Subject – Math (Standard Level) Topic - Vector Year - Nov 2011 – Nov 2017 Paper- 2

Question 1

(a)	(i)	valid approach $e.g. \text{ OA} + \text{AB}$	(M1)	
		$\vec{OB} = 4i + 3j$	Al	N2
	(ii)	valid approach $e.g. \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BF}; \overrightarrow{OB} + \overrightarrow{BF}; \overrightarrow{OC} + \overrightarrow{CG} + \overrightarrow{GF}$	(M1)	
		e.g. OATABTBI, OBTBI, OCTOOTOF		
		$\vec{OF} = 4i + 3j + 2k$	<u>A1</u>	N2
	(iii)	correct approach	Al	
		<i>e.g.</i> $\vec{AO} + \vec{OC} + \vec{CG}$; $\vec{AB} + \vec{BF} + \vec{FG}$; $\vec{AB} + \vec{BC} + \vec{CG}$		
		$\overrightarrow{AG} = -4i + 3j + 2k$	AG	NO
				[5 marks]
(b)	(i)	any correct equation for (OF) in the form $r = a + tb$ where <i>a</i> is 0 or $4i + 3j + 2k$, and <i>b</i> is a scalar multiple of $4i + 3j + 2k$	<u>A2</u>	N2
		(4t)		
		e.g. $\mathbf{r} = t(4, 3, 2), \ \mathbf{r} = \begin{pmatrix} 4t \\ 3t \\ 2t \end{pmatrix}, \ \mathbf{r} = 4i + 3j + 2k + t(4i + 3j + 2k)$		
		(2t)		
	(ii)	any correct equation for (AG) in the form $r = a + sb$ where <i>a</i> is $4i$ or $3j + 2k$ and <i>b</i> is a scalar multiple of $-4i + 3j + 2k$	A2	N2
		<i>e.g.</i> $\mathbf{r} = (4, 0, 0) + s(-4, 3, 2), \ \mathbf{r} = \begin{pmatrix} 4-4s \\ 3s \\ 2s \end{pmatrix}, \ \mathbf{r} = 3j + 2k + s(-4i + 3j + 2k)$	2 <i>k</i>)	

[4 marks]

(c) choosing correct direction vectors, \vec{OF} and \vec{AG} (A1)(A1)

scalar product = -16 + 9 + 4 (= -3) (A1)

magnitudes
$$\sqrt{4^2 + 3^2 + 2^2}$$
, $\sqrt{(-4)^2 + 3^2 + 2^2}$ $(\sqrt{29}, \sqrt{29})$ (A1)(A1)
substitution into formula M1

e.g.
$$\cos\theta = \frac{-16+9+4}{\left(\sqrt{4^2+3^2+2^2}\right) \times \sqrt{\left(-4\right)^2+3^2+2^2}} = \left(-\frac{3}{29}\right)$$

95.93777°, 1.67443 radians

$$\theta = 95.9^{\circ} \text{ or } 1.67$$
 A1 N4

[7 marks]

Total [16 marks]

appropriate approach	(M1)	
$eg \qquad \begin{pmatrix} 10\\6\\-1 \end{pmatrix} + s \begin{pmatrix} 2\\-5\\-2 \end{pmatrix} = \begin{pmatrix} 2\\1\\-3 \end{pmatrix} + t \begin{pmatrix} 3\\5\\2 \end{pmatrix}, \ L_1 = L_2$		
$eg = \begin{bmatrix} 6 \\ +s \end{bmatrix} -5 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + t \begin{bmatrix} 5 \\ -2 \end{bmatrix}, L_1 = L_2$		
(-1) (-2) (-3) (2)		
any two correct equations	AIAI	
eg $10+2s=2+3t$, $6-5s=1+5t$, $-1-2s=-3+2t$		
attempt to solve	(M1)	
eg substituting one equation into another		
one correct parameter	Al	
eg s = -1, t = 2		
correct substitution	(A1)	
eg = 2+3(2), 1+5(2), -3+2(2)	(////)	
A = (8, 11, 1) (accept column vector)	Al	N4
		[7 marks]

