.</i> $(1, -1, 0)$	AI	
the equation of the line is	AI	
$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$	AIAI	
(z) (0) (1)		
(x)		
Note: Award $A0A1$ if y is missing.		
Note. Award AbAT in $\begin{bmatrix} y \\ z \end{bmatrix}$ is missing.		
(z)		
		[6 marks]
(2) (2)		
(b) 1×-5	MI	
(b) $ \begin{pmatrix} 2\\1\\1 \end{pmatrix} \times \begin{pmatrix} 2\\-5\\1 \end{pmatrix} $ = $6i - 12k$ hence, $n = i - 2k$ $n \cdot a = \begin{pmatrix} 1\\0\\-2 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = 1$	S	
=6i-12k	Al	
hence, $n = i - 2k$	AI	
(1)(1)		
$\boldsymbol{n} \cdot \boldsymbol{a} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1$	MIAI	
$\mathbf{n} \cdot \mathbf{u} = \begin{bmatrix} 0 & -1 & -1 \\ 2 & 0 & 0 \end{bmatrix}$	MIAI	
	10	
therefore $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n} \Longrightarrow x - 2z = 1$	AG	14 11
		[4 marks]

METHOD 1 (c)

$$\vec{P} = (-2, 4, 1), \ Q = (x, y, z)$$

$$\vec{PQ} = \begin{pmatrix} x+2\\ y-4\\ z-1 \end{pmatrix}$$

AI

 \overrightarrow{PQ} is perpendicular to 3x + y - z = 2

$\Rightarrow \overrightarrow{PQ}$ is parallel to $3i + j - k$	R1
$\Rightarrow x + 2 = 3t; y - 4 = t; z - 1 = -t$	A1
$1 - z = t \Longrightarrow x + 2 = 3 - 3z \Longrightarrow x + 3z = 1$	A1
solving simultaneously $x + 3z = 1$; $x - 2z = 1$	M1
$5z=0 \Rightarrow z=0; x=1, y=5$	AI
hence, $Q = (1, 5, 0)$	

[6 marks]

METHOD 2

Line passing through PQ has equation

-23 r = 4 + t 11 -1

Meets π_3 when: -2 + 3t - 2(1 - t) = 1*t* = 1 Q has coordinates (1, 5, 0)

MIAI **A1**

MIAI

[6 marks]

Total [16 marks]

Question 3

point on line is $x = \frac{-1-5\lambda}{5}$, $y = \frac{9+5\lambda}{5}$, $z = \lambda$ or similar	M1A1
e: Accept use of point on the line or elimination of one of the variables using	
the equations of the planes	
$\frac{-1-5\lambda}{5} - \frac{9+5\lambda}{5} + 2\lambda = k$	M1A1
e: Award M1A1 if coordinates of point and equation of a plane is used to	
obtain linear equation in k or equations of the line are used in combination	
with equation obtained by elimination to get linear equation in <i>k</i> .	
k = -2	A1

[5 marks]

(a)
$$\vec{AB} = \begin{pmatrix} 0\\6\\-6 \end{pmatrix} \Rightarrow AB = \sqrt{72}$$
 A1

$$\vec{AC} = \begin{pmatrix} -6\\0\\-6 \end{pmatrix} \Rightarrow AC = \sqrt{72}$$
 A1

so they are the same

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 36 = (\sqrt{72})(\sqrt{72})\cos\theta \qquad (M1)$$
$$\cos\theta = \frac{36}{(\sqrt{72})(\sqrt{72})} = \frac{1}{2} \Rightarrow \theta = 60^{\circ} \qquad A1AG$$

AG

[4 marks]

Note: Award *M1A1* if candidates find BC and claim that triangle ABC is equilateral.

(b) METHOD 1

$\vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 6 & -6 \\ -6 & 0 & -6 \end{vmatrix} = -36\mathbf{i} + 36\mathbf{j} + 36\mathbf{k}$ equation of plane is $\mathbf{x} - \mathbf{y} - \mathbf{z} = \mathbf{k}$ goes through A, B or C $\Rightarrow \mathbf{x} - \mathbf{y} - \mathbf{z} = 2$	(M1)A1 (M1) A1	[4 marks]
METHOD 2 x+by+cz=d (or similar) 5-2b+5c=d 5+4b-c=d	M1 A1	
b = -1, c = -1, d = 2 so $x - y - z = 2$	M1 A1	[4 marks]
(c) (i) midpoint is $(5, 1, 2)$, so equation of Π_1 is $y - z = -1$	A1A1	
(ii) midpoint is $(2, -2, 2)$, so equation of Π_2 is $x + z = 4$ Note: In each part, award A1 for midpoint and A1 for the equation of the p	A1A1	
Note: In each part, award A1 for midpoint and A1 for the equation of the p	nane.	[4 marks]

(d) **EITHER**

solving the two equations above

$$L: \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
 A1

OR

L has the direction of the vector product of the normal vectors to the planes Π_1 and Π_2 (M1)

 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix} = \mathbf{i} - \mathbf{j} - \mathbf{k}$ (or its opposite)

THEN

direction is	$\begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	as required
		6

[3 marks]

M1

A1

R1

(e) D	is of the form $(4-\lambda, -1+\lambda, \lambda)$	<u>M1</u>	
($(1+\lambda)^{2} + (-1-\lambda)^{2} + (5-\lambda)^{2} = 72$	<u>M1</u>	
	$\lambda^2 - 6\lambda - 45 = 0$		
	$\lambda = 5 \text{ or } \lambda = -3$	A1	
1	0(-1, 4, 5)	AG	
Note:	Award MOMOAO if candidates just show that $D(-1, 4, 5)$		
	satisfies AB=AD;		
	Award M1M1A0 if candidates also show that D is of the form		
	$(4-\lambda,-1+\lambda,\lambda)$		
		[3]	m

[3 marks]

(f) **EITHER**

G is of the form $(4 - \lambda, -1 + \lambda, \lambda)$ and DG = AG, BG or CG	M1
e.g. $(1+\lambda)^2 + (-1-\lambda)^2 + (5-\lambda)^2 = (5-\lambda)^2 + (5-\lambda)^2 + (5-\lambda)^2$	M1
$(1+\lambda)^2 = (5-\lambda)^2$	

$$\lambda = 2$$
 A1
G(2, 1, 2) A2

OR

G is the centre of mass (barycentre) of the regular tetrahedron ABCD (M1)

$$G\left(\frac{5+5+(-1)+(-1)}{4}, \frac{-2+4+(-2)+4}{4}, \frac{5+(-1)+(-1)+5}{4}\right)$$
 M1A1

