Subject – Math(Standard Level) Topic - Algebra Year - Nov 2011 – Nov 2019 Paper -2

O	4
Question	- 1
Question	_

[Maximum mark: 5]

Consider the expansion of $(3x^2 + 2)^9$.

(a) Write down the number of terms in the expansion.

[1 mark]

(b) Find the term in x^4 .

[4 marks]

Question 2

[Maximum mark: 14]

- (a) Consider an infinite geometric sequence with $u_1 = 40$ and $r = \frac{1}{2}$.
 - (i) Find u_4 .
 - (ii) Find the sum of the infinite sequence.

[4 marks]

Consider an arithmetic sequence with n terms, with first term (-36) and eighth term (-8).

- (b) (i) Find the common difference.
 - (ii) Show that $S_n = 2n^2 38n$.

[5 marks]

(c) The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n.

[5 marks]

[Maximum mark: 6]

The first three terms of an arithmetic sequence are 36, 40, 44,

- (a) (i) Write down the value of d.
 - (ii) Find u_8 .

[3 marks]

- (b) (i) Show that $S_n = 2n^2 + 34n$.
 - (ii) Hence, write down the value of S_{14} .

[3 marks]

Question 4

[Maximum mark: 6]

Consider the expansion of $\left(2x^3 + \frac{b}{x}\right)^8 = 256x^{24} + 3072x^{20} + ... + kx^0 + ...$

(a) Find b.

[3 marks]

(b) Find k.

[3 marks]

Question 5

[Maximum mark: 6]

The first term of a geometric sequence is 200 and the sum of the first four terms is 324.8.

(a) Find the common ratio.

[4 marks]

(b) Find the tenth term.

[2 marks]

[Maximum mark: 6]

The first three terms of an arithmetic sequence are 5, 6.7, 8.4.

(a) Find the common difference.

[2 marks]

(b) Find the 28th term of the sequence.

[2 marks]

(c) Find the sum of the first 28 terms.

[2 marks]

Question 7

[Maximum mark: 7]

The third term in the expansion of $(2x+p)^6$ is $60x^4$. Find the possible values of p.

Question 8

[Maximum mark: 7]

An arithmetic sequence is given by 5, 8, 11,

(a) Write down the value of d.

[1 mark]

- (b) Find
 - (i) u_{100} ;
 - (ii) S_{100} .

[4 marks]

(c) Given that $u_n = 1502$, find the value of n.

[2 marks]

Question 9

[Maximum mark: 5]

In the expansion of $(3x-2)^{12}$, the term in x^5 can be expressed as $\binom{12}{r} \times (3x)^p \times (-2)^q$.

(a) Write down the value of p, of q and of r.

[3 marks]

(b) Find the coefficient of the term in x^5 .

[2 marks]

[Maximum mark: 6]

The sum of the first three terms of a geometric sequence is 62.755, and the sum of the infinite sequence is 440. Find the common ratio.

Question 11

[Maximum mark: 7]

The constant term in the expansion of $\left(\frac{x}{a} + \frac{a^2}{x}\right)^6$, where $a \in \mathbb{Z}$, is 1280. Find a.

Question 12

[Maximum mark: 5]

Consider the expansion of $(x+3)^{10}$.

- (a) Write down the number of terms in this expansion. [1]
- (b) Find the term containing x^3 . [4]

Question 13

[Maximum mark: 7]

Consider the expansion of $x^2 \left(3x^2 + \frac{k}{x}\right)^8$. The constant term is 16128.

Find k.

Question 14

[Maximum mark: 6]

Consider the expansion of $\left(\frac{x^3}{2} + \frac{p}{x}\right)^8$. The constant term is 5103. Find the possible values of p.

	$\Gamma M a$	ximun	n mari	k· 14	17
ı	IVIU.	линин	i man	v. 17	.,

The first two terms of a geometric sequence u_n are $u_1 = 4$ and $u_2 = 4.2$.

- (a) (i) Find the common ratio.
 - (ii) Hence or otherwise, find u_5 .

[5]

Another sequence v_n is defined by $v_n = an^k$, where $a, k \in \mathbb{R}$, and $n \in \mathbb{Z}^+$, such that $v_1 = 0.05$ and $v_2 = 0.25$.

- (b) (i) Find the value of a.
 - (ii) Find the value of k.

[5]

(c) Find the smallest value of n for which $v_n > u_n$.

[4]

Question 16

[Maximum mark: 5]

Consider the expansion of $(2x+3)^8$.

- (a) Write down the number of terms in this expansion.
- (b) Find the term in x^3 .

[4]

[1]

Question 17

[Maximum mark: 6]

In an arithmetic sequence $\,u_{\rm 10}^{}\!=8$, $\,u_{\rm 11}^{}\!=6.5$.

(a) Write down the value of the common difference.

[1]

(b) Find the first term.

[3]

(c) Find the sum of the first 50 terms of the sequence.

[2]

[Maximum mark: 5]

The third term in the expansion of $(x+k)^8$ is $63x^6$. Find the possible values of k.

Question 19

[Maximum mark: 7]

Ramiro walks to work each morning. During the first minute he walks 80 metres. In each subsequent minute he walks $90\,\%$ of the distance walked during the previous minute. The distance between his house and work is 660 metres. Ramiro leaves his house at 08:00 and has to be at work by 08:15.

Explain why he will not be at work on time.

Question 20

[Maximum mark: 7]

The first three terms of a geometric sequence are $u_1 = 0.64$, $u_2 = 1.6$, and $u_3 = 4$.

- (a) Find the value of r.
- (b) Find the value of S_6 .
- (c) Find the least value of n such that $S_n > 75\,000$.