(a) (i) appropriate approach (MI)
eg
$$\vec{AO} + \vec{OB}$$
, $\vec{B} - A$
 $\vec{AB} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(ii) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(i) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(i) valid reasoning (seen anywhere)
(i) valid reasoning (seen anywhere)
(i) valid reasoning (seen anywhere)
(ii) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iii) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iv) valid reasoning (seen anywhere)
(iv) \vec{AI}
(iv) valid reasoning (seen anywhere)
(iv) \vec{AI}
(iv) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iv) valid reasoning (seen anywhere)
(iv) \vec{AI}
(iv) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iv) valid reasoning (seen anywhere)
(iv) \vec{AI}
(iv) \vec{AI}
(iv) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iv) \vec{AI}
(iv) $\vec{AC} = \begin{pmatrix} 2\\ 4\\ a \end{pmatrix}$
(iv) \vec{AI}
(i

(a)	appropriate approach eg $\begin{pmatrix} 11\\8\\2 \end{pmatrix} + s \begin{pmatrix} 4\\3\\-1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-7 \end{pmatrix} + t \begin{pmatrix} 2\\1\\11 \end{pmatrix}, L_1 = L_2$	(M1)	
	any two correct equations eg $11+4s=1+2t$, $8+3s=1+t$, $2-s=-7+11t$	AIAI	
	attempt to solve system of equations eg $10+4s = 2(7+3s), \begin{cases} 4s-2t = -10\\ 3s-t = -7 \end{cases}$	(M1)	
	one correct parameter $eg s = -2, t = 1$	Al	
	P(3, 2, 4) (accept position vector)	Al	N3 [6 marks]
(b)	choosing correct direction vectors for L_1 and L_2 eg $\begin{pmatrix} 4\\3\\-1 \end{pmatrix}, \begin{pmatrix} 2\\1\\11 \end{pmatrix}$ (or any scalar multiple)	(A1)(A1)	
	evidence of scalar product (with any vectors) eg $a \cdot b, \begin{pmatrix} 4\\ 3\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2\\ 1\\ 11 \end{pmatrix}$	(M1)	
	correct substitution eg $4(2)+3(1)+(-1)(11), 8+3-11$	A1	
	calculating $a \cdot b = 0$	<i>A1</i>	
No	te: Do not award the final <i>A1</i> without evidence of calculation.		

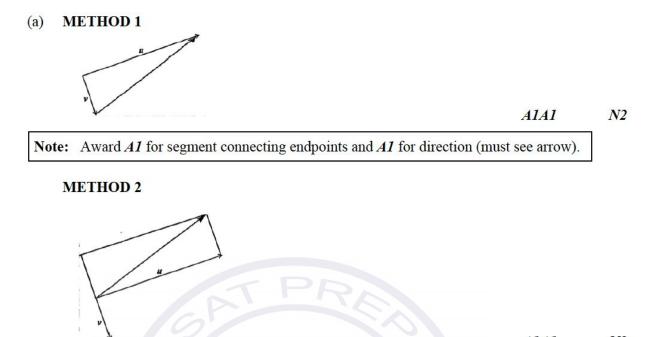
vectors are perpendicular

AG N0 [5 marks] **Note:** Candidates may take different approaches, which do not necessarily involve vectors. In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.

METHOD 1

attempt to find \vec{QP} or \vec{PQ}	(M1)
correct working (may be seen on diagram) $eg \qquad \vec{QP} = \begin{pmatrix} -4 \\ -3 \\ 1 \end{pmatrix}, \vec{PQ} = \begin{pmatrix} 7 \\ 5 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$	<i>A1</i>
recognizing R is on L_1 (seen anywhere) <i>eg</i> on diagram	(R1)
Q and R are equidistant from P (seen anywhere)	(R1)
eg $\overrightarrow{QP} = \overrightarrow{PR}$, marked on diagram correct working eg $\begin{pmatrix} 3\\2\\4 \end{pmatrix} - \begin{pmatrix} 7\\5\\3 \end{pmatrix} = \begin{pmatrix} x\\y\\z \end{pmatrix} - \begin{pmatrix} 3\\2\\4 \end{pmatrix}, \begin{pmatrix} -4\\-3\\1 \end{pmatrix} + \begin{pmatrix} 3\\2\\4 \end{pmatrix}$	(A1)
R(-1, -1, 5) (accept position vector)	A1 N3
METHOD 2	
recognizing R is on L_1 (seen anywhere) eg on diagram	(R1)
Q and R are equidistant from P (seen anywhere) eg P midpoint of QR, marked on diagram	(R1)
valid approach to find one coordinate of mid-point eg $x_p = \frac{x_Q + x_R}{2}$, $2y_p = y_Q + y_R$, $\frac{1}{2}(z_Q + z_R)$	(M1)
one correct substitution $eg x_{\rm R} = 3 + (3 - 7), 2 = \frac{5 + y_{\rm R}}{2}, 4 = \frac{1}{2}(z + 3)$	<i>A1</i>
correct working for one coordinate $eg x_{R} = 3-4, 4-5 = y_{R}, 8 = (z+3)$	(A1)
R(-1, -1, 5) (accept position vector)	A1 N3 [6 marks] Total [17 marks]