THEN Note: the following part is independent of previous work and candidates may use AG to answer it (here it is possible to award MOMOAOA1M1A1) $\vec{GD} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix} \text{ and } \vec{GA} = \begin{pmatrix} 3 \\ -3 \\ 3 \\ 3 \end{pmatrix} \qquad A1$ $\cos \theta = \frac{-9}{(3\sqrt{3})(3\sqrt{3})} = -\frac{1}{3} \Rightarrow \theta = 109^{\circ} \text{ (or } 1.91 \text{ radians)} \qquad M1A1$ [6 marks] Total [24 marks]

juestion 5		
(a) in augmented matrix form $\begin{vmatrix} 1 & -3 & 1 & 3 \\ 1 & 5 & -2 & 1 \\ 0 & 16 & -6 & k \end{vmatrix}$		
attempt to find a line of zeros	(M1)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$r_2 - r_1 = 0 8 -3 -2$	(A1)	
$0 \ 16 \ -6 \ k$		
1 -3 1 3		
$ r_3 - 2r_2 \begin{vmatrix} 1 & -3 & 1 & 3 \\ 0 & 8 & -3 & -2 \\ 0 & 0 & 0 & k+4 \end{vmatrix} $	(A1)	
there is an infinite number of solutions when $k = -4$	R 1	
there is no solution when $k \neq -4, (k \in \mathbb{R})$	D1	
	<u>R1</u>	
Note: Approaches other than using the augmented matrix are acceptable.		
		[5 marks]
(b) using $\begin{vmatrix} 1 & -3 & 1 & 3 \\ 0 & 8 & -3 & -2 \\ 0 & 0 & 0 & k+4 \end{vmatrix}$ and letting $z = \lambda$	(M1)	
0 0 0 k+4		
$8y - 3\lambda = -2$		
$\Rightarrow y = \frac{3\lambda - 2}{8}$	(47)	
0	(A1)	
x - 3y + z = 3		
$\Rightarrow x - \left(\frac{9\lambda - 6}{8}\right) + \lambda = 3$	(M1)	
$\Rightarrow 8x - 9\lambda + 6 + 8\lambda = 24$		
$ \Rightarrow 8\lambda - 9\lambda + 0 + 8\lambda - 24 $ $18 + \lambda$		
$\Rightarrow x = \frac{18 + \lambda}{8}$	(A1)	
$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{18}{8} \\ -\frac{2}{8} \\ -\frac{2}{8} \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{8} \\ \frac{3}{8} \end{pmatrix}$		
$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{2}{8} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \frac{3}{8} \\ 1 \end{pmatrix}$	(M1)(A1)	
$\boldsymbol{r} = \begin{pmatrix} \frac{9}{4} \\ -\frac{1}{4} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix}$	Al	
Note: Accept equivalent answers.		
		[7 marks]

(c) recognition that
$$\begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$$
 is parallel to the plane (A1)
direction normal of the plane is given by $\begin{vmatrix} i & j & k \\ 1 & 3 & 8 \\ 3 & -2 & 0 \end{vmatrix}$ (M1)
=16i+24j-11k (M1)
Cartesian equation of the plane is given by $16x+24y-11z=d$ and a point which fits this equation is $(1, 2, 0)$ (M1)
 $\Rightarrow 16+48=d$
 $d=64$ A1
hence Cartesian equation of plane is $16x+24y-11z=64$ A1

Note: Accept alternative methods using dot product.

- [5 marks]
- (d) the plane crosses the *z*-axis when x = y = 0 (M1) coordinates of P are $\left(0, 0, -\frac{64}{11}\right)$ A1

Note: Award *A1* for stating $z = -\frac{64}{11}$

		()
		0
Note:	Accept.	0
		64
		$\left(\overline{11} \right)$

[2 marks]

(e) recognition that the angle between the line and the direction normal is given by:

					M1A1	
					(A1)	
					(AI)	
the	line	and	the	plane	is	
					AI	
	the	the line	the line and	the line and the	the line and the plane	(A1) (A1) the line and the plane is

Note: Accept use of the formula $a.b = |a| |b| \sin \theta$.

Total [24 marks]

(a)
$$\boldsymbol{n} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$
 and $\boldsymbol{m} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ (A1)

$$\cos\theta = \frac{n \cdot m}{|n||m|} \tag{M1}$$

$$\cos\theta = \frac{2+2+3}{\sqrt{1+4+9}\sqrt{4+1+1}} = \frac{7}{\sqrt{14}\sqrt{6}}$$

 $\theta = 40.2^{\circ} \quad (0.702 \text{ rad})$

A1

A1

A1

A1

[4 marks]

(b) METHOD 1

eliminate z from x - 2y - 3z = 2 and 2x - y - z = k $5x - y = 3k - 2 \Rightarrow x = \frac{y - (2 - 3k)}{5}$ eliminate y from x - 2y - 3z = 2 and 2x - y - z = k $3x + z = 2k - 2 \Rightarrow x = \frac{z - (2k - 2)}{-3}$ x = t, y = (2 - 3k) + 5t and z = (2k - 2) - 3t $r = \begin{pmatrix} 0 \\ 2 - 3k \\ 2k - 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$ [5 marks]

METHOD 2

$$\begin{pmatrix} 1\\-2\\-3 \end{pmatrix} \times \begin{pmatrix} 2\\-1\\-1 \end{pmatrix} = \begin{pmatrix} -1\\-5\\3 \end{pmatrix} \Rightarrow \text{ direction is } \begin{pmatrix} 1\\5\\-3 \end{pmatrix}$$
 M1A1

Let x = 0

$0 - 2y - 3z = 2$ and $2 \times 0 - y - z = k$	(M1)
solve simultaneously	(M1)
y = 2 - 3k and $z = 2k - 2$	A1

therefore
$$\mathbf{r} = \begin{pmatrix} 0\\ 2-3k\\ 2k-2 \end{pmatrix} + t \begin{pmatrix} 1\\ 5\\ -3 \end{pmatrix}$$
 AG

[5 marks]

METHOD 3

substitute
$$x = t$$
, $y = (2 - 3k) + 5t$ and $z = (2k - 2) - 3t$ into π_1 and π_2
 M1

 for $\pi_1 : t - 2(2 - 3k + 5t) - 3(2k - 2 - 3t) = 2$
 A1

 for $\pi_2 : 2t - (2 - 3k + 5t) - (2k - 2 - 3t) = k$
 A1

 the planes have a unique line of intersection
 R2

therefore the line is $\mathbf{r} = \begin{pmatrix} 0 \\ 2 - 3k \\ 2k - 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$

[5 marks]

