

(d) consideration of f' or f'' (M1)

valid reasoning R1e.g. sketch of f', f'' is positive, f''=0, reference to minimum of f'

correct value 6.66666666...
$$\left(6\frac{2}{3}\right)$$
 (A1)

correct interval, with both end points

e.g
$$6.67 < x \le 20$$
, $6\frac{2}{3} \le x < 20$

[4 marks]

N3

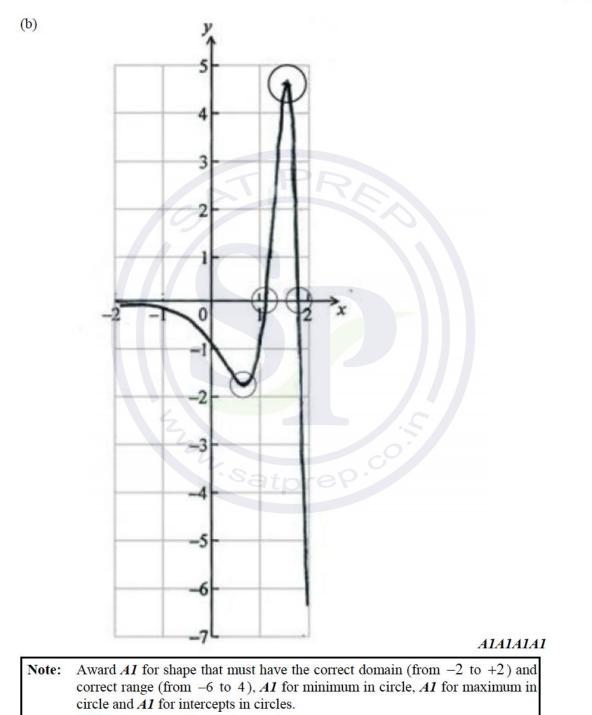
A1

		Tota	l [15 marks]
Ques	tion 2		
(a)	evidence of valid approach e.g. $y = 0$, sin $x = 0$	(M1)	
	$2\pi = 6.283185$ k = 6.28	<u>A1</u>	N2 [2 marks]
(b)	attempt to substitute either limits or the function into formula (accept absence of dx) <i>e.g.</i> $V = \pi \int_{\pi}^{k} (f(x))^2 dx, \pi \int ((x-1)\sin x)^2, \pi \int_{\pi}^{6.28} y^2 dx$	(M1)	
	correct expression e.g. $\pi \int_{-\pi}^{6.28} (x-1)^2 \sin^2 x dx, \pi \int_{-\pi}^{2\pi} ((x-1)\sin x)^2 dx$	A2	N3
			[3 marks]
(c)	V = 69.60192562 V = 69.6	A2	<u>N2</u>
			[2 marks]

Total [7 marks]

(a)
$$f'(x) = -e^x \sin(e^x)$$

[2 marks]



[4 marks] Total [6 marks]

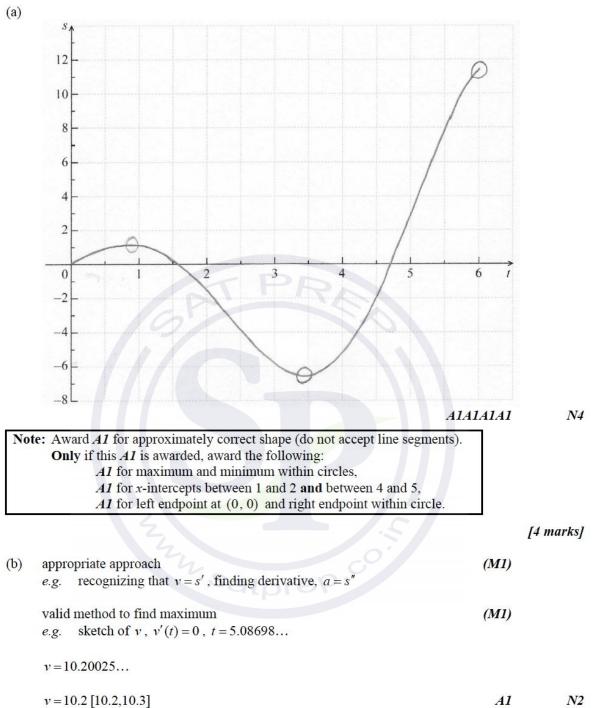
N4

(a)	recognizing that acceleration is the derivative of velocity (seen anywhere) e.g. $a = \frac{d^2s}{dt^2}$, v', $12 - 6t^2$	(R1)	
	correctly substituting 2.7 into their expression for <i>a</i> (not into <i>v</i>) <i>e.g.</i> $s''(2.7)$	(AI)	
	acceleration = -31.74 (exact), -31.7	Al	N3 [3 marks]
(b)	recognizing that displacement is the integral of velocity e.g. $s = \int v$	<i>R1</i>	
	Correctly substituting 1.3 e.g. $\int_{0}^{1.3} v dt$	(A1)	
	displacement = 7.41195 (exact), 7.41 (cm)		72 [3 marks] 11 [6 marks]

(a)	attempt to substitute coordinates in f e.g. $f(2) = 9$	(M1)	
	correct substitution e.g. $a \times 2^3 + b \times 2^2 + c = 9$	A1	
	8a + 4b + c = 9	AG	N0 [2 marks]
(b)	recognizing that $(1, 4)$ is on the graph of f e.g. $f(1) = 4$	(M1)	
	correct equation e.g. $a+b+c=4$	A1	
	recognizing that $f' = 0$ at minimum (seen anywhere) e.g. $f'(1) = 0$	(M1)	
	$f'(x) = 3ax^2 + 2bx$ (seen anywhere)	AIAI	
	correct substitution into derivative e.g. $3a \times 1^2 + 2b \times 1 = 0$	(A1)	
	correct simplified equation e.g. $3a + 2b = 0$	A1	
			[7 marks]
(c)	valid method for solving system of equations e.g. inverse of a matrix, substitution a = 2, b = -3, c = 5	(M1)	
	a=2, b=-3, c=5	AIAIAI	N4 [4 marks]

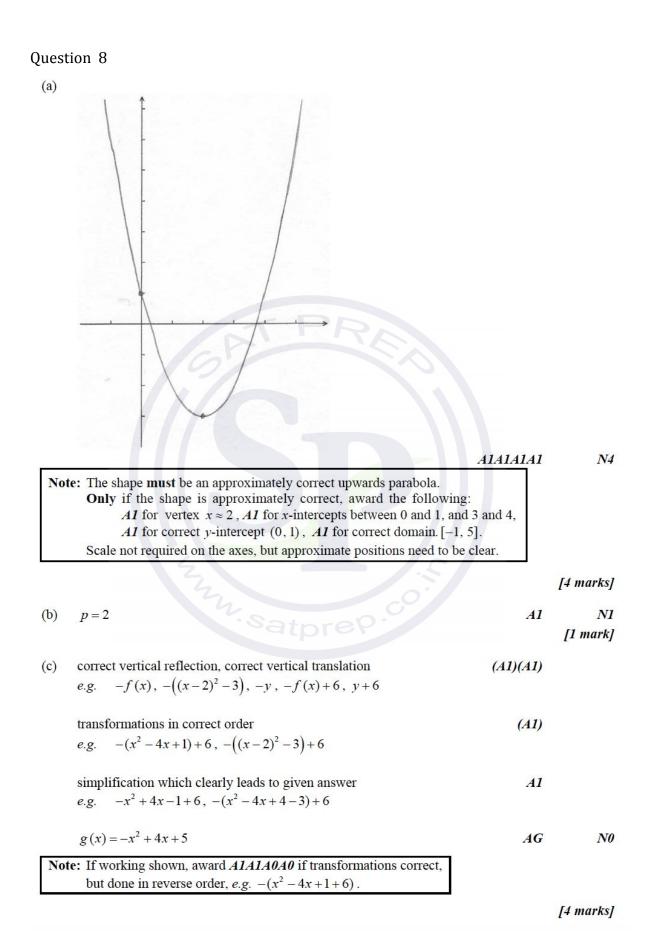
Total [13 marks]