(c)



AIAI I
lirection (must see arrow).
[2 mark
ere) R1
(A1)
(M1)
A1 1 [4 mark

Total [6 marks]

(a)	(i)	correct substitution eg $6 \times 2 + 3 \times 2 + 6 \times 1$	(A1)	
		$u \cdot v = 24$	A1	N2
	(ii)	correct substitution into magnitude formula for <i>u</i> or <i>v</i> eg $\sqrt{6^2 + 3^2 + 6^2}$, $\sqrt{2^2 + 2^2 + 1^2}$, correct value for $ v $	(A1)	
		u =9	A1	N2
	(iii)	v =3	A1 [5	N1 marks]
(b)	corre eg	ect substitution into angle formula $\frac{24}{9 \times 3}$, $0.\overline{8}$	(A1)	
		25882, 27.26604°	A1	N2
	0.47	6, 27.3°	[2	marks]
			Total [7	marks]

(a) valid approach (addition or subtraction) (M1) eg AO+OB, B-A

$$\vec{AB} = \begin{pmatrix} 9\\6\\-3 \end{pmatrix}$$
 A1 N2
[2 marks]

(b) METHOD 1

valid approach using
$$\vec{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 (M1)
eg $\vec{AC} = \begin{pmatrix} x+3 \\ y+2 \\ z-2 \end{pmatrix}, \vec{CB} = \begin{pmatrix} 6-x \\ 4-y \\ -1-z \end{pmatrix}$
correct working (x+3) (12-2x) (12-2x)

	(x+3)		(12 - 2x)	
eg	<i>y</i> +2	=	8-2y	
	$\left(z-2\right)$		(-2-2z)	

all three equations

eg
$$x+3=12-2x, y+2=8-2y, z-2=-2-2z,$$

 $\vec{OC} = \begin{pmatrix} 3\\ 2\\ 0 \end{pmatrix}$ AG NO

A1

METHOD 2

valid approach

eg
$$\vec{OC} - \vec{OA} = 2 \left(\vec{OB} - \vec{OC} \right)$$

correct working A1

correct working

$$\vec{eg} \quad \vec{3OC} = 2\vec{OB} + \vec{OA}$$

correct substitution of \vec{OB} and \vec{OA}

eg
$$3\vec{OC} = 2\begin{pmatrix} 6\\4\\-1 \end{pmatrix} + \begin{pmatrix} -3\\-2\\2 \end{pmatrix}, \ 3\vec{OC} = \begin{pmatrix} 9\\6\\0 \end{pmatrix}$$

$$\vec{OC} = \begin{pmatrix} 3\\2\\0 \end{pmatrix}$$
 AG NO

METHOD 3

valid approach
eg
$$\vec{AC} = \frac{2}{3}\vec{AB}$$
, diagram, $\vec{CB} = \frac{1}{3}\vec{AB}$
correct working $A1$

eg
$$\vec{AC} = \begin{pmatrix} 6\\4\\-2 \end{pmatrix}, \vec{CB} = \begin{pmatrix} 3\\2\\-1 \end{pmatrix}$$

correct working involving $\stackrel{\rightarrow}{OC}$

A1

(M1)

A1

eg
$$\vec{OC} = \begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} 6 \\ 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$$

 $\vec{OC} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ AG NO
[3 marks]

(c)	finding scalar product and magnitudes scalar product = $(9 \times 3) + (6 \times 2) + (-3 \times 0)$ (= 39)	(A1)(A1)(A1)	
	magnitudes $\sqrt{81+36+9}$ (=11.22), $\sqrt{9+4}$ (=3.605)		
	substitution into formula	M1	
	eg $\cos\theta = \frac{(9 \times 3) + 12}{\sqrt{126} \times \sqrt{13}}$		
	$\theta = 0.270549$ (accept 15.50135°)		
	$\theta = 0.271$ (accept 15.5°)	A1	N4 [5 marks]
(d)	(i) attempt to use a trig ratio eg $\sin \theta = \frac{DE}{CD}, \vec{CE} = \vec{CD} \cos \theta$	M1	
	attempt to express \vec{CD} in terms of \vec{OC}	М1	
	eg $\vec{OC} + \vec{CD} = \vec{OD}, \ OC + CD = OD$ correct working eg $ \vec{k} \cdot \vec{OC} - \vec{OC} \sin \theta$ $ \vec{DE} = (k-1) \vec{OC} \sin \theta$	A1	
	$\left \vec{\mathrm{DE}} \right = (k-1) \left \vec{\mathrm{OC}} \right \sin \theta$	AG	NO
	(ii) valid approach involving the segment DE eg recognizing $\vec{DE} < 3$, $DE = 3$	(M1)	
	correct working (accept equation) eg $(k-1)(\sqrt{13})\sin 0.271 < 3, k-1 = 3.11324$	(A1)	
	1 < k < 4.11 (accept $k < 4.11$ but not $k = 4.11$)	A1	N2
			[6 marks]

Total [16 marks]

(a) valid approach (M1)
eg B-A, AO + OB,
$$\begin{pmatrix} -9 \\ 9 \\ -6 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ -7 \end{pmatrix}$$

 $\vec{AB} = \begin{pmatrix} -10 \\ 4 \\ 1 \end{pmatrix}$ A1 N2
[2 marks]
(b) valid approach (M1)

eg
$$OC = OA + AC$$
, $\begin{pmatrix} 1+0\\ 5-4\\ -7+0 \end{pmatrix}$
C(7, 1, -7) A1 N2

[2 marks]

(c) any correct equation in the form r = a + tb (accept any parameter for *t*)

where
$$a$$
 is $\begin{pmatrix} -9\\ 9\\ -6 \end{pmatrix}$, and b is a scalar multiple of $\begin{pmatrix} 6\\ -4\\ 0 \end{pmatrix}$
 $eg \quad r = \begin{pmatrix} -9\\ 9\\ -6 \end{pmatrix} + t \begin{pmatrix} 6\\ -4\\ 0 \end{pmatrix}$, $r = -9i + 9j - 6k + s(6i - 4j + 0k)$

[2 marks]

(d) correct magnitudes
eg
$$\sqrt{(-10)^2 + (-4)^2 + 1^2}$$
, $\sqrt{6^2 + (-4)^2 + (0)^2}$, $\sqrt{10^2 + 4^2 + 1}$, $\sqrt{6^2 + 4^2}$
 $k = \frac{\sqrt{117}}{\sqrt{52}}$ (= 1.5) (exact) A1 N3

[3 marks]

(e) correct interpretation of relationship between magnitudes (A1)

eg AB = 1.5AC, BD = 1.5AC,
$$\sqrt{117} = \sqrt{52t^2}$$

recognizing D can have two positions (may be seen in working) R1

eg $\overrightarrow{BD} = 1.5\overrightarrow{AC}$ and $\overrightarrow{BD} = -1.5\overrightarrow{AC}$, $t = \pm 1.5$, diagram, two answers valid approach (seen anywhere)

eg
$$\vec{OD} = \vec{OB} + \vec{BD}, \begin{pmatrix} -9\\9\\-6 \end{pmatrix} + t \begin{pmatrix} 6\\-4\\0 \end{pmatrix}, \vec{BD} = k \begin{pmatrix} 6\\-4\\0 \end{pmatrix}$$

one correct expression for OD

$$eg \quad \vec{OD} = \begin{pmatrix} -9\\ 9\\ -6 \end{pmatrix} + 1.5 \begin{pmatrix} 6\\ -4\\ 0 \end{pmatrix}, \begin{pmatrix} -9\\ 9\\ -6 \end{pmatrix} - 1.5 \begin{pmatrix} 6\\ -4\\ 0 \end{pmatrix}$$

D = (0, 3, -6), D = (-18, 15, -6) (accept position vectors) A1A1 N3

[6 marks]

Total [15 marks]

(M1)

(A1)

Question 9

finding scalar product and magnitudes scalar product = $(-10 \times 3) + (2 \times -4) + (1 \times 0) = -38$ magnitudes = $\sqrt{10^2 + 2^2 + 1^2}$, $\sqrt{3^2 + (-4)^2 + (0)^2} = (\sqrt{105}, \sqrt{25})$ substituting their values into formula eg $\cos \theta = \frac{-30 - 8 + 0}{(\sqrt{10^2 + 2^2 + 1^2}) \times (\sqrt{3^2 + (-4)^2 + (0)^2})}$ 2.40637; 137.875° $\theta = 2.4; 137.9^\circ$ A2

2 N4 [6 marks]

b) finding scalar product and
$$|\vec{AC}|$$
 (A1)(A1)
scalar product = $(4 \times 3) + (1 \times 0) + (2 \times 0)$ (=12)
 $|\vec{AC}| = \sqrt{3^2 + 0 + 0}$ (=3)
substituting their values into cosine formula
eg $\cos B\hat{A}C = \frac{4 \times 3 + 0 + 0}{\sqrt{3^2} \times \sqrt{21}}, \frac{4}{\sqrt{21}}, \cos \theta = 0.873$
 0.509739 (29.2059°)
 $B\hat{A}C = 0.510$ (29.2°)
A1 N2
[4 marks]
Total [6 marks]

Quebe			
(a)	(i) valid approach $eg (7, 4, 9) - (3, 2, 5), A-B$	(M1)	
	$\vec{PQ} = 4i + 2j + 4k \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$	A1	N2
	(ii) correct substitution into magnitude formula eg $\sqrt{4^2 + 2^2 + 4^2}$	(A1)	
	$ \vec{PQ} = 6$	A1	N2
			[4 marks]
(b)	finding scalar product and magnitudes scalar product = $(4 \times 6) + (2 \times (-1)) + (4 \times 3) (= 34)$	(A1)(A1)	
	magnitude of PR = $\sqrt{36+1+9}$ (= 6.782)		
	correct substitution of their values to find cos $Q\hat{P}R$	M 1	
	eg $\cos \hat{QPR} = \frac{24 - 2 + 12}{(6) \times (\sqrt{46})}$, 0.8355		
	0.581746		
	$Q\hat{P}R = 0.582 \text{ radians}$ or $Q\hat{P}R = 33.3^{\circ}$	A1	N3 [4 marks]
(c)	correct substitution eg $\frac{1}{2} \times \vec{PQ} \times \vec{PR} \times \sin P, \frac{1}{2} \times 6 \times \sqrt{46} \times \sin 0.582$	(A1)	
	11.1803 area is 11.2 (sq. units)	A1	N2 [2 marks]
(d)	recognizing shortest distance is perpendicular distance from R to line through P and Q	(M1)	
	eg sketch, height of triangle with base [PQ], $\frac{1}{2} \times 6 \times h$, $\sin 33.3^{\circ} = \frac{h}{\sqrt{46}}$		
	correct working	(A1)	
	eg $\frac{1}{2} \times 6 \times d = 11.2$, $ \vec{PR} \times \sin P$, $\sqrt{46} \sin 33.3^\circ$		
	3.72677 distance = 3.73 (units)	A1	N2 [3 marks]
		[Total	13 marks]

(a) (i) valid approach (M1)
eg B-A, AO+OB,
$$\begin{pmatrix} 8\\ -1\\ 5 \end{pmatrix} = \begin{pmatrix} -3\\ 4\\ 2 \end{pmatrix}$$

 $\overrightarrow{AB} = \begin{pmatrix} 11\\ -5\\ 3 \end{pmatrix}$ A1 N2
(ii) correct substitution into formula
eg $\sqrt{11^2 + (-5)^2 + 3^2}$ (A1)
eg $\sqrt{11^2 + (-5)^2 + 3^2}$ (A1)
(ii) correct substitution into formula
eg $\sqrt{11^2 + (-5)^2 + 3^2}$ (A1)
(b) (i) valid approach to find t (M1)
eg $\begin{pmatrix} 5\\ y\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 0\\ -5 \end{pmatrix} + t \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}, 5 = 2 + t, 1 = -5 + 2t$ (M1)
attempt to substitute their parameter into the vector equation
eg $\begin{pmatrix} 5\\ y\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 0\\ -5 \end{pmatrix} + 3 \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}, 3 \cdot (-2)$
 $y = -6$ A1 N2
(ii) correct approach A1
eg $\begin{pmatrix} 5\\ -6\\ 1 \end{pmatrix} - \begin{pmatrix} -3\\ 4\\ 2 \end{pmatrix}, AO+OC, c-a$
 $\overrightarrow{AC} = \begin{pmatrix} 8\\ -10\\ -1 \end{pmatrix}$ AG N0
Note: Do not award A1 in part (ii) unless answer in part (i) is correct and does not result
from working backwards.

[5 marks]

(c)	finding scalar product and magnitude	(A1)(A1)
	scalar product = $11 \times 8 + -5 \times -10 + 3 \times -1$ (=135)	
	$ \vec{AC} = \sqrt{8^2 + (-10)^2 + (-1)^2} (= \sqrt{165}, 12.8452)$	
	evidence of substitution into formula	(M1)
	eg $\cos \theta = \frac{11 \times 8 + -5 \times -10 + 3 \times -1}{\left \vec{AB} \right \times \sqrt{8^2 + (-10)^2 + (-1)^2}}, \ \cos \theta = \frac{\vec{AB} \cdot \vec{AC}}{\sqrt{155} \times \sqrt{8^2 + (-10)^2 + (-10)^2}}$	$(-1)^2$
	correct substitution	(A1)
	eg $\cos\theta = \frac{11 \times 8 + -5 \times -10 + 3 \times -1}{\sqrt{155} \times \sqrt{8^2 + (-10)^2 + (-1)^2}}, \ \cos\theta = \frac{135}{159.921},$	
	$\cos\theta = 0.844162$	
	0.565795, 32.4177°	
	$A = 0.566, 32.4^{\circ}$	A1 N3 [5 marks]
(d)	correct substitution into area formula	(A1)
	eg $\frac{1}{2} \times \sqrt{155} \times \sqrt{165} \times \sin(0.566), \frac{1}{2} \times \sqrt{155 \times 165} \times \sin(32.4)$	
	42.8660	
	area = 42.9	A1 N2 [2 marks]
		Total [16 marks]
Quest	tion 13	
ME	THOD 1 (Distance between the origin and P)	
corr	ect position vector for OP	(A1)
	\rightarrow $\left(-1+4t\right)$	
eg	ect position vector for OP $\vec{OP} = \begin{pmatrix} -1+4t \\ 3+5t \\ 8-t \end{pmatrix}, P = (-1+4t, 3+5t, 8-t)$	
	$\begin{pmatrix} 8-t \end{pmatrix}$	
corr	ect expression for OP or OP ² (seen anywhere)	A1
eg	$\sqrt{(-1+4t)^2+(3+5t)^2+(8-t)^2}$, $(-1+4x)^2+(3+5x)^2+(8-x)^2$	
valio	d attempt to find the minimum of OP	(M1)
eg	d' = 0, root on sketch of d' , min indicated on sketch of d	
<i>t</i> –	$-\frac{1}{14}, -0.0714285$	(A1)
$\iota = -$	14, 0.0714205	

substitute their value of t into L (only award if there is working to find t) (M1)

eg one correct coordinate, $-1+4\left(-\frac{1}{14}\right)$

$$\left(-1.28571, 2.64285, 8.07142\right)$$

 $\left(-\frac{9}{7}, \frac{37}{14}, \frac{113}{14}\right) = (-1.29, 2.64, 8.07)$ A1 N2

METHOD 2 (Perpendicular vectors)

recognizing that closest implies perpendicular (M1)

eg $\vec{OP} \perp L$ (may be seen on sketch), $a \cdot b = 0$

valid approach involving
$$\vec{OP}$$
 (M1)
 $\begin{pmatrix} -1+4t \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$

eg
$$\vec{OP} = \begin{pmatrix} -1+4t \\ 3+5t \\ 8-t \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -1 \end{pmatrix} \cdot \vec{OP}, \begin{pmatrix} 4 \\ 5 \\ -1 \end{pmatrix} \perp \vec{OP}$$

correct scalar product eg 4(-1+4t)+5(3+5t)-1(8-t), -4+16t+15+25t-8+t=0, 42t+3

$$t = -\frac{1}{14}, -0.0714285 \tag{A1}$$

substitute their value of t into L or \overrightarrow{OP} (only award if scalar product used to find t) (M1) eg one correct coordinate, $-1+4\left(-\frac{1}{14}\right)$ (-1.28571, 2.64285, 8.07142)

$$\left(-\frac{9}{7},\frac{37}{14},\frac{113}{14}\right) = (-1.29, 2.64, 8.07)$$
 A1 N2
[6 marks]

(12, 1) (exact)

(a) valid approach (M1)
eg
$$L_1 = L_2$$
, $x = 12$, $y = 1$

(b) $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ (or any multiple of $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$) A1 N1 [1 mark]

(c) any correct equation in the form r = a + tb (accept any parameter for *t*) where *a* is a position vector for a point on L_1 , and *b* is a scalar multiple of $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ **A2**

$$eg \quad r = \begin{pmatrix} 12 \\ 1 \end{pmatrix} + t \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

Note: Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.

[2 marks]

N2

Total [5 marks]