(c)
$$5-t = (2-3k+5t) + 3 = 2-2(2k-2-3t)$$

MIA1

AG

Note: Award *MIAI* if candidates use vector or parametric equations of
$$L_2$$

 $eg \begin{pmatrix} 0\\ 2-3k\\ 2k-2 \end{pmatrix} + t \begin{pmatrix} 1\\ 5\\ -3 \end{pmatrix} = \begin{pmatrix} -2\\ -3\\ 1 \end{pmatrix} + s \begin{pmatrix} -2\\ 2\\ -2\\ -1 \end{pmatrix}$ or $\Rightarrow \begin{cases} t=5-2s\\ 2-3k+5t=-3+2s\\ 2k-2-3t=1+s \end{cases}$

solve simultaneously
 $k=2, t=1 \ (s=2)$
intersection point $(1, 1, -1)$

(d) $\vec{l}_2 = \begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix}$
 $\vec{l}_1 \times \vec{l}_2 = \begin{vmatrix} i & j & k\\ 1 & 5 & -3\\ 2 & -2 & 1 \end{vmatrix} = \begin{pmatrix} -1\\ -7\\ -12 \end{pmatrix}$
(M1)
 $r \cdot \begin{pmatrix} 1\\ 7\\ 12 \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 7\\ 12 \end{pmatrix}$
(M1)
 $r + 7y+12z = -4$
(M1)

[5 marks]

(e) Let θ be the angle between the lines $\vec{l_1} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$ and $\vec{l_2} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$.

$$\cos\theta = \frac{|2 - 10 - 3|}{\sqrt{35}\sqrt{9}} \Rightarrow \theta = 0.902334...(51.699...^{\circ})$$
(M1)

as the triangle XYZ has a right angle at Y, XZ = $a \Rightarrow$ YZ = $a \sin \theta$ and XY = $a \cos \theta$

area =
$$3 \Rightarrow \frac{a^2 \sin \theta \cos \theta}{1} = 3$$
 (M1)

$$a = 3.5122...$$
 (A1)

perimeter =
$$a + a\sin\theta + a\cos\theta = 8.44537... = 8.45$$

Note: If candidates attempt to find coordinates of Y and Z award M1 for expression of vector YZ in terms of two parameters, M1 for attempt to use perpendicular condition to determine relation between parameters, M1 for attempt to use the area to find the parameters and A2 for final answer.

[5 marks]

Total [24 marks]

(M1)

A1

Question 7

METHOD 1 determinant = 0M1k(-2-16) - (0-12) + 2(0+3) = 0(M1)(A1)-18k+18=0(A1) *k* = 1 Al **METHOD 2** writes in the form $(k \ 1 \ 2 \ 4)$ 0 -1 4 5 (or attempts to solve simultaneous equations) (M1) 3 4 2 1 Having two 0's in first column (obtaining two equations in the same two variables) M1 k 1 2 4 5 (or isolating one variable) 4 0 -1 Al $0 \quad 0 \quad 18k - 18 \quad 21k - 27$ ite: The A1 is to be awarded for the 18k - 18. The final column may not be seen. *k* = 1 (M1)A1

[5 marks]

(a)
$$\vec{PQ} = \begin{pmatrix} 8 \\ 6 \\ 4 \end{pmatrix}$$
 (A1)

equation of line: $\mathbf{r} = \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 8 \\ 6 \\ 4 \end{pmatrix}$ (or equivalent)

Note: Award $M1A\theta$ if r = is omitted.

[3 marks]

MIAI

(b) METHOD 1

$y: \qquad 2s = -1 + 6t$	
$z: \qquad 4 = 2 + 4t$	<u>M1</u>
solving any two simultaneously	M1
t = 0.5, s = 1 (or equivalent)	<u>A1</u>
verification that these values give R when substituted into both equation	s
(or that the three equations are consistent and that one gives R)	R 1

METHOD 2

	$(1, 2, 4)$ is given by $t = 0.5$ for L_1 and $s = 1$ for L_2	MIA1A1	
	because (1, 2, 4) is on both lines it is the point of intersection of the		
	two lines	R1	
			[4 marks]
	$\binom{5}{4}$		
(c)	$\begin{vmatrix} 3 \\ 2 \\ 0 \end{vmatrix} = 26 = \sqrt{29} \times \sqrt{29} \cos \theta$	<u>M1</u>	
	$\left(0\right)\left(2\right)$		
	$\cos\theta = \frac{26}{29}$	(AI)	
	29	(AI)	
	$\theta = 0.459 \text{ or } 26.3^{\circ}$	Al	
			[3 marks]

(e) **EITHER**

midpoint of [PS₁] is M(-3.5, -0.5, 3) $\vec{RM} = \begin{pmatrix} -4.5 \\ -2.5 \end{pmatrix}$

$$\vec{RM} = \begin{bmatrix} -2.5\\ -1 \end{bmatrix}$$
 A1

OR

the direction of the line is $\vec{RS_1} + \vec{RP}$

$$\begin{pmatrix} -5\\ -2\\ 0 \end{pmatrix} + \begin{pmatrix} -4\\ -3\\ -2 \end{pmatrix} = \begin{pmatrix} -9\\ -5\\ -2 \end{pmatrix}$$
 MIA

THEN

the equation of the line is:

r =	1 2	+t	(9) 5	or equivalent		
	4)	(2)			

Note: Marks cannot be awarded for methods involving halving the angle, unless it is clear that the candidate considers also the equation of the plane of L_1 and L_2 to reduce the number of parameters involved to one (to obtain the vector equation of the required line).

[4 marks] Total [20 marks]

A1

M1A1

(a) attempting to express the system in matrix form

$$\begin{pmatrix} 0.1 & -1.7 & 0.9 \\ -2.4 & 0.3 & 3.2 \\ 2.5 & 0.6 & -3.7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4.4 \\ 1.2 \\ 0.8 \end{pmatrix}$$
 AI

Note: Award *M1A1* for a correct augmented matrix.