(a)	x = 2 (accept (2, 0))	A1	N1 [1 mark]
(b)	evidence of finding gradient of f at $x = 2$ e.g. $f'(2)$	(M1)	
	the gradient is 10	AI	N2 [2 marks]
(c)	evidence of negative reciprocal of gradient e.g. $\frac{-1}{f'(x)}$, $-\frac{1}{10}$	(M1)	
	evidence of correct substitution into equation of a line e.g. $y-0 = \frac{-1}{10}(x-2)$, $0 = -0.1(2) + b$	(A1)	
	$y = -\frac{1}{10}x + \frac{2}{10}$ (accept $a = -0.1, b = 0.2$)	A1	N2 [3 marks]
		Tota	l [6 marks]



[3 marks]

[7 marks]



(d) valid approach

e.g. sketch, f = g

-0.449489..., 4.449489... $(2 \pm \sqrt{6})$ (exact), -0.449[-0.450, -0.449]; 4.45[4.44, 4.45] A1A1 N3 [3 marks]

(e) attempt to substitute limits or functions into area formula (accept absence of dx) (M1) e.g. $\int_{a}^{b} \left((-x^{2} + 4x + 5) - (x^{2} - 4x + 1) \right) dx, \int_{4.45}^{-0.449} (f - g), \int_{4.45}^{-0.249} (-2x^{2} + 8x + 4) dx$

approach involving subtraction of integrals/areas (accept absence of dx) (M1) e.g. $\int_{a}^{b} (-x^{2} + 4x + 5) - \int_{a}^{b} (x^{2} - 4x + 1), \int (f - g) dx$

area = 39.19183...

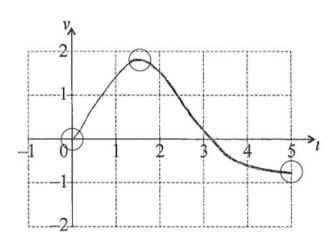
area = 39.2 [39.1, 39.2]

A1 N3

[3 marks]

Total [15 marks]

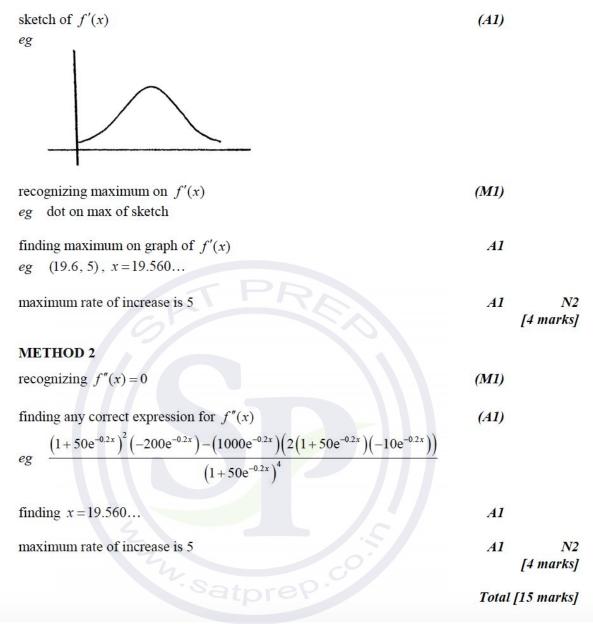
(M1)



AIAIAI N3

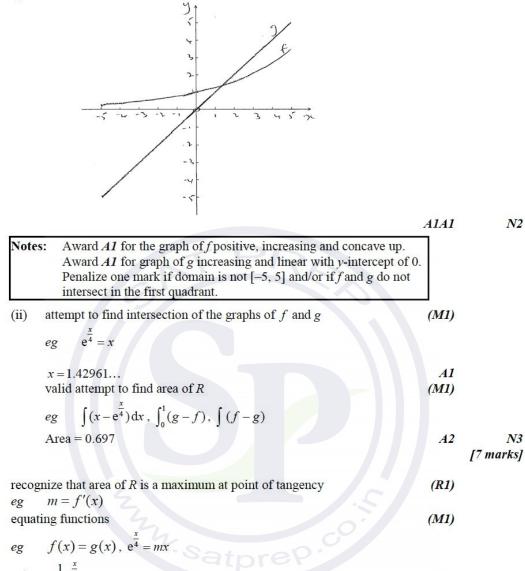
	AI	for maximum in circle, A1 for endpoints in circle.		[3 marks]
(b)	(i)	$t = \pi(\text{exact}), 3.14$	<u>A1</u>	NI
	(ii)	recognizing distance is area under velocity curve $eg = s = \int v$, shading on diagram, attempt to integrate v	(M1)	
		valid approach to find the total area <i>eg</i> area A + area B, $\int v dt - \int v dt$, $\int_0^{3.14} v dt + \int_{3.14}^5 v dt$, $\int v $	(M1)	
		correct working with integration and limits (accept dx or missing dt) $eg \int_{0}^{3.14} v dt + \int_{5}^{3.14} v dt$, 3.067+0.878, $\int_{0}^{5} e^{\sin t} - 1 $	(A1)	
		distance = 3.95(m)	Al	<u>N3</u>
			Tota	[5 marks] 11 [8 marks]

[1 mark] (b) setting up equation (MI) (I) (I) (I) (I) (I) (I) (I) (I) (I) ((a)	$f(0) = \frac{100}{51}$ (exact), 1.96	Al	NI
$eg 95 = \frac{100}{1+50e^{-0.2x}}, \text{ sketch of graph with horizontal line at } y = 95$ $x = 34.3$ (c) upper bound of y is 100 (d) (d) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	(b)	51	(M1)	[1 mark]
x = 34.3 $x = 34.3$	(0)		(111)	
(c) upper bound of y is 100 (A1) lower bound of y is 0 (A1) range is $0 < y < 100$ (A1) (d) METHOD 1 setting function ready to apply the chain rule (M1) eg $100(1+50e^{-02x})^{-1}$ (M1) eg $u' = -100(1+50e^{-02x})^{-2}$, $v' = (50e^{-02x})(-0.2)$ correct chain rule derivative (A1) eg $f'(x) = -100(1+50e^{-02x})^{-2}$ ($50e^{-02x}$)(-0.2) correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x} (1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^{-2}}$ (AG N0) METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - vu'}{v^{-2}}$, $\frac{vu' - vu'}{v^{-2}}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0) - 100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}$, $\frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $f'(x) = \frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}$, $\frac{-100(-10)e^{-02x} - 0}{(1+50e^{-02x})^{2}}$ correct working clearly leading to the required answer (A1) eg $f'(x) = \frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}$, $\frac{-100(-10)e^{-02x} - 0}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}$, $\frac{-100(-10)e^{-02x} - 0}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{-1000(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{0-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$		eg $95 = \frac{1}{1+50e^{-0.2x}}$, sketch of graph with horizontal line at $y = 95$		
(c) upper bound of y is 100 (41) lower bound of y is 0 (41) range is $0 < y < 100$ (1) range is $0 < y < 100$ (1)		<i>x</i> = 34.3	A1	
lower bound of y is 0 (AI) range is $0 < y < 100$ AI N3 [3 marks] (d) METHOD 1 setting function ready to apply the chain rule (MI) eg $100(1+50e^{-02x})^{-1}$ evidence of correct differentiation (must be substituted into chain rule) (AI)(AI) eg $u' = -100(1+50e^{-02x})^{-2}, v' = (50e^{-02x})(-0.2)$ correct chain rule derivative AI eg $f'(x) = -100(1+50e^{-02x})^{-2} (50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x} (1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (MI) eg $\frac{vu' - uv'}{v^2}, \frac{uv' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (AI)(AI) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (AI) eg $\frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{-0.00(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{0.000e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{0.000e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$	(c)	upper bound of v is 100	(A1)	[2 marks]
(d) METHOD 1 setting function ready to apply the chain rule (MI) eg $100(1+50e^{-02x})^{-1}$ evidence of correct differentiation (must be substituted into chain rule) (A1)(A1) eg $u' = -100(1+50e^{-02x})^{-2}, v' = (50e^{-02x})(-0.2)$ correct chain rule derivative A1 eg $f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - uv'}{v^2}, \frac{uu' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{100(-10)e^{-02x}-0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer A1 eg $f'(x) = \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2},$				
(d) METHOD 1 setting function ready to apply the chain rule (MI) eg $100(1+50e^{-02x})^{-1}$ evidence of correct differentiation (must be substituted into chain rule) (A1)(A1) eg $u' = -100(1+50e^{-02x})^{-2}, v' = (50e^{-02x})(-0.2)$ correct chain rule derivative A1 eg $f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - uv'}{v^2}, \frac{uu' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{100(-10)e^{-02x}-0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer A1 eg $f'(x) = \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2},$		range is $0 < y < 100$	Al	N3
setting function ready to apply the chain rule (MI) eg $100(1+50e^{-02x})^{-1}$ evidence of correct differentiation (must be substituted into chain rule) (A1)(A1) eg $u' = -100(1+50e^{-02x})^{-2}$, $v' = (50e^{-02x})(-0.2)$ correct chain rule derivative A1 eg $f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x}(1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - uv'}{v^2}$, $\frac{uv' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$, $\frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{-100(-100e^{-02x})}{(1+50e^{-02x})^2}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{0-100(-100e^{-02x})}{(1+50e^{-02x})^2}$, $\frac{-100(-100e^{-02x})}{(1+50e^{-02x})^2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$, $\frac{-100(-100e^{-02x})}{(1+50e^{-02x})^2}$				[3 marks]
eg $100(1+50e^{-02x})^{-1}$ evidence of correct differentiation (must be substituted into chain rule) (A1)(A1) eg $u' = -100(1+50e^{-02x})^{-2}, v' = (50e^{-02x})(-0.2)$ correct chain rule derivative A1 eg $f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x}(1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - uv'}{v^2}, \frac{uv' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{0-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$	(d)	METHOD 1		
evidence of correct differentiation (must be substituted into chain rule) (A1)(A1) eg u' = $-100(1+50e^{-02x})^{-2}$, $v' = (50e^{-02x})(-0.2)$ correct chain rule derivative A1 eg $f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-02x}(1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu' - uv'}{v^2}$, $\frac{uv' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$, $\frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{-100(-100e^{-02x})}{(1+50e^{-02x})^2}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{0-100(-100e^{-02x})}{(1+50e^{-02x})^2}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$, $\frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$		setting function ready to apply the chain rule	(M1)	
$eg \ u' = -100(1+50e^{-02x})^{-2}, v' = (50e^{-02x})(-0.2)$ correct chain rule derivative <i>A1</i> $eg \ f'(x) = -100(1+50e^{-02x})^{-2}(50e^{-02x})(-0.2)$ correct working clearly leading to the required answer $eg \ f'(x) = 1000e^{-02x}(1+50e^{-02x})^{-2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^{2}}$ <i>AG N0</i> METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) <i>(M1)</i> $eg \ \frac{vu' - un'}{v^{2}}, \frac{uv' - vu'}{v^{2}}$ evidence of correct differentiation inside the quotient rule <i>(A1)(A1)</i> $eg \ f'(x) = \frac{(1+50e^{-02x})(0) - 100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}, \frac{100(-10)e^{-02x} - 0}{(1+50e^{-02x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) <i>(A1)</i> $eg \ \frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^{2}}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{0 - 100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{10000e^{-02x}}{(1+50e^{-02x})^{2}}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{10000e^{-02x}}{(1+50e^{-02x})^{2}}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$ $f'(x) = \frac{10000e^{-02x}}{(1+50e^{-02x})^{2}}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^{2}}$		$eg 100(1+50e^{-0.2x})^{-1}$		
$eg \ u' = -100(1+50e^{-0.2x})^{-2}, v' = (50e^{-0.2x})(-0.2)$ correct chain rule derivative <i>A1</i> $eg \ f'(x) = -100(1+50e^{-0.2x})^{-2}(50e^{-0.2x})(-0.2)$ correct working clearly leading to the required answer $eg \ f'(x) = 1000e^{-0.2x}(1+50e^{-0.2x})^{-2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ <i>AG N0</i> METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) <i>(M1)</i> $eg \ \frac{vu' - un'}{v^{2}}, \frac{uv' - vu'}{v^{2}}$ evidence of correct differentiation inside the quotient rule <i>(A1)(A1)</i> $eg \ f'(x) = \frac{(1+50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x} - 0}{(1+50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) <i>(A1)</i> $eg \ \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{10000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{10000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{10000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$		evidence of correct differentiation (must be substituted into chain rule)	(A1)(A1)	
correct chain rule derivative AI eg $f'(x) = -100(1+50e^{-0.2x})^{-2}(50e^{-0.2x})(-0.2)$ correct working clearly leading to the required answer eg $f'(x) = 1000e^{-0.2x}(1+50e^{-0.2x})^{-2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{\sqrt{x^2}}, \frac{M' - Vu'}{\sqrt{x^2}}$ evidence of correct differentiation inside the quotient rule $(AI)(AI)$ eg $\frac{Vu' - uv'}{\sqrt{x^2}}, \frac{uv' - Vu'}{\sqrt{x^2}}$ evidence of correct differentiation inside the quotient rule $(AI)(AI)$ eg $f'(x) = \frac{(1+50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x} - 0}{(1+50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (AI) eg $\frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$				
$eg f'(x) = -100(1 + 50e^{-0.2x})^{-2}(50e^{-0.2x})(-0.2)$ correct working clearly leading to the required answer $eg f'(x) = 1000e^{-0.2x}(1 + 50e^{-0.2x})^{-2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$ $AG \qquad N0$ METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (MI) $eg \frac{vu' - uv'}{v^{2}}, \frac{uv' - vu'}{v^{2}}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg f'(x) = \frac{(1 + 50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1 + 50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x} - 0}{(1 + 50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg \frac{-100(50e^{-0.2x} \times -0.2)}{(1 + 50e^{-0.2x})^{2}}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$ $f'(x) = \frac{0.000e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^{2}}$			Al	
$eg f'(x) = 1000e^{-0.2x} (1+50e^{-0.2x})^{-2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) $eg \frac{vu' - uv'}{v^{2}}, \frac{uv' - vu'}{v^{2}}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg f'(x) = \frac{(1+50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x} - 0}{(1+50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ AG N0				
$eg f'(x) = 1000e^{-0.2x} (1+50e^{-0.2x})^{-2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) $eg \frac{vu' - uv'}{v^{2}}, \frac{uv' - vu'}{v^{2}}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg f'(x) = \frac{(1+50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x} - 0}{(1+50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ AG N0		correct working clearly leading to the required answer	41	
$f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2}$ AG N0 METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) $eg \frac{vu'-uv'}{v^2}, \frac{uv'-vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg f'(x) = \frac{(1+50e^{-02x})(0)-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}, \frac{100(-10)e^{-02x}-0}{(1+50e^{-02x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg \frac{-100(50e^{-02x} \times -0.2)}{(1+50e^{-02x})^2}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0-100(-10)e^{-02x}}{(1+50e^{-02x})^2}, \frac{-100(-10)e^{-02x}}{(1+50e^{-02x})^2}$ $f'(x) = \frac{1000e^{-02x}}{(1+50e^{-02x})^2} \qquad AG N0$			Л	
METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu'-uv'}{v^2}, \frac{uv'-vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-0.2x})(0)-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x}-0}{(1+50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ (AG N0				
METHOD 2 attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu'-uv'}{v^2}, \frac{uv'-vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-0.2x})(0)-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x}-0}{(1+50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ (AG N0		$f'(x) = \frac{1000 e^{-0.2x}}{x^2}$	AG	NO
attempt to apply the quotient rule (accept reversed numerator terms) (M1) eg $\frac{vu'-uv'}{v^2}, \frac{uv'-vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) eg $f'(x) = \frac{(1+50e^{-0.2x})(0)-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x}-0}{(1+50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) eg $\frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer eg $f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ AG N0		$(1+50e^{-0.2x})^2$		
$eg = \frac{vu' - uv'}{v^2}, \frac{uv' - vu'}{v^2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg = f'(x) = \frac{(1 + 50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1 + 50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x} - 0}{(1 + 50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg = \frac{-100(50e^{-0.2x} \times -0.2)}{(1 + 50e^{-0.2x})^2}$ correct working clearly leading to the required answer $eg = f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^2} \qquad AG \qquad N0$		METHOD 2		
$v^{2} = v^{2}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg = f'(x) = \frac{(1+50e^{-0.2x})(0)-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x}-0}{(1+50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg = \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}$ correct working clearly leading to the required answer A1 $eg = f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}} \qquad AG = N0$			(M1)	
$v^{-} = v^{-}$ evidence of correct differentiation inside the quotient rule (A1)(A1) $eg = f'(x) = \frac{(1+50e^{-0.2x})(0)-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}, \frac{100(-10)e^{-0.2x}-0}{(1+50e^{-0.2x})^{2}}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg = \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^{2}}$ correct working clearly leading to the required answer A1 $eg = f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^{2}}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^{2}} \qquad AG = N0$		$eg = \frac{vu' - uv'}{2}, \frac{uv' - vu'}{2}$		
$eg f'(x) = \frac{(1+50e^{-0.2x})(0) - 100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}, \frac{100(-10)e^{-0.2x} - 0}{(1+50e^{-0.2x})^2}$ any correct expression for derivative (0 may not be explicitly seen) (A1) $eg \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2} \qquad AG \qquad N0$		v v satoreo.	(A1)(A1)	
any correct expression for derivative (0 may not be explicitly seen) (A1) $eg = \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer A1 $eg = f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ AG N0		evidence of confect unferentiation inside the quotient fule	(AI)(AI)	
any correct expression for derivative (0 may not be explicitly seen) (A1) $eg = \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer $eg = f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ AG N0		$(1+50e^{-0.2x})(0)-100(50e^{-0.2x}\times-0.2)$ 100(-10) $e^{-0.2x}-0$		
$eg \frac{-100(50e^{-0.2x} \times -0.2)}{(1+50e^{-0.2x})^2}$ correct working clearly leading to the required answer $eg f'(x) = \frac{0-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1+50e^{-0.2x})^2}$ $AG \qquad N0$		$eg f'(x) = \frac{1}{(1+50e^{-0.2x})^2}, \frac{1}{(1+50e^{-0.2x})^2}$		
correct working clearly leading to the required answer A1 eg $f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^2}$ AG N0		any correct expression for derivative (0 may not be explicitly seen)	(A1)	
correct working clearly leading to the required answer $eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}, \frac{-100(-10)e^{-0.2x}}{(1 + 50e^{-0.2x})^2}$ $f'(x) = \frac{1000e^{-0.2x}}{(1 + 50e^{-0.2x})^2}$ AG N0		$-100(50e^{-0.2x} \times -0.2)$		
$eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2}, \frac{-100(-10)e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2}$ $f'(x) = \frac{1000e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2} \qquad AG \qquad N0$		$(1+50e^{-0.2x})^2$		
$eg f'(x) = \frac{0 - 100(-10)e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2}, \frac{-100(-10)e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2}$ $f'(x) = \frac{1000e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2} \qquad AG \qquad N0$			Al	
$f'(x) = \frac{1000e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2} \qquad AG \qquad NO$		$ea = f'(x) - \frac{0 - 100(-10)e^{-0.2x}}{0 - 100(-10)e^{-0.2x}} - \frac{-100(-10)e^{-0.2x}}{0 - 100(-10)e^{-0.2x}}$		
$f'(x) = \frac{1000e^{-0.2x}}{\left(1 + 50e^{-0.2x}\right)^2} \qquad AG \qquad NO$		$(x) = (x) = (1+50e^{-0.2x})^2$, $(1+50e^{-0.2x})^2$		
		$f(x) = \frac{1}{(1+50e^{-0.2x})^2}$	AG	NO
				[5 marks]



(a) (i)

(b)



N2

N3

 $f'(x) = \frac{1}{4}e^{\frac{x}{4}}$ (A1) equating gradients (A1) x

eg
$$f'(x) = g'(x), \frac{1}{4}e^{\overline{4}} = m$$

attempt to solve system of two equations for x (M1)

$$eg \qquad \frac{1}{4}e^{\frac{x}{4}} \times x = e^{\frac{x}{4}}$$

$$x = 4 \qquad (A1)$$
attempt to find m (M1)
$$eg \qquad f'(4), \frac{1}{4}e^{\frac{4}{4}}$$

$$m = \frac{1}{4} e \text{ (exact), 0.680}$$

$$M = \frac{1}{4} e \text{ (exact), 0.680}$$

$$[8 marks]$$

$$Total [15 marks]$$

(a) valid approach $eg \quad f(x) = 0$, sketch of parabola showing two x-intercepts x = 1, x = 4 (accept (1, 0), (4, 0)) A1A1 N3 [3 marks]

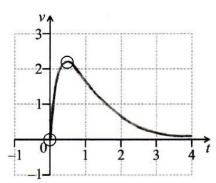
(b) attempt to substitute either limits or the function into formula involving f^2 (M1) eg $\int_{1}^{4} (f(x))^2 dx$, $\pi \int ((x-1)(x-4))^2$

volume = 8.1π (exact), 25.4 A2

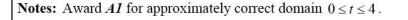
[3 marks] Total [6 marks]

N3

Question 13 (a) expressing f as $x^{\frac{4}{3}}$ (M1) $f'(x) = \frac{4}{3}x^{\frac{1}{3}} \left(=\frac{4}{3}\sqrt[3]{x}\right)$ (M1) $f'(x) = \frac{4}{3}x^{\frac{1}{3}} \left(=\frac{4}{3}\sqrt[3]{x}\right)$ (M1) $eg \quad \frac{x^{\frac{4}{3}+1}}{\frac{4}{3}+1}$ $\int f(x)dx = \frac{3}{7}x^{\frac{7}{3}} - \frac{x}{2} + c$ AIAIAI NA [4 marks] Total [6 marks]



AIA2 N3



The shape must be approximately correct, with maximum skewed left. Only if the shape is approximately correct, award A2 for all the following approximately correct features, in circle of tolerance where drawn (accept seeing correct coordinates for the maximum, even if point outside circle):

Maximum point, passes through origin, asymptotic to t-axis (but must not touch the axis).

If only two of these features are correct, award A1.

[3 marks]

N2[2 marks]

valid approach (including 0 and 3) (b) (M1) $\int_0^3 10t e^{-1.7t} dt, \int_0^3 f(x), \text{ area from } 0 \text{ to } 3 \text{ (may be shaded in diagram)}$ eg

distance=3.33 (m)

(c) recognizing acceleration is derivative of velocity (R1) $a = \frac{dv}{dt}$, attempt to find $\frac{dv}{dt}$, reference to maximum on the graph of v eg valid approach to find v when a = 0 (may be seen on graph) (M1)

$$\frac{\mathrm{d}v}{\mathrm{d}t} = 0, \ 10\mathrm{e}^{-1.7t} - 17t\mathrm{e}^{-1.7t} = 0, \ t = 0.588$$

velocity = $2.16 \text{ (ms}^{-1}\text{)}$

Note: Award R1M1A0 for (0.588, 2.16) if velocity is not identified as final answer

[3 marks]

N3

Total [8 marks]

Al

Al

(a)	(i)	valid approach (may be seen on diagram)	(M1)	
		eg Q to 6 is x		
		PQ = 6 - 2x	<u>A1</u>	N2

(ii)
$$A = (6-2x)\sqrt{6x-x^2}$$
 A1 N1

[3 marks]

(b) (i) recognising
$$\frac{dA}{dx}$$
 at $x = 2$ needed (must be the derivative of area) (M1)
 $\frac{dA}{dx} = -\frac{7\sqrt{2}}{2}, -4.95$ A1 N2

(ii)
$$a = 0.879 \ b = 3$$
 A1A1 N2

[4 marks] Total [7 marks]

(M1)

Question 16

METHOD 1

$S_L(0) = 60$ (seen anywhere)	(A1)
recognizing need to integrate V_R	(M1)
$eg \qquad S_R(t) = \int V_R \mathrm{d}t$	
correct expression	
$eg 40t - \frac{1}{3}t^3 + C$	AIAI
Note: Award A1 for 40t, and A1 for $-\frac{1}{3}t^3$.	

equate displacements to find C	(R1)

eg
$$40(0) - \frac{1}{3}(0)^3 + C = 60, S_L(0) = S_R(0)$$

$$C = 60$$
 A1

attempt to find displacement

$$eg = S_R(10), 40(10) - \frac{1}{3}(10)^3 + 60$$

126.666 126 $\frac{2}{3}$ (exact), 127 (m) A1 N5

METHOD 2

recognizing need to integrate V_R	<i>(M1)</i>
C	

$$eg \qquad S_R(t) = \int V_R dt$$

valid approach involving a definite integral (MI)

$$eg \int_{a}^{b} V_{R} dt$$

correct expression with limits

(A1) -10

$$eg \qquad \int_0^{10} \left(40 - t^2 \right) \mathrm{d}t \,, \, \int_0^{10} V_R \, \mathrm{d}t \,, \, \left[40t - \frac{1}{3}t^3 \right]_0^{10}$$

66.6666A2
$$S_L(0) = 60$$
 (seen anywhere)(A1)valid approach to find total displacement
eg(M1) eg $60 + 66.666$ 126.666126 $\frac{2}{3}$ (exact), 127 (m)**METHOD 3**(A1) $S_L(0) = 60$ (seen anywhere)
recognizing need to integrate V_R
eg(A1) eg $S_R(t) = \int V_R dt$ correct expression
egA1A1

Note: Award A1 for 40t, and A1 for $-\frac{1}{3}t^3$.

correct expression for Ramiro displacement

A1

A1

(M1)

$$eg \qquad S_{R}(10) - S_{R}(0), \left[40t - \frac{1}{3}t^{3} + C\right]_{0}^{10}$$

66.6666 valid approach to find total displacement eg 60+66.6666

126.666
126
$$\frac{2}{3}$$
 (exact), 127 (m) A1 N5

[8 marks]

recognizing need to find f(2) or f'(2)

$$f(2) = \frac{18}{6} \quad (\text{seen anywhere}) \tag{A1}$$

correct substitution into the quotient rule (A1)

$$eg = \frac{6(5) - 18(2)}{c^2}$$

$$\frac{6^2}{6^2}$$

$$f'(2) = -\frac{6}{36}$$
 A1

gradient of normal is 6	<i>(A1)</i>
attempt to use the point and gradient to find equation of straight line	(M1)

$$eg \qquad y - f(2) = -\frac{1}{f'(2)}(x-2)$$

correct equation in any form
$$p = 6(x-2), y = 6x-9$$
 A1 N4

Question 18
(a) recognizing
$$f(x) = 0$$

 $eg \quad f = 0, x^2 = 5$
 $x = \pm 2.23606$
 $x = \pm \sqrt{5}$ (exact), $x = \pm 2.24$
(M1)
(M1)
(M1)
(M2)
(M2)
(M3)
(M

(b) attempt to substitute either limits or the function into formula involving
$$f^2$$
 (M1)

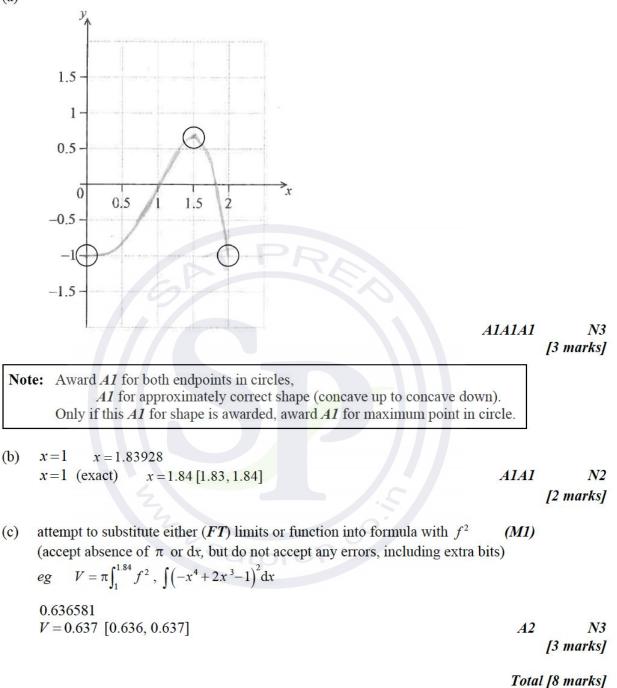
$$eg \quad \pi \int (5 - x^2)^2 \, dx \, , \, \pi \int_{-2.24}^{2.24} (x^4 - 10x^2 + 25) \, , \, 2\pi \int_{0}^{\sqrt{5}} f^2$$
187.328
volume = 187
$$A2 \qquad N3$$

[3 marks]

Total [6 marks]

(R1)

(a)	substituting $t = 1$ into v eg $v(1), (1^2 - 4)^3$	(M1)	
	velocity = $-27 \text{ (ms}^{-1}\text{)}$	Al	N2 [2 marks]
(b)	valid reasoning eg $v = 0, (t^2 - 4)^3 = 0$	(R1)	
	correct working eg $t^2 - 4 = 0, t = \pm 2$, sketch	(A1)	
	<i>t</i> = 2	<u>A1</u>	N2 [3 marks]
(c)	correct integral expression for distance $eg = \int_0^3 v , \int (t^2 - 4)^3 , -\int_0^2 v dt + \int_2^3 v dt$,	(A1)	
	$\int_{0}^{2} (4-t^{2})^{3} dt + \int_{2}^{3} (t^{2}-4)^{3} dt (\text{do not accept } \int_{0}^{3} v dt)$		
	86.2571 distance = 86.3 (m)	A2	N3 [3 marks]
(d)	evidence of differentiating velocity $eg v'(t)$	(M1)	
	$a = 3(t^2 - 4)^2(2t)$	A2	
	$a = 3(t^{2} - 4)^{2}(2t)$ $a = 6t(t^{2} - 4)^{2}$ METHOD 1	AG	N0 [3 marks]
(e)	METHOD 1		
	valid approach eg graphs of v and a	<u>M1</u>	
	correct working eg areas of same sign indicated on graph	(A1)	
	$2 < t \le 3$ (accept $t > 2$)	<u>A2</u>	N2
	METHOD 2		
	recognizing that $a \ge 0$ (accept <i>a is</i> always positive) (seen anywhere) recognizing that <i>v</i> is positive when $t > 2$ (seen anywhere)	R1 (R1)	
	$2 < t \le 3$ (accept $t > 2$)	A2	N2
			[4 marks]
		Total	[15 marks]



correct substitution of function and/or limits into formula (a) (A1)(accept absence of dt, but do not accept any errors) $\int_{0}^{\frac{\pi}{2}} v, \int \left| e^{\frac{1}{2} \cos t} - 1 \right| dt, \int \left(e^{\frac{1}{2} \cos t} - 1 \right)$ eg 0.613747 distance is 0.614 [0.613, 0.614] (m) N2Al [2 marks] **METHOD 1** (b) valid attempt to find the distance travelled between $t = \frac{\pi}{2}$ and t = 4(M1) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left(e^{\frac{1}{2}\cos t} - 1 \right), \int_{0}^{\frac{\pi}{2}} \left| e^{\frac{1}{2}\cos t} - 1 \right| dt - 0.614$ eg distance is 0.719565 Al valid reason, referring to change of direction (may be seen in explanation) **R1 R1** valid explanation comparing their distances 0.719565 > 0.614, distance moving back is more than distance eg moving forward Note: Do not award the final R1 unless the A1 is awarded. particle passes through A again AG NO **METHOD 2** valid attempt to find displacement (M1) $\left(e^{\frac{1}{2}\cos t}-1\right),$ $\left[e^{\frac{1}{2}\cos t} - 1 \right]$ eg correct displacement AI -0.719565, -0.105817 eg

recognising that displacement from 0 to
$$\frac{\pi}{2}$$
 is positive **R1**
eg displacement = distance from 0 to $\frac{\pi}{2}$

valid explanation referring to positive and negative displacement **R1** eg 0.719565 > 0.614, overall displacement is negative, since displacement after $\frac{\pi}{2}$ is negative, then particle gone backwards more than forwards

Note: Do not award the final *R1* unless the *A1* and the first *R1* are awarded. particle passes through A again

AG N0 [4 marks]

Note	: Special Case. If all working shown, and candidates seem to have m	isread the	
	question, using $v = e^{\frac{1}{2}\cos t}$, award marks as follows:		
(a)	correct substitution of function and/or limits into formula (accept absence of d <i>t</i> , but do not accept any errors)	AOMR	
	$eg \qquad \int_{0}^{\frac{\pi}{2}} \left(e^{\frac{1}{2}\cos t} \right), \ \int \left e^{\frac{1}{2}\cos t} \right dt, \ \int \left(e^{\frac{1}{2}\cos t} \right)$		
	2.184544 distance is 2.18 [2.18, 2.19] (m)	Al	NO
(b)	METHOD 1		
	valid attempt to find the distance travelled between $t = \frac{\pi}{2}$ and $t = 4$	<u>M1</u>	
	$eg \qquad \int_{\frac{\pi}{2}}^{4} \left(\frac{e^{\frac{1}{2}\cos t}}{e^{\frac{1}{2}\cos t}} \right), \int_{0}^{4} \left e^{\frac{1}{2}\cos t} \right dt - 2.18$		
	distance is 1.709638	A1	
	reference to change of direction (may be seen in explanation)	R 1	
	reasoning/stating particle passes/does not pass through A again	RO	
	METHOD 2		
	valid attempt to find displacement	M1	
	$eg \qquad \int_{\frac{\pi}{2}}^{4} \left(e^{\frac{1}{2}\cos t} \right), \int_{0}^{4} \left(e^{\frac{1}{2}\cos t} \right)$		
	correct displacement eg 1.709638, 3.894182	AI	
	recognising that displacement from 0 to $\frac{\pi}{2}$ is positive	R0	
	reasoning/stating particle passes/does not pass through A again	R0	
	With method 2, there is no valid reasoning about whether the particle passes through A again or not, so they cannot gain the R marks.		

Total [6 marks]

recognizing that the gradient of tangent is the derivative $eg = f'$	(M1)	
finding the gradient of f at P eg $f'(0.25) = 16$	(A1)	
evidence of taking negative reciprocal of their gradient at P eg $\frac{-1}{m}$, $-\frac{1}{f'(0.25)}$	(M1)	
equating derivatives eg $f'(x) = \frac{-1}{16}, f' = -\frac{1}{m}, \frac{x\left(\frac{1}{x}\right) - \ln(4x)}{x^2} = 16$	M 1	
finding the <i>x</i> -coordinate of Q, $x = 0.700750$ x = 0.701	A1	N3
attempt to substitute their x into f to find the y-coordinate of Q eg $f(0.7)$	(M1)	
y = 1.47083 y = 1.47	A1	N2 [7 marks]

(a)	p = 6	A1	N1
	recognising that turning points occur when $f'(x) = 0$ eg correct sign diagram	R1	N1
	f' changes from positive to negative at $x = 6$	R1	N1 [3 marks]
<mark>(b)</mark>	f'(2) = -2	A1	N1 [1 mark]
(c)	attempt to apply chain rule eg $\ln(x)' \times f'(x)$	(M 1)	
	correct expression for $g'(x)$	(A1)	
	$eg g'(x) = \frac{1}{f(x)} \times f'(x)$		
	substituting $x = 2$ into their g'	(M1)	
	eg $\frac{f'(2)}{f(2)}$		
	-0.666667		
	$g'(2) = -\frac{2}{3}$ (exact), -0.667	A1	N3
			[4 marks]
(d)	evidence of integrating $g'(x)$	(M1)	
	eg $g(x) _{2}^{a}$, $g(x) _{a}^{2}$		
	applying the fundamental theorem of calculus (seen anywhere)	R1	
	eg $\int_{2}^{a} g'(x) = g(a) - g(2)$ at prev		
	correct substitution into integral	(A1)	
	eg $\ln 3 + g(a) - g(2), \ \ln 3 + g(a) - \ln(f(2))$		
	$\ln 3 + g(a) - \ln 3$	A1	
	$\ln 3 + \int_{2}^{a} g'(x) = g(a)$	AG	NO
			[4 marks]

(e) METHOD 1 substituting $a = 5$ into the formula for $g(a)$ $eg \int_{2}^{5} g'(x) dx$, $g(5) = \ln 3 + \int_{2}^{5} g'(x) dx$ (do not accept only g	(M1) g (5))
attempt to substitute areas eg $\ln 3 + 0.66 - 0.21$, $\ln 3 + 0.66 + 0.21$	(M 1)
correct working eg $g(5) = \ln 3 + (-0.66 + 0.21)$	(A1)
0.648612 g (5) = ln 3 - 0.45 (exact), 0.649	A1 N3
METHOD 2 attempt to set up an equation for one shaded region eg $\int_4^5 g'(x) dx = 0.21, \int_2^4 g'(x) dx = -0.66, \int_2^5 g'(x) dx = -0.45$	(M1)
two correct equations eg $g(5)-g(4) = 0.21, g(2)-g(4) = 0.66$	(A1)
combining equations to eliminate $g(4)$ eg $g(5) - [\ln 3 - 0.66] = 0.21$	(M 1)
0.648612 $g(5) = \ln 3 - 0.45$ (exact), 0.649	A1 N3
METHOD 3 attempt to set up a definite integral eg $\int_{2}^{5} g'(x) dx = -0.66 + 0.21, \int_{2}^{5} g'(x) dx = -0.45$	(M1)
correct working eg $g(5) - g(2) = -0.45$	(A1)
correct substitution eg $g(5) - \ln 3 = -0.45$	(A1)
0.648612 g (5) = ln 3 - 0.45 (exact), 0.649	A1 N3 [4 marks]
	Total [16 marks]

(a)	attempt to find intersection eg $f = g$	(M1)	
	p = 1, q = 3	A1A1	N3 [3 marks]
(b)	f'(p) = -1	A2	N2 [2 marks]
(C)	(i) correct approach to find the gradient of the normal eg $m_1m_2 = -1$, $-\frac{1}{f'(p)}$, correct value of 1	(A1)	
	EITHER		
	attempt to substitute coordinates (in any order) and correct normal gradient to find <i>c</i>	(M1)	
	eg $3 = -\frac{1}{f'(p)} \times 1 + c$, $1 = 1 \times 3 + c$		
	<i>c</i> = 2	(A1)	
	y = x + 2	A1	N2
	OR		
	attempt to substitute coordinates (in any order) and correct normal gradient into equation of a straight line	(M1)	
	eg $y-3 = -\frac{1}{f'(p)}(x-1), y-1=1 \times (x-3)$		
	correct working eq. $y = (x - 1) + 3$	(A1)	
	cg y = (x - 1) + 3	A1	NO
	y = x + 2	AI	N2
	(ii) (0, 2)	A1	N1 [5 marks]
(d)	appropriate approach involving subtraction	(M1)	
	eg $\int_{a}^{b} (L-g) dx$, $\int (3x^{2} - (x+2))$		
	substitution of their limits or function	(A1)	
	eg $\int_0^p (L-g) dx$, $\int ((x+2)-3x^2)$		
	area = 1.5	A1	N2
			[3 marks]
		Iotal	[13 marks]

(a)	area of $ABCD = AB^2$ (seen anywhere)	(A1)	
	choose cosine rule to find a side of the square eg $a^2 = b^2 + c^2 - 2bc \cos \theta$	(M1)	
	correct substitution (for triangle AOB) eg $r^2 + r^2 - 2 \times r \times r \cos \theta$, $OA^2 + OB^2 - 2 \times OA \times OB \cos \theta$	A1	
	correct working for AB ² eg $2r^2 - 2r^2 \cos \theta$	A1	
	$\operatorname{area} = 2r^2 \left(1 - \cos \theta\right)$	AG	N0
Not	te: Award no marks if the only working is $2r^2 - 2r^2 \cos \theta$.		
	AT PRA		[4 marks]
(b)	(i) $\frac{1}{2}\alpha r^2 (\operatorname{accept} 2r^2(1-\cos\alpha))$	A1	N1
	(ii) correct equation in one variable	(A1)	
	$eg 2(1 - \cos \alpha) = \frac{1}{2}\alpha$ $\alpha = 0.511024$		
	$\alpha = 0.511$ (accept $\theta = 0.511$)	A2	N2
	Note: Award A1 for $\alpha = 0.511$ and additional answers.		
	2		[4 marks]

(c) N	lote: In this part, accept θ instead of β , and the use of equations instead inequalities in the working.	of	
atte	empt to find <i>R</i> subtraction of areas, square – segment	(M1)	
	rect expression for segment area $\frac{1}{2}\beta r^2 - \frac{1}{2}r^2\sin\beta$	(A1)	
	Prect expression for R $2r^{2}(1-\cos\beta) - \left(\frac{1}{2}\beta r^{2} - \frac{1}{2}r^{2}\sin\beta\right)$	(A1)	
	Prect inequality $2r^{2}(1-\cos\beta) - \left(\frac{1}{2}\beta r^{2} - \frac{1}{2}r^{2}\sin\beta\right) > 2\left(\frac{1}{2}\beta r^{2}\right)$	(A1)	
cor eg	Prect inequality in terms of angle only $2(1 - \cos \beta) - \left(\frac{1}{2}\beta - \frac{1}{2}\sin \beta\right) > \beta$	A1	
atte eg	empt to solve their inequality, must represent <i>R</i> > twice sector sketch, one correct value	(M1)	
	ot award the second (M1) unless the first (M1) for attempting to find R has awarded.		
bot	th correct values 1.30573 and 2.67369	(A1)	
cor	rrect inequality $1.31 < \beta < 2.67$	A1	N3
			[8 marks]
	Satprep.co.	Total [16 marks]

(a)	valid approach eg horizontal translation 3 units to the right	(M1)
	x = 3 (must be an equation)	A1 N2 [2 marks]
(b)	valid approach eg $f(x) = 0$, $e^0 = x - 3$	(M1)
	$4, \ x = 4, \ (4, \ 0)$	A1 N2 [2 marks]
(c)	attempt to substitute either their correct limits or the function into formula involving f^2 eg $\int_4^{10} f^2$, $\pi \int (2\ln(x-3))^2 dx$	(M1)
	141.537 volume = 142	A2 N3 [3 marks] Total [7 marks]
Ques	tion 27	
(a)	recognizing particle at rest when $v = 0$ eg $(0.3t + 0.1)^t - 4 = 0$, <i>x</i> -intercept on graph of <i>v</i>	(M1)
	t = 4.27631 t = 4.28 (seconds)	A2 N3 [3 marks]
(b)	valid approach to find <i>t</i> when <i>a</i> is 0 eg $v'(t) = 0$, <i>v</i> minimum,	(M1)
	t = 1.19236 t = 1.19 (seconds)	A2 N3 [3 marks]
		Total [6 marks]

7. (a) correct substitution into chain rule

eg
$$f'(x) = \frac{1}{x^2} \times 2x$$

 $f'(x) = \frac{2}{x}$ AG NO

[2 marks]

There are many approaches to this question, especially the steps to set up the correct equation, for the two M marks. There are a few processes they may need to apply at some stage, for the **M1M1**. These include substituting f'(d) and points P and/or Q into the gradient of PQ or equation of the tangent line PQ. There may be other approaches, please check working and award marks in line with markscheme.

(b) at P,
$$y = \ln(d^2)$$
 (seen anywhere) A1

gradient of tangent at P is
$$\frac{2}{d}$$
 (seen anywhere) A1

substituting
$$(1, -3)$$
, $(d, \ln d^2)$ or gradient $\frac{2}{d}$ into equation of tangent at P (M1)

eg
$$y-(-3) = m(x-1), y = \left(\frac{2}{d}\right)x + b, y - \ln d^2 = m(x-d)$$

second substitution

eg
$$y+3=\left(\frac{2}{d}\right)(x-1), -3=\left(\frac{2}{d}\right)1+b, m=\frac{\ln d^2+3}{d-1}$$

any correct equation (in d or x)

eg
$$-3 - \ln(d^2) = \left(\frac{2}{d}\right)(1-d), \quad \ln(x^2) + 1 + \left(\frac{2}{x}\right) = 0$$

-1.30505d = -1.31 (accept x = -1.31)

A1 N2 [6 marks]

(M1)

A1

Total [8 marks]

A2

(a) METHOD 1

(a)	METHOD 1		
	recognizing $s = \int v$	(M1)	
	recognizing displacement of P in first 5 seconds (seen anywhere) (accept missing d <i>t</i>)	A1	
	$eg \int_{0}^{5} v dt, -3.71591$		
	valid approach to find total displacement	(M1)	
	eg $4 + (-3.7159), s = 4 + \int_0^5 v$		
	0.284086		
	0.284 (m)	A2	N3
	METHOD 2		
	recognizing $s = \int v$	(M1)	
	correct integration	A1	
	eg $\frac{1}{3}\sin 3t + 2\cos t - \frac{t}{2} + c$ (do not penalize missing "c")		
	attempt to find c	(M1)	
	eg $4 = \frac{1}{3}\sin(0) + 2\cos(0) - \frac{0}{2} + c$, $4 = \frac{1}{3}\sin 3t + 2\cos t - \frac{t}{2} + c$, $2 + c = 4$	()	
	attempt to substitute $t = 5$ into their expression with c	(M1)	
	eg $s(5), \frac{1}{3}\sin(15) + 2\cos(5) - \frac{5}{2} + 2$		
	0.284086		
	0.284 (m)	A1	N3 [5 marks]
(b)	recognizing that at rest, $v = 0$	(M1)	
	t = 0.179900		
	t = 0.180 (secs)	A1	N2 [2 marks]
(c)	recognizing when change of direction occurs eg v crosses t axis	(M1)	
	2 (times)	A1	N2 [2 marks]

(d)	acceleration is v' (seen anywhere) eg $v'(3)$	(M1)	
	0.743631 0.744 (ms ⁻²)	A1	N2 [2 marks]
(e)	valid approach involving max or min of v eg $v' = 0$, $a = 0$, graph	(M1)	
	one correct co-ordinate for min eg 1.14102, -3.27876	(A1)	
	$3.28 (ms^{-1})$	A1	N2 [3 marks]
		Total	[14 marks]
	t approach $\int v, \int_0^p 6t - 6dt$	(A1)	
	t integration $t - 6dt = 3t^2 - 6t + C$, $[3t^2 - 6t]_0^p$	(A1)	
-	nizing that there are two possibilities orrect answers, $s = \pm 2$, $c \pm 2$	(M1)	
eg 3p ²	prrect equations in p $-6p = 2$, $3p^2 - 6p = -2$	A1A1	
	5, 1.57735 423 or $p = 1.58$	A1A1	N3
	5, 1.57735 423 or $p = 1.58$	Γ	7 marks]

C			
(a)	y = 2 (correct equation only)	A2	N2 [2 marks]
(b)	valid approach eg $(x-1)^{-1}+2$, $f'(x) = \frac{0(x-1)-1}{(x-1)^2}$	(M1)	
	$-(x-1)^{-2}, f'(x) = \frac{-1}{(x-1)^2}$	A1	N2 [2 marks]
(c)	correct equation for the asymptote of g eg $y = b$	(A1)	
	<i>b</i> = 2	A1	N2 [2 marks]
(d)	correct derivative of g (seen anywhere) eg $g'(x) = -ae^{-x}$	(A2)	
	correct equation $eg -e = -ae^{-1}$	(A1)	
	7.38905 $a = e^2$ (exact), 7.39	A1	N2 [4 marks]
(e)	attempt to equate their derivatives eg $f'(x) = g'(x), \ \frac{-1}{(x-1)^2} = -ae^{-x}$	<mark>(</mark> M1)	
	valid attempt to solve their equation eg correct value outside the domain of f such as 0.522 or 4.51,	<mark>(</mark> 1)	
	-1 Satprep.co		
	correct solution (may be seen in sketch) eg $x = 2$, $(2, -1)$	(A1)	
	gradient is -1	A1	N3 [4 marks]
		Total	[14 marks]

- (a) valid attempt to find the intersection (M1) f = g, sketch, one correct answer eg p = 0.357402, q = 2.15329p = 0.357, q = 2.15A1A1 **N3** [3 marks] attempt to set up an integral involving subtraction (in any order) (b) (M1) $\int_p^q \left[f(x) - g(x) \right] \mathrm{d}x \,, \, \int_p^q f(x) \mathrm{d}x - \int_p^q g(x) \mathrm{d}x \,$ eg 0.537667
 - area = 0.538 A2 N3

[3 marks]

[Total 6 marks]

Question 33

(a) attempt to substitute correct limits or the function into the formula involving y^2 (M1) $\pi \int_{-0.5}^{0.5} y^2 dx, \ \pi \int (-0.8x^2 + 0.5)^2 dx$ eg 0.601091 volume = $0.601 (m^3)$ A2 N3 [3 marks] attempt to equate half their volume to V (b) (M1) $0.30055 = 0.8(1 - e^{-0.1t})$, graph eg prep.co 4.71104 4.71 (minutes) A2 N3 [3 marks] [Total 6 marks]

A	n	•
Question	- ≺ ⊿	L
Oucstion	57	Г
v		

eg $-2(0)+2$ 2 (b) recognizing $v = 0$ when P is at rest 5.21834	A1 (M1) A1	N2 [2 marks]
5.21834	A1	
	A1	
p = 5.22 (seconds)		N2 [2 marks]
(c) (i) recognizing that $a = v'$ eg $v' = 0$, minimum on graph 1.95343	(M1)	
<i>q</i> = 1.95	A1	N2
(ii) valid approach to find their minimum $eg = v(q)$, -1.75879, reference to min on graph	(M1)	
1.75879 speed =1.76 $(c \mathrm{m s^{-1}})$,	A1 N2 [4 marks]
(d) (i) substitution of correct $v(t)$ into distance formula, $eg \int_{1}^{p} \left 3\sqrt{t} + \frac{4}{t^{2}} - 7 \right dt$, $\left \int 3\sqrt{t} + \frac{4}{t^{2}} - 7 dt \right $, 4.45368	(A1)	
distance = 4.45 (cm)	A1	N2
(ii) displacement from $t = 1$ to $t = p$ (seen anywhere) eg -4.45368 , $\int_{1}^{p} \left(3\sqrt{t} + \frac{4}{t^{2}} - 7\right) dt$	(A1)	
displacement from $t = 0$ to $t = 1$ eg $\int_0^1 (-2t+2) dt$, $0.5 \times 1 \times 2$, 1	(A1)	
valid approach to find displacement for $0 \le t \le p$ eg $\int_0^1 (-2t+2) dt + \int_1^p \left(3\sqrt{t} + \frac{4}{t^2} - 7 \right) dt$, $\int_0^1 (-2t+2) dt - 4.45$	М1	
-3.45368 displacement = -3.45 (cm)	A1	N2 [6 marks]

[Total 14 marks]

METHOD 1

derivative of
$$f(x)$$
 $A2$
 $7(x^2 + 3)^6 (2x)$
recognizing need to find x^4 term in $(x^2 + 3)^6$ (seen anywhere)
 $eg = 14x$ (term in x^4)
valid approach to find the terms in $(x^2 + 3)^6$ (M1)
 $eg = \binom{6}{r}(x^2)^{6-r}(3)^r, (x^2)^6(3)^9 + (x^2)^2(3)^4$..., Pascal's triangle to 6th row
identifying correct term (may be indicated in expansion)
 $eg = 5$ th term, $r = 2$, $\binom{6}{4}$, $(x^2)^2(3)^4$.
correct working (may be seen in expansion)
 $eg = \binom{6}{4}(x^2)^2(3)^4, 15 \times 3^4, 14x \times 15 \times 81(x^2)^2$
17010 x^5
A1 N3
METHOD 2
recognition of need to find x^6 in $(x^2 + 3)^7$ (seen anywhere)
 $eg = \binom{7}{r}(x^2)^{7-r}(3)^r, (x^2)^7(3)^9 + (x^2)^6(3)^4 + ..., Pascal's triangle to 7th row
identifying correct term (may be indicated in expansion)
 $eg = \binom{7}{t}(x^2)^{7-r}(3)^r, (x^2)^7(3)^9 + (x^2)^6(3)^4 + ..., Pascal's triangle to 7th row
identifying correct term (may be indicated in expansion) (A1)
 $eg = \binom{7}{4}(x^2)^3(3)^4, 35 \times 3^4$
correct working (may be seen in expansion)
 $eg = \binom{7}{4}(x^2)^3(3)^4, 35 \times 3^4$
correct term
 $2835x^6$
differentiating their term in x^6 (M1)
 $eg = (2835x^6)^r, (6)(2835x^5)$
17010 x^3
A1 N3
B1$$

(a)	(i) $t = 2$	A1	N1
	(ii) substitution of limits or function into formula or correct sum $eg \int_{0}^{8} v dt, \int v_{Q} dt, \int_{0}^{2} v dt - \int_{2}^{4} v dt + \int_{4}^{6} v dt - \int_{6}^{8} v dt$	(A1)	
	9.64782 distance = 9.65 (metres)	A1	N2 [3 marks]
(b)	correct approach eg $s = \int \sqrt{t} , \int_0^k \sqrt{t} dt , \int_0^k v_Q dt$	(A1)	
	correct integration eg $\int \sqrt{t} = \frac{2}{3}t^{\frac{3}{2}} + c$, $\left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{k}$, $\frac{2}{3}k^{\frac{3}{2}}$	(A1)	
	equating their expression to the distance travelled by their P eg $\frac{2}{3}k^{\frac{3}{2}} = 9.65$, $\int_0^k \sqrt{t} dt = 9.65$	(M1)	
	5.93855 5.94 (seconds)	A1	N3
			[4 marks]
		Total	[7 marks]

(a)	(i)	<i>q</i> = 2	A1	N1
	(ii)	h = 0	A1	N1
	(iii)	<i>k</i> = 3	A1	N1
	Note	: Accept $q = 1$, $h = 0$, and $k = 3 - \ln(2)$, 2.31 as candidate may have rewritten $g(x)$ as equal to $3 + \ln(x) - \ln(2)$.		

(b) (i) 2.72409

2.72	A2	N2

[3 marks]

(ii) recognizing area between y = x and h equals 2.72 (M1)

eg

1232.111

recognizing graphs of h and h^{-1} are reflections of each other in y = x (M1) eg area between y = x and h equals between y = x and h^{-1}

$$2 \times 2.72, \int_{0.111}^{3.31} (x - h^{-1}(x)) dx = 2.72$$

5.44819
5.45
A1 N3
[5 marks]

(C)	valid attempt to find <i>d</i> eg difference in <i>y</i> -coordinates, $d = h(x) - x$	(M1)	
	correct expression for d eg $\left(\ln\frac{1}{2}x+3\right)(\cos 0.1x)-x$	(A1)	
	valid approach to find when d is a maximum eg max on sketch of d , attempt to solve $d' = 0$	(M1)	
	0.973679		
	x = 0.974	A2	N4
	substituting their x value into $h(x)$	(M1)	
	2.26938		
	y = 2.27	A1	N2
			[7 marks]
		[1	15 marks]

METHOD 1 (displacement)

recognizing $s = \int v \mathrm{d}t$	(M1)	
consideration of displacement at $t = 2$ and $t = 5$ (seen anywhere) eg $\int_0^2 v$ and $\int_0^5 v$	<u>M1</u>	
Note: Must have both for any further marks.		
correct displacement at $t = 2$ and $t = 5$ (seen anywhere) -2.28318 (accept 2.28318), 1.55513	A1A1	
valid reasoning comparing correct displacements eg $ -2.28 > 1.56 $, more left than right	R1	
2.28 (m) A1	N1	
METHOD 2 (distance travelled) recognizing distance $= \int v dt$ consideration of distance travelled from $t = 0$ to 2 and $t = 2$ to 5 (seen anywhere) $eg = \int_{0}^{2} v \text{ and } \int_{2}^{5} v$	(M1) M1	
Note: Must have both for any further marks.		
correct distances travelled