Subject - Math(Standard Level)
 Topic - Algebra
 Year - Nov 2011 - Nov 2019
 Paper-2

Question 1

[Maximum mark: 5]
Consider the expansion of $\left(3 x^{2}+2\right)^{9}$.
(a) Write down the number of terms in the expansion.
(b) Find the term in x^{4}.
[4 marks]

Question 2
[Maximum mark: 14]
(a) Consider an infinite geometric sequence with $u_{1}=40$ and $r=\frac{1}{2}$.
(i) Find u_{4}.
(ii) Find the sum of the infinite sequence.

Consider an arithmetic sequence with n terms, with first term (-36) and eighth term (-8).
(b) (i) Find the common difference.
(ii) Show that $S_{n}=2 n^{2}-38 n$.
(c) The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n.

Question 3

[Maximum mark: 6]
The first three terms of an arithmetic sequence are $36,40,44, \ldots$.
(a) (i) Write down the value of d.
(ii) Find u_{8}.
(b) (i) Show that $S_{n}=2 n^{2}+34 n$.
(ii) Hence, write down the value of S_{14}.

Question 4

[Maximum mark: 6]
Consider the expansion of $\left(2 x^{3}+\frac{b}{x}\right)^{8}=256 x^{24}+3072 x^{20}+\ldots+k x^{0}+\ldots$.
(a) Find b.
(b) Find k.

Question 5

[Maximum mark: 6]
The first term of a geometric sequence is 200 and the sum of the first four terms is 324.8 .
(a) Find the common ratio.
(b) Find the tenth term.

Question 6

[Maximum mark: 6]
The first three terms of an arithmetic sequence are $5,6.7,8.4$.
(a) Find the common difference.
(b) Find the $28^{\text {th }}$ term of the sequence.
(c) Find the sum of the first 28 terms.

Question 7

[Maximum mark: 7]
The third term in the expansion of $(2 x+p)^{6}$ is $60 x^{4}$. Find the possible values of p.

Question 8

[Maximum mark: 7]
An arithmetic sequence is given by $5,8,11, \ldots$
(a) Write down the value of d.
(b) Find
(i) u_{100};
(ii) S_{100}.
(c) Given that $u_{n}=1502$, find the value of n.

Question 9

[Maximum mark: 5]
In the expansion of $(3 x-2)^{12}$, the term in x^{5} can be expressed as $\binom{12}{r} \times(3 x)^{p} \times(-2)^{q}$.
(a) Write down the value of p, of q and of r.
(b) Find the coefficient of the term in x^{5}.

Question 10

[Maximum mark: 6]
The sum of the first three terms of a geometric sequence is 62.755 , and the sum of the infinite sequence is 440 . Find the common ratio.

Question 11

[Maximum mark: 7]
The constant term in the expansion of $\left(\frac{x}{a}+\frac{a^{2}}{x}\right)^{6}$, where $a \in \mathbb{Z}$, is 1280 . Find a.
Question 12
[Maximum mark: 5]
Consider the expansion of $(x+3)^{10}$.
(a) Write down the number of terms in this expansion.
(b) Find the term containing x^{3}.

Question 13

[Maximum mark: 7]
Consider the expansion of $x^{2}\left(3 x^{2}+\frac{k}{x}\right)^{8}$. The constant term is 16128 .
Find k.

Question 14

[Maximum mark: 6]
Consider the expansion of $\left(\frac{x^{3}}{2}+\frac{p}{x}\right)^{8}$. The constant term is 5103 . Find the possible values of p.

Question 15

[Maximum mark: 14]
The first two terms of a geometric sequence u_{n} are $u_{1}=4$ and $u_{2}=4.2$.
(a) (i) Find the common ratio.
(ii) Hence or otherwise, find u_{5}.

Another sequence v_{n} is defined by $v_{n}=a n^{k}$, where $a, k \in \mathbb{R}$, and $n \in \mathbb{Z}^{+}$, such that $v_{1}=0.05$ and $v_{2}=0.25$.
(b) (i) Find the value of a.
(ii) Find the value of k.
(c) Find the smallest value of n for which $v_{n}>u_{n}$.

Question 16
[Maximum mark: 5]
Consider the expansion of $(2 x+3)^{8}$.
(a) Write down the number of terms in this expansion.
(b) Find the term in x^{3}.

Question 17

[Maximum mark: 6]
In an arithmetic sequence $u_{10}=8, u_{11}=6.5$.
(a) Write down the value of the common difference.
(b) Find the first term.
(c) Find the sum of the first 50 terms of the sequence.

Question 18
[Maximum mark: 5]
The third term in the expansion of $(x+k)^{8}$ is $63 x^{6}$. Find the possible values of k.

Question 19

[Maximum mark: 7]
Ramiro walks to work each morning. During the first minute he walks 80 metres. In each subsequent minute he walks 90% of the distance walked during the previous minute.
The distance between his house and work is 660 metres. Ramiro leaves his house at 08:00 and has to be at work by 08:15.

Explain why he will not be at work on time.

Question 20

[Maximum mark: 7]
The first three terms of a geometric sequence are $u_{1}=0.64, u_{2}=1.6$, and $u_{3}=4$.
(a) Find the value of r.
(b) Find the value of S_{6}.
(c) Find the least value of n such that $S_{n}>75000$.

Question 21
[Maximum mark: 6]
(a) Find the term in x^{6} in the expansion of $(x+2)^{9}$.
(b) Hence, find the term in x^{7} in the expansion of $5 x(x+2)^{9}$.

Question 22
[Maximum mark: 6]
In a geometric sequence, the fourth term is 8 times the first term. The sum of the first 10 terms is 2557.5 . Find the 10th term of this sequence.

Question 23

[Maximum mark: 6]
The first three terms of an arithmetic sequence are $u_{1}=0.3, u_{2}=1.5, u_{3}=2.7$.
(a) Find the common difference.
(b) Find the 30 th term of the sequence.
(c) Find the sum of the first 30 terms.

Question 24
[Maximum mark: 6]
Consider the expansion of $\left(x^{2}+\frac{2}{x}\right)^{10}$.
(a) Write down the number of terms of this expansion.
(b) Find the coefficient of x^{8}.

Question 25
[Maximum mark: 6]
Consider a geometric sequence where the first term is 768 and the second term is 576 .
Find the least value of n such that the nth term of the sequence is less than 7 .
Question 26
[Maximum mark: 6]
In the expansion of $a x^{3}(2+a x)^{11}$, the coefficient of the term in x^{5} is 11880 .
Find the value of a.

Question 27

[Maximum mark: 8]
Let $f(x)=\mathrm{e}^{2 \sin \left(\frac{\pi x}{2}\right)}$, for $x>0$.
The k th maximum point on the graph of f has x-coordinate x_{k} where $k \in \mathbb{Z}^{+}$.
(a) Given that $x_{k+1}=x_{k}+a$, find a.
(b) Hence find the value of n such that $\sum_{k=1}^{n} x_{k}=861$.

Question 28
[Maximum mark: 13]
The following table shows values of $\ln x$ and $\ln y$.

$\ln \boldsymbol{x}$	1.10	2.08	4.30	6.03
$\ln \boldsymbol{y}$	5.63	5.22	4.18	3.41

The relationship between $\ln x$ and $\ln y$ can be modelled by the regression equation $\ln y=a \ln x+b$.
(a) Find the value of a and of b.
(b) Use the regression equation to estimate the value of y when $x=3.57$.

The relationship between x and y can be modelled using the formula $y=k x^{n}$, where $k \neq 0, n \neq 0, n \neq 1$.
(c) By expressing $\ln y$ in terms of $\ln x$, find the value of n and of k.

Question 29
[Maximum mark: 7]
The first term of an infinite geometric sequence is 4 . The sum of the infinite sequence is 200 .
(a) Find the common ratio.
(b) Find the sum of the first 8 terms.
(c) Find the least value of n for which $S_{n}>163$.

Question 30

[Maximum mark: 6]

Consider the expansion of $\left(2 x+\frac{k}{x}\right)^{9}$, where $k>0$. The coefficient of the term in x^{3} is equal to the coefficient of the term in x^{5}. Find k.

Question 31
[Maximum mark: 6]
The sum of an infinite geometric sequence is 33.25 . The second term of the sequence is 7.98 . Find the possible values of r.

Question 32

[Maximum mark: 7]
Consider the expansion of $\left(2 x^{4}+\frac{x^{2}}{k}\right)^{12}, k \neq 0$. The coefficient of the term in x^{40} is five times the coefficient of the term in x^{38}. Find k.

Question 33
[Maximum mark: 16]
In an arithmetic sequence, $u_{1}=1.3, u_{2}=1.4$ and $u_{k}=31.2$.
(a) Find the value of k.
(b) Find the exact value of S_{k}.

Consider the terms, u_{n}, of this sequence such that $n \leq k$,
Let F be the sum of the terms for which n is not a multiple of 3 .
(c) Show that $F=3240$.

An infinite geometric series is given as $S_{\infty}=a+\frac{a}{\sqrt{2}}+\frac{a}{2}+\ldots, a \in \mathbb{Z}^{+}$.
(d) Find the largest value of a such that $S_{\infty}<F$.

Question 34
[Maximum mark: 7]
In the expansion of the following expression, find the exact value of the constant term.

$$
x^{3}\left(\frac{1}{2 x}+x^{2}\right)^{15}
$$

Question 35

[Maximum mark: 7]
The first terms of an infinite geometric sequence, u_{n}, are $2,6,18,54, \ldots$.
The first terms of a second infinite geometric sequence, v_{n}, are $2,-6,18,-54, \ldots$.
The terms of a third sequence, w_{n}, are defined as $w_{n}=u_{n}+v_{n}$.
(a) Write down the first three non-zero terms of w_{n}.

The finite series, $\sum_{k=1}^{225} w_{k}$, can also be written in the form $\sum_{k=0}^{m} 4 r^{k}$.
(b) Find the value of
(i) r;
(ii) m.

Question 36
[Maximum mark: 7]
Consider the expansion of $\left(x^{2}+1.2\right)^{n}$ where $n \in \mathbb{Z}, n \geq 3$. Given that the coefficient of the term containing x^{6} is greater than 200000 , find the smallest possible value of n.
Question 37
[Maximum mark: 6]
Consider the graph of the function $f(x)=a(x+10)^{2}+15, x \in \mathbb{R}$.
(a) Write down the coordinates of the vertex.
(b) The graph of f has a y-intercept at -20 . Find a.
(c) Point $\mathrm{P}(8, b)$ lies on the graph of f. Find b.

Question 38
[Maximum mark: 7]
The first two terms of a geometric sequence are $u_{1}=2.1$ and $u_{2}=2.226$.
(a) Find the value of r.
(b) Find the value of u_{10}.
(c) Find the least value of n such that $S_{n}>5543$.