[2 marks]

M1

(M1)

(b)	either direct GDC use, attempting elimination or using an inverse matrix.
	(932)

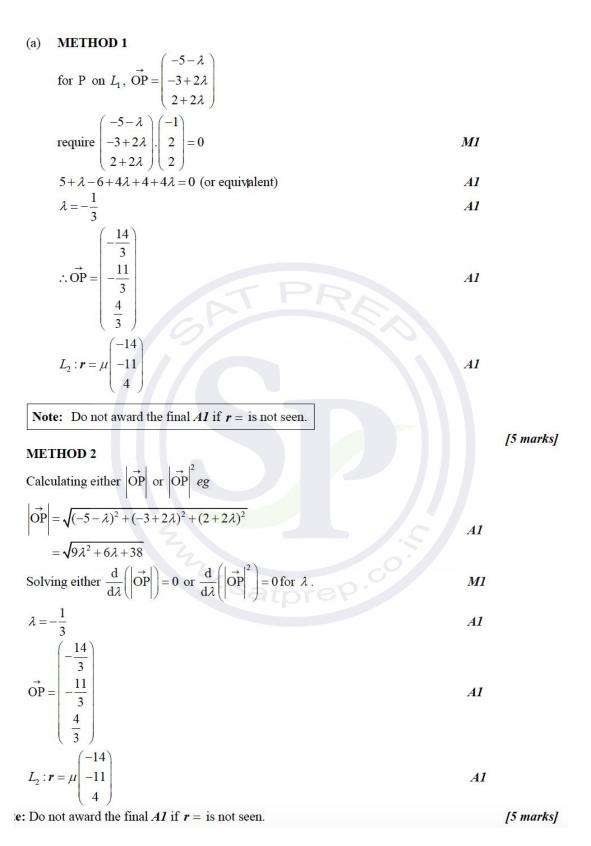
$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2.4 \\ 1.6 \\ -1.6 \end{pmatrix} \text{ (correct to 2sf) or } \begin{pmatrix} -2.40 \\ 1.61 \\ -1.57 \end{pmatrix} \text{ (correct to 3sf) or }$	$ \begin{array}{c} -\frac{932}{389} \\ \frac{628}{389} \\ -\frac{612}{389} \end{array} $	(exact)	A2
--	--	---------	----

[3 marks]

Total [5 marks]

Question 10

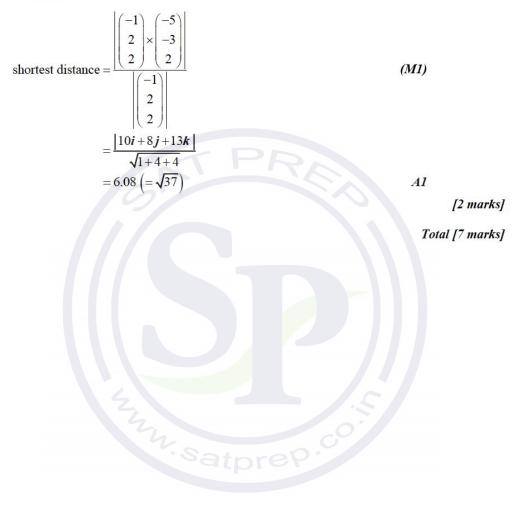
(a)	attempting to form $(3\cos\theta + 6)(\cos\theta - 2) + 7(1 + \sin\theta) = 0$	M1	
	$3\cos^2\theta - 12 + 7\sin\theta + 7 = 0$	<u>A1</u>	
	$3(1-\sin^2\theta)+7\sin\theta-5=0$	<u>M1</u>	
	$3\sin^2\theta - 7\sin\theta + 2 = 0$	AG	
			[3 marks]
(b)	attempting to solve algebraically (including substitution) or		
	graphically for $\sin \theta$	(M1)	
	$\sin\theta = \frac{1}{3}$	(A1)	
	$\theta = 0.340 \ (=19.5^{\circ})$	A1	
			[3 marks]
		Tot	al [6 marks]



(b) METHOD 1

$$\begin{vmatrix} \vec{OP} \\ = \sqrt{\left(-\frac{14}{3}\right)^2 + \left(-\frac{11}{3}\right)^2 + \left(\frac{4}{3}\right)^2} \qquad (M1) \\ = 6.08 \quad (=\sqrt{37}) \qquad A1 \$$

METHOD 2



(a) $\begin{bmatrix} x+2y-z=2\\ 2x+y+z=1\\ -x+4y+az=4 \end{bmatrix}$		
$\rightarrow \begin{bmatrix} x+2y-z=2\\ -3y+3z=-3\\ 6y+(a-1)z=6 \end{bmatrix}$	M1A1	
$\rightarrow \begin{bmatrix} x+2y-z=2\\ -3y+3z=-3\\ (a+5)z=0 \end{bmatrix}$ (or equivalent)	Al	
if not a unique solution then $a = -5$	<u>A1</u>	
Note: The first $M1$ is for attempting to eliminate a variable, the first $A1$ for obtaining two expression in just two variables (plus a), and the second $A1$ for obtaining an expression in just a and one other variable		

[4 marks]

Total [6 marks]

(b)	if $a = -5$	there	are	an	infinite	number	of	solutions	as	last	equation		
	always tru	e										R1	
	and if $a \neq$	-5 ther	e is a	un	ique solu	tion						R1	
	hence alwa	ays a sc	lutio	n								AG	
													[2 marks]

Question 13

$n_1 = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ and $n_2 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$	(A1)(A1)
use of $\cos\theta = \frac{n_1 \cdot n_2}{ n_1 n_2 }$	(M1)
$\cos\theta = \frac{7}{\sqrt{21}\sqrt{19}} \left(=\frac{7}{\sqrt{399}}\right)$	(A1)(A1)
Note: Award <i>A1</i> for a correct numerator and <i>A1</i> for a correct denominator.	
$\theta = 69^{\circ}$	A1

A1

Note: Award A1 for 111°.

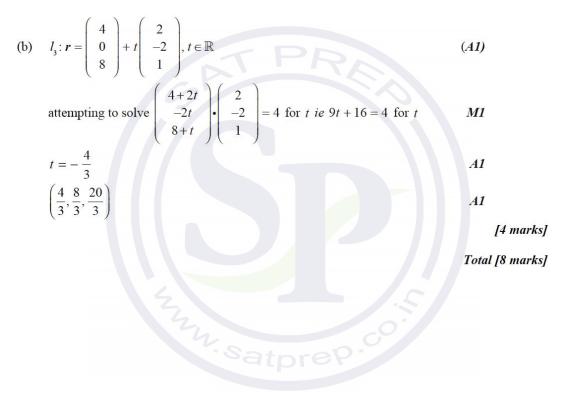
Total [6 marks]

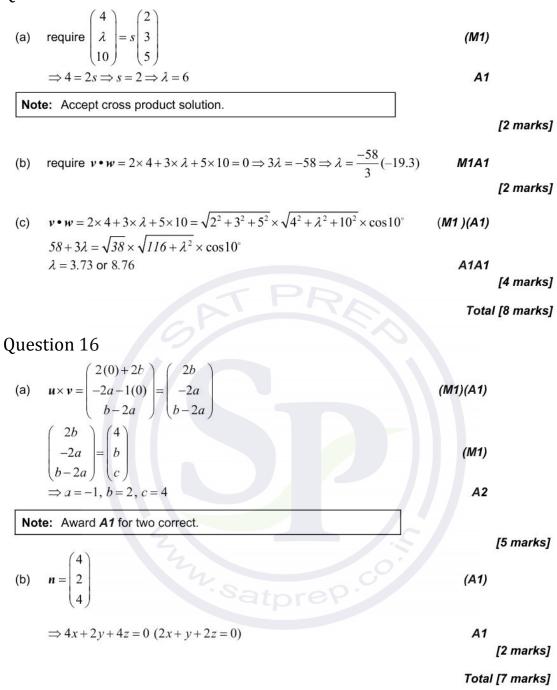
(a) attempting to find a normal to
$$\pi eg \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} \times \begin{pmatrix} 8 \\ 11 \\ 6 \end{pmatrix}$$
 (M1)

$$\begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} \times \begin{bmatrix} 11 \\ 6 \\ -2 \\ 1 \end{bmatrix} = 17 \begin{bmatrix} -2 \\ 1 \\ -2 \\ 1 \end{bmatrix}$$
(A1)
$$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 12 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \\ -2 \\ 1 \end{bmatrix}$$
(A1)

(12)(12)(12)2x-2y+z=4 (or equivalent)

A1 [4 marks]





(a) 2x + y + 6z = 04x + 3y + 14z = 4 $2x - 2y + (\alpha - 2)z = \beta - 12$ attempt at row reduction M1 eg $R_2 - 2R_1$ and $R_3 - R_1$ 2x + y + 6z = 0y + 2z = 4 $-3y + (\alpha - 8)z = \beta - 12$ A1 eg $R_3 + 3R_2$ 2x + y + 6z = 0y + 2z = 4A1 $(\alpha - 2)z = \beta$ no solutions if $\alpha = 2$, $\beta \neq 0$ (i) A1 one solution if $\alpha \neq 2$ (ii) A1 infinite solutions if $\alpha = 2$, $\beta = 0$ (iii) A1 Note: Accept alternative methods e.g. determinant of a matrix Note: Award A1A1A0 if all three consistent with their reduced form, A1A0A0 if two or one answer consistent with their reduced form. [6 marks] $y + 2z = 4 \Longrightarrow y = 4 - 2z$ A1 (b) $2x = -y - 6z = 2z - 4 - 6z = -4z - 4 \Rightarrow x = -2z - 2$ A1 therefore Cartesian equation is $\frac{x+2}{-2} = \frac{y-4}{-2} = \frac{z}{1}$ or equivalent A1 [3 marks]

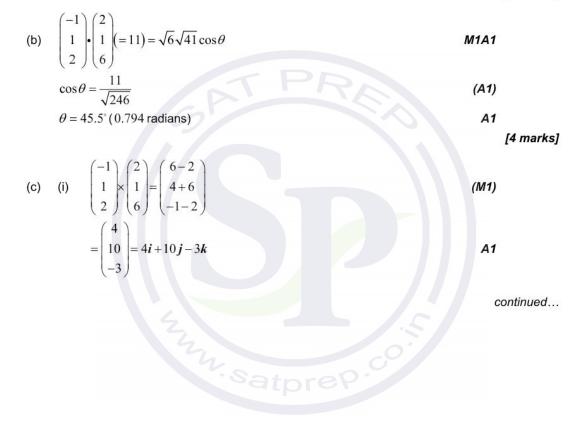
Total [9 marks]

(a)
$$L_1$$
 and L_2 are not parallel, since $\begin{pmatrix} -1\\1\\2 \end{pmatrix} \neq k \begin{pmatrix} 2\\1\\6 \end{pmatrix}$ **R1**

if they meet, then $1 - \lambda = 1 + 2\mu$ and $2 + \lambda = 2 + \mu$	M1
solving simultaneously $\Rightarrow \lambda = \mu = 0$	A1
$2+2\lambda = 4+6\mu \Longrightarrow 2 \neq 4$ contradiction,	R1
so lines are skew	AG

Note: Do not award the second R1 if their values of parameters are incorrect.

[4 marks]



(ii) METHOD 1

let P be the intersection of L_1 and L_3 let Q be the intersection of L_2 and L_3

$$\vec{OP} = \begin{pmatrix} 1-\lambda\\2+\lambda\\2+2\lambda \end{pmatrix} \vec{OQ} = \begin{pmatrix} 1+2\mu\\2+\mu\\4+6\mu \end{pmatrix}$$
 M1

therefore
$$\vec{PQ} = \vec{OQ} - \vec{OP} = \begin{pmatrix} \mu - \lambda \\ \mu - \lambda \\ 2 + 6\mu - 2\lambda \end{pmatrix}$$
 M1A1

$$\begin{pmatrix} 2\mu + \lambda \\ \mu - \lambda \\ 2 + 6\mu - 2\lambda \end{pmatrix} = t \begin{pmatrix} 4 \\ 10 \\ -3 \end{pmatrix}$$
 M1

$$2\mu + \lambda - 4t = 0$$

$$\mu - \lambda - 10t = 0$$

$$6\mu - 2\lambda + 3t = -2$$

solving simultaneously

$$\lambda = \frac{32}{125}(0.256), \ \mu = -\frac{28}{125}(-0.224)$$

Note: Award **A1** for either correct λ or μ .

EITHER

therefore
$$\vec{OP} = \begin{pmatrix} 1-\lambda \\ 2+\lambda \\ 2+2\lambda \end{pmatrix} = \begin{pmatrix} \frac{93}{125} \\ \frac{282}{125} \\ \frac{314}{125} \end{pmatrix} = \begin{pmatrix} 0.744 \\ 2.256 \\ 2.512 \end{pmatrix}$$
 A1
therefore $L_3 : r_3 = \begin{pmatrix} 0.744 \\ 2.256 \\ 2.512 \end{pmatrix} + \alpha \begin{pmatrix} 4 \\ 10 \\ -3 \end{pmatrix}$ A1

continued...

(M1)

therefore
$$\vec{OQ} = \begin{pmatrix} 1+2\mu\\ 2+\mu\\ 4+6\mu \end{pmatrix} = \begin{pmatrix} \frac{69}{125}\\ \frac{222}{125}\\ \frac{332}{125} \\ \frac{332}{125} \end{pmatrix} = \begin{pmatrix} 0.552\\ 1.776\\ 2.656 \end{pmatrix}$$
 A1
therefore $L_3: r_3 = \begin{pmatrix} 0.552\\ 1.776\\ 2.656 \end{pmatrix} + \alpha \begin{pmatrix} 4\\ 10\\ -3 \end{pmatrix}$

Note: Allow position vector(s) to be expressed in decimal or fractional form.