Question 21

[Maximum mark: 6]

- (a) Find the term in x^6 in the expansion of $(x+2)^9$. [4]
- (b) Hence, find the term in x^7 in the expansion of $5x(x+2)^9$. [2]

Question 22

[Maximum mark: 6]

In a geometric sequence, the fourth term is 8 times the first term. The sum of the first 10 terms is 2557.5. Find the 10th term of this sequence.

[Maximum mark: 6]

The first three terms of an arithmetic sequence are $u_1 = 0.3$, $u_2 = 1.5$, $u_3 = 2.7$.

- (a) Find the common difference.
- (b) Find the 30th term of the sequence. [2]

[2]

(c) Find the sum of the first 30 terms. [2]

Question 24

[Maximum mark: 6]

Consider the expansion of $\left(x^2 + \frac{2}{x}\right)^{10}$.

- (a) Write down the number of terms of this expansion. [1]
- (b) Find the coefficient of x^8 . [5]

Question 25

[Maximum mark: 6]

Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7.

Question 26

[Maximum mark: 6]

In the expansion of $ax^3(2+ax)^{11}$, the coefficient of the term in x^5 is 11880. Find the value of a.

[Maximum mark: 8]

Let
$$f(x) = e^{2\sin\left(\frac{\pi x}{2}\right)}$$
, for $x > 0$.

The kth maximum point on the graph of f has x-coordinate x_k where $k \in \mathbb{Z}^+$.

(a) Given that
$$x_{k+1} = x_k + a$$
, find a . [4]

(b) Hence find the value of
$$n$$
 such that $\sum_{k=1}^{n} x_k = 861$. [4]

Question 28

[Maximum mark: 13]

The following table shows values of $\ln x$ and $\ln y$.

ln x	1.10	2.08	4.30	6.03
ln y	5.63	5.22	4.18	3.41

The relationship between $\ln x$ and $\ln y$ can be modelled by the regression equation $\ln y = a \ln x + b$.

- (a) Find the value of a and of b. [3]
- (b) Use the regression equation to estimate the value of y when x = 3.57. [3]

The relationship between x and y can be modelled using the formula $y = kx^n$, where $k \neq 0$, $n \neq 0$, $n \neq 1$.

(c) By expressing $\ln y$ in terms of $\ln x$, find the value of n and of k. [7]

Question 29

[Maximum mark: 7]

The first term of an infinite geometric sequence is 4. The sum of the infinite sequence is 200.

- (a) Find the common ratio. [2]
- (b) Find the sum of the first 8 terms. [2]
- (c) Find the least value of n for which $S_n > 163$. [3]

[Maximum mark: 6]

Consider the expansion of $\left(2x + \frac{k}{x}\right)^9$, where k > 0. The coefficient of the term in x^3 is equal to the coefficient of the term in x^5 . Find k.

Question 31

[Maximum mark: 6]

The sum of an infinite geometric sequence is 33.25. The second term of the sequence is 7.98. Find the possible values of r.

Question 32

[Maximum mark: 7]

Consider the expansion of $\left(2x^4 + \frac{x^2}{k}\right)^{12}$, $k \neq 0$. The coefficient of the term in x^{40} is five times the coefficient of the term in x^{38} . Find k.

Question 33

[Maximum mark: 16]

In an arithmetic sequence, $u_1 = 1.3$, $u_2 = 1.4$ and $u_k = 31.2$.

(a) Find the value of
$$k$$
.

[2]

[5]

(b) Find the exact value of
$$S_k$$
.

Consider the terms, u_n , of this sequence such that $n \le k$.

Let F be the sum of the terms for which n is not a multiple of 3.

(c) Show that
$$F = 3240$$
. [5]

An infinite geometric series is given as $S_{\infty} = a + \frac{a}{\sqrt{2}} + \frac{a}{2} + \dots$, $a \in \mathbb{Z}^+$.

(d) Find the largest value of
$$a$$
 such that $S_{\infty} < F$.

Question 34

[Maximum mark: 7]

In the expansion of the following expression, find the exact value of the constant term.

$$x^3 \left(\frac{1}{2x} + x^2\right)^{15}$$

[Maximum mark: 7]

The first terms of an infinite geometric sequence, u_n , are $2, 6, 18, 54, \ldots$. The first terms of a second infinite geometric sequence, v_n , are $2, -6, 18, -54, \ldots$

The terms of a third sequence, w_n , are defined as $w_n = u_n + v_n$.

(a) Write down the first three **non-zero** terms of w_n .

The finite series, $\sum_{k=1}^{225} w_k$, can also be written in the form $\sum_{k=0}^{m} 4r^k$.

- (b) Find the value of
 - (i) r;
 - (ii) m.

[3]

Question 36

[Maximum mark: 7]

Consider the expansion of $(x^2+1.2)^n$ where $n \in \mathbb{Z}$, $n \ge 3$. Given that the coefficient of the term containing x^6 is greater than $200\,000$, find the smallest possible value of n.

Question 37

[Maximum mark: 6]

Consider the graph of the function $f(x) = a(x+10)^2 + 15$, $x \in \mathbb{R}$.

- (a) Write down the coordinates of the vertex. [2]
- (b) The graph of f has a y-intercept at -20. Find a. [2]
- (c) Point P(8, b) lies on the graph of f. Find b. [2]

Question 38

[Maximum mark: 7]

The first two terms of a geometric sequence are $u_1 = 2.1$ and $u_2 = 2.226$.

- (a) Find the value of r. [2]
- (b) Find the value of u_{10} . [2]
- (c) Find the least value of n such that $S_n > 5543$. [3]