[10 marks]

METHOD 2

 $L_3: r_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + t \begin{pmatrix} 4 \\ 10 \\ -3 \end{pmatrix}$

forming two equations as intersections with $L_{\rm I}$ and $L_{\rm 2}$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + t_1 \begin{pmatrix} 4 \\ 10 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + t_2 \begin{pmatrix} 4 \\ 10 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$$

Note: Only award **M1A1A1** if two different parameters t_1, t_2 used.

attempting to solve simultaneously

$$\lambda = \frac{32}{125}(0.256), \ \mu = -\frac{28}{125}(-0.224)$$

Note: Award **A1** for either correct λ or μ .

continued...

M1A1A1

М1

A1

OR

EITHER

$$\binom{a}{b}_{c} = \binom{0.552}{1.776}_{2.656}$$
A1
therefore $L_{3}: \mathbf{r}_{3} = \binom{0.552}{1.776}_{2.656} + t \binom{4}{10}_{-3}$
A1A1
OR
 $\binom{a}{b}_{c} = \binom{0.744}{2.256}_{2.512}$
A1
therefore $L_{3}: \mathbf{r}_{3} = \binom{0.744}{2.256}_{2.512} + t \binom{4}{10}_{-3}$
A1

Note: Allow position vector(s) to be expressed in decimal or fractional form.

Total [18 marks]

(M1)

Question 19

using technology and/or by elimination (eg ref on GDC)

$$x = 1.89 \left(= \frac{17}{9} \right), y = 1.67 \left(= \frac{5}{3} \right), z = -2.22 \left(= \frac{-20}{9} \right)$$
 A1A1A1 [4 marks]

(a)
$$a = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
 A1
 $b = \frac{1}{3} \left(\begin{pmatrix} 4 \\ 16 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \end{pmatrix} \right) = \begin{pmatrix} \frac{5}{3} \\ 4 \end{pmatrix}$ (M1)A1
[3 marks]

(b) **METHOD 1**

Roderick must signal in a direction vector perpendicular to Ed's path. (M1)

the equation of the signal is $s = \begin{pmatrix} 11 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} -12 \\ 5 \end{pmatrix}$ (or equivalent)

$$\binom{-1}{4} + \frac{t}{3}\binom{5}{12} = \binom{11}{9} + \lambda\binom{-12}{5}$$
 M1

$$\frac{5}{3}t + 12\lambda = 12 \text{ and } 4t - 5\lambda = 5$$
M1
$$t = 2.13 \left(= \frac{360}{169} \right)$$
A1
METHOD 2

[5 marks]

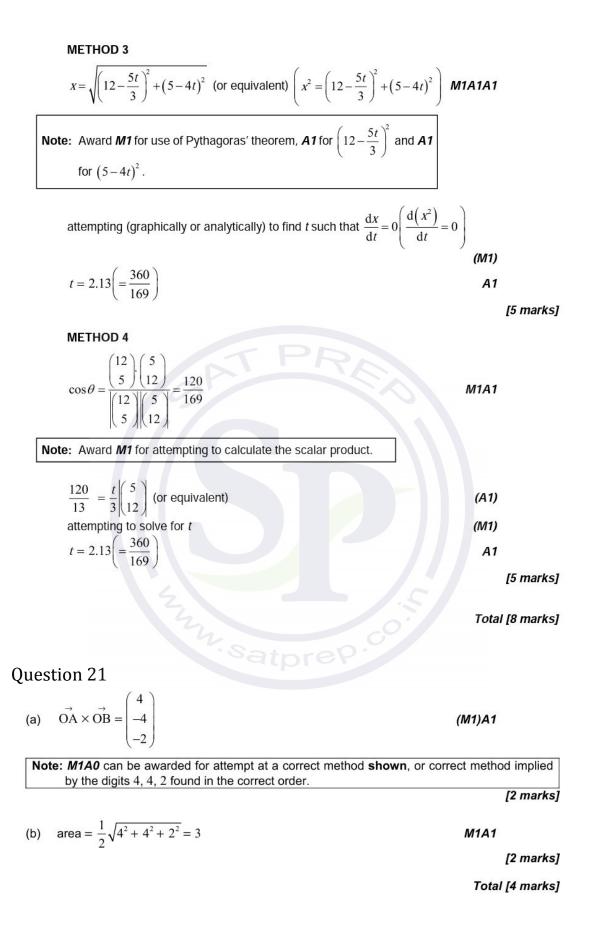
A1

$$\begin{pmatrix} 5\\12 \end{pmatrix} \cdot \left(\begin{pmatrix} 11\\9 \end{pmatrix} - \begin{pmatrix} -1+\frac{5}{3}t\\4+4t \end{pmatrix} \right) = 0 \text{ (or equivalent)} \qquad M1A1A1$$
Note: Award the *M1* for an attempt at a scalar product equated to zero, *A1* for the first factor and *A1* for the complete second factor.
$$\text{attempting to solve for } t \qquad (M1)$$

$$t = 2.13 \left(= \frac{360}{169} \right) \qquad A1$$

$$[5 \text{ marks]}$$

$$continued...$$



(a) (i)

METHOD 1	-
$\left \overrightarrow{OC} \right ^2 = \overrightarrow{OC} \cdot \overrightarrow{OC}$	
$= (a + b) \cdot (a + b)$	A1
$= a \cdot a + a \cdot b + b \cdot a + b \cdot b$	A1
$= \boldsymbol{a} ^2 + 2\boldsymbol{a}\cdot\boldsymbol{b} + \boldsymbol{b} ^2$	AG

continued ...

METHOD 2

$\left \overrightarrow{OC} \right ^2 = \left \overrightarrow{OA} \right ^2 + \left \overrightarrow{OB} \right ^2 - 2 \left \overrightarrow{OA} \right\ \overrightarrow{OB} \left \cos\left(\overrightarrow{OAC} \right) \right $	A1
$ \vec{OA} \vec{OB} \cos(OAC) = -(\boldsymbol{a} \cdot \boldsymbol{b})$	A1
$ \overrightarrow{OC} ^2 = \boldsymbol{a} ^2 + 2\boldsymbol{a}\cdot\boldsymbol{b} + \boldsymbol{b} ^2$	AG

(ii) METHOD 1

$\left \overrightarrow{AB} \right ^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$	
$= (b-a) \cdot (b-a)$	A1
$= b \cdot b - b \cdot a - a \cdot b + a \cdot a$	A1
$= \boldsymbol{a} ^2 - 2\boldsymbol{a}\cdot\boldsymbol{b} + \boldsymbol{b} ^2$	AG
METHOD 2	

$$|\vec{AB}|^{2} = |\vec{AC}|^{2} + |\vec{BC}|^{2} - 2|\vec{AC}||\vec{BC}|\cos(\vec{ACB})$$

$$|\vec{AC}||\vec{BC}|\cos(\vec{ACB}) = a \cdot b$$

$$|\vec{AB}|^{2} = |a|^{2} - 2a \cdot b + |b|^{2}$$

$$A1$$

$$|\vec{AB}|^{2} = |a|^{2} - 2a \cdot b + |b|^{2}$$

$$[4 marks]$$

(b) $ \overrightarrow{OC} = \overrightarrow{AB} \Rightarrow \overrightarrow{OC} ^2 = \overrightarrow{AB} ^2 \Rightarrow a ^2 + 2a \cdot b + b ^2 = a ^2 - 2a \cdot b + b ^2$	R1(M1)
Note: Award R1 for $ \overrightarrow{OC} = \overrightarrow{AB} \Rightarrow \overrightarrow{OC} ^2 = \overrightarrow{AB} ^2$ and (M1) for $ a ^2 + 2a \cdot b$	$\boldsymbol{b} + \boldsymbol{b} ^2 = \boldsymbol{a} ^2 - 2\boldsymbol{a}\cdot\boldsymbol{b} + \boldsymbol{b} ^2.$
$\boldsymbol{a} \cdot \boldsymbol{b} = 0$	A1
hence OACB is a rectangle (<i>a</i> and <i>b</i> both non-zero) with adjacent sides at right angles	R1
Note: Award <i>R1(M1)A0R1</i> if the dot product has not been used.	[4 marks]

[4 marks]

Total [8 marks]

$$\boldsymbol{n}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 and $\boldsymbol{n}_2 = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$ (A1)(A1)

EITHER

$$\theta = \arccos\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{|\mathbf{n}_{1}||\mathbf{n}_{2}|}\right) \left(\cos\theta = \frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{|\mathbf{n}_{1}||\mathbf{n}_{2}|}\right)$$
(M1)
$$= \arccos\left(\frac{2+0-1}{\sqrt{3}\sqrt{5}}\right) \left(\cos\theta = \frac{2+0-1}{\sqrt{3}\sqrt{5}}\right)$$
(A1)
$$= \arccos\left(\frac{1}{\sqrt{15}}\right) \left(\cos\theta = \frac{1}{\sqrt{15}}\right)$$

OR

$$\theta = \arcsin\left(\frac{|\mathbf{n} \times \mathbf{n}_{z}|}{|\mathbf{n}||\mathbf{n}_{z}|}\right) \left(\sin \theta = \frac{|\mathbf{n} \times \mathbf{n}_{z}|}{|\mathbf{n}||\mathbf{n}_{z}|}\right)$$
(M1)
$$= \arcsin\left(\frac{\sqrt{14}}{\sqrt{3\sqrt{5}}}\right) \left(\sin \theta = \frac{\sqrt{14}}{\sqrt{3\sqrt{5}}}\right)$$
(A1)
$$= \arcsin\left(\frac{\sqrt{14}}{\sqrt{15}}\right) \left(\sin \theta = \frac{\sqrt{14}}{\sqrt{15}}\right)$$
THEN
$$= 75.0^{\circ} \text{ (or 1.31)}$$
(5 marks]

Question 24 METHOD 1 (-3) $\overrightarrow{AB} = \begin{vmatrix} -3 \end{vmatrix}$ (A1) 0 $\begin{pmatrix} -3 \\ -3 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ M1A1 $= \begin{pmatrix} 3 \\ -3 \end{pmatrix}$ A1 (-3) x - y - z = kM k = 3equation of plane Π is x - y - z = 3 or equivalent A1

METHOD 2

let plane Π be $ax + by + cz = d$		
attempt to form one or more simultaneous equations:	M	
$a + 2b - c = 0 \tag{1}$	A1	
6a + 2b + c = d (2)		
$3a - b + c = d \tag{3}$	A1	
Note: Award second A1 for equations (2) and (3).		
attempt to solve	M	
EITHER		
i opo i d d d		
using GDC gives $a = \frac{d}{3}$, $b = -\frac{d}{3}$, $c = -\frac{d}{3}$	(A1)	
equation of plane Π is $x - y - z = 3$ or equivalent	A1	
OR 20		
row reduction	M	
equation of plane Π is $x - y - z = 3$ or equivalent	A1	
(of • entreproductions • End approximation from under state of the state of the State State States)		[6 marks]

METHOD 1

$\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{b} \times \boldsymbol{c}$	
$(\boldsymbol{a} \times \boldsymbol{b}) - (\boldsymbol{b} \times \boldsymbol{c}) = 0$	
$(\boldsymbol{a} \times \boldsymbol{b}) + (\boldsymbol{c} \times \boldsymbol{b}) = 0$	M1A1
$(\boldsymbol{a}+\boldsymbol{c})\times\boldsymbol{b}=0$	A1
$(a + c)$ is parallel to $b \Rightarrow a + c = sb$	R1AG
Note: Condone absence of arrows, underlining, or other other	herwise "correct" vector

notation throughout this question.

Note: Allow "is in the same direction to", for the final **R** mark.

METHOD 2

$$a \times b = b \times c \Rightarrow \begin{pmatrix} -2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_4b_2 - a_2b_1 \end{pmatrix} = \begin{pmatrix} b_2c_3 - b_3c_2 \\ b_3c_1 - b_1c_3 \\ b_1c_2 - b_2c_1 \end{pmatrix}$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(1$$

(a) $\overrightarrow{BC} = (i + 3j + 3k) - (2i - j + 2k) = -i + 4j + k$	(A1)	
$\mathbf{r} = (2\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \lambda(-\mathbf{i} + 4\mathbf{j} + \mathbf{k})$ (or $\mathbf{r} = (\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) + \lambda(-\mathbf{i} + 4\mathbf{j} + \mathbf{k})$	(M1)A1	
Note: Do not award A1 unless $r =$ or equivalent correct notation seen.		
	[3	3 marks]

(b)	attempt to write in parametric form using two different parameters AND equate $2\mu = 2 - \lambda$	М1
	$\mu = -1 + 4\lambda$	
	$-2\mu = 2 + \lambda$	A1
	attempt to solve first pair of simultaneous equations for two parameters	M1
	solving first two equations gives $\lambda = \frac{4}{9}, \mu = \frac{7}{9}$	(A1)
	substitution of these two values in third equation since the values do not fit, the lines do not intersect	(M1) R1

Note: Candidates may note that adding the first and third equations immediately leads to a contradiction and hence they can immediately deduce that the lines do not intersect.		
		[6 mark
c) M	ETHOD 1	

METHOD 1		
plane is of the form $r \cdot (2i + j - 2k) = 2k$	(A1)	
$(i + 3j + 3k) \cdot (2i + j - 2k) = -1$	(M1)	
hence Cartesian form of plane is $2x + y - 2z = -1$	A1	
METHOD 2		
plane is of the form $2x + y - 2z = d$	(A1)	
substituting $(1, 3, 3)$ (to find gives $2+3-6=-1$)	(M1)	
hence Cartesian form of plane is $2x + y - 2z = -1$	A1	
		[3 marks]
	plane is of the form $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = -1$ hence Cartesian form of plane is $2x + y - 2z = -1$ METHOD 2 plane is of the form $2x + y - 2z = d$ substituting $(1, 3, 3)$ (to find gives $2 + 3 - 6 = -1$)	plane is of the form $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = 2\mathbf{k}$ (A1) $\mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = -1$ (M1) hence Cartesian form of plane is $2x + y - 2z = -1$ A1 METHOD 2 plane is of the form $2x + y - 2z = d$ (A1) substituting $(1, 3, 3)$ (to find gives $2 + 3 - 6 = -1$) (M1)

continued...

(d) METHOD 1

attempt scalar product of direction vector BC with normal to plane $(-i + 4j + k) \cdot (2i + j - 2k) = -2 + 4 - 2$	M1
= 0	A1
hence BC lies in Z_1	AG

METHOD 2

substitute eqn of line into plane $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	
line -1 $+\lambda$ 4 . Plane $\pi_1: 2x + y - 2z = -1$	
$2(2-\lambda)+(-1+4\lambda)-2(2+\lambda)$	
= -1	A1
hence BC lies in Z_1	AG

Note: Candidates may also just substitute 2i - j + 2k into the plane since they are told C lies on π_1 .

Note: Do not award A1FT.

Note: Do not award AIFT.	[2 marks]
(e) METHOD 1	
applying scalar product to \overrightarrow{OA} and \overrightarrow{OB}	M1
$(2j+k)\bullet(2i+j-2k)=0$	A1
$(2\mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 0$	A1
METHOD 2	
attempt to find cross product of \overrightarrow{OA} and \overrightarrow{OB}	M1
plane Π_2 has normal $\overrightarrow{OA} \times \overrightarrow{OB} = -8j - 4k$	A1
since $-8j - 4k = -4(2j + k)$, $2j + k$ is perpendicular to the plane	П ₂ R1
	[3 marks]
(f) plane Π_3 has normal $\overrightarrow{OA} \times \overrightarrow{OC} = 9i - 8j + 5k$	A1
	[1 mark]
	continued
(g) attempt to use dot product of normal vectors	(M1)
$\cos\theta = \frac{(2j+k)\cdot(9i-8j+5k)}{ 2j+k 9i-8j+5k }$	(M1)
$=\frac{-11}{\sqrt{5}\sqrt{170}}(=-0.377)$	(A1)
Note: Accept $\frac{11}{\sqrt{5}\sqrt{170}}$.	
acute angle between planes = $67.8^{\circ} (= 1.18^{\circ})$	A1
	14 marks

[4 marks]

Total [22 marks]

M1

(a)	$r_A = r_B$	(M1)
	$2-t = -0.5t \Longrightarrow t = 4$	A1
	checking $t = 4$ satisfies $4 + t = 3.2 + 1.2t$ and $-1 - 0.15t = -2 + 0.1t$	R1
	P(-2, 8, -1.6)	A1

Note: Do not award final A1 if answer given as column vector.

[4 marks]

(b) (i)
$$0.9 \times \begin{pmatrix} -0.5 \\ 1.2 \\ 0.1 \end{pmatrix} = \begin{pmatrix} -0.45 \\ 1.08 \\ 0.09 \end{pmatrix}$$
 A1
Note: Accept use of cross product equalling zero.
hence in the same direction AG
(ii) $\begin{pmatrix} -0.45t \\ 3.2 + 1.08t \\ -2 + 0.09t \end{pmatrix} = \begin{pmatrix} -2 \\ 8 \\ -1.6 \end{pmatrix}$ M1
Note: The M1 can be awarded for any one of the resultant equations.
 $\Rightarrow t = \frac{40}{9} = 4.44...$ A1
[3 marks]
(c) (i) $r_A - r_B = \begin{pmatrix} 2 - t \\ 4 + t \\ -1 - 0.15t \end{pmatrix} - \begin{pmatrix} -0.45t \\ 3.2 + 1.08t \\ -2 + 0.09t \end{pmatrix}$ (M1)(A1)
 $= \begin{pmatrix} 2 - 0.55t \\ 0.8 - 0.08t \\ 1 - 0.24t \end{pmatrix}$ (A1)

Note: Accept $r_B - r_A$.	
distance $D = (2 - 0.55t)^2 + (0.8 - 0.08t)^2 + (1 - 0.08t)$	- 0.24 <i>t</i>) ² M1A1
$(=\sqrt{8.64 - 2.688t + 0.317t^2})$	
(ii) minimum when $\frac{\mathrm{d}D}{\mathrm{d}t} = 0$	(M1)
t = 3.83	A1

(iii) 0.511 (km) A1

[8 marks]

Total [15 marks]

(d) (i) substituting
$$\begin{pmatrix} \frac{5}{4} \\ 0 \\ -\frac{7}{4} \end{pmatrix}$$
 into 3: M1
 $\frac{5\alpha}{4} - \frac{7c}{4} = 1$

$$\begin{array}{c} 4 \quad 4 \\ 5\alpha - 7c = 4 \end{array}$$
 AG

(ii) attempt to find scalar products for Π_1 and Π_3 , Π_2 and Π_3 and equating

and equating

$$\frac{3\alpha + \delta + c}{\sqrt{11}\sqrt{a^2 + b^2 + c^2}} = \frac{a - 3b - c}{\sqrt{11}\sqrt{a^2 + b^2 + c^2}}$$
M1

A1
M1
A1

hence equation is $\frac{4x}{5} - \frac{2y}{5} = 1$

for second equation:		
$3a+b+c$ $a-3\delta-c$	(144)	
$\frac{1}{\sqrt{11}}\sqrt{a^2+b^2+c^2} = -\frac{1}{\sqrt{11}}\sqrt{a^2+b^2+c^2}$	(M1)	
$\Rightarrow 2a - b = 0$		
attempt to solve $2a - b = 0$, $a + 2\delta - 5c = 0$, $5a - 7c = 4$		
$\Rightarrow a = -2, b = -4, c = -2$	A1	
hence equation is $-2x - 4y - 2z = 1$		
	<i>[0 m</i>	

[9 marks]

Total [19 marks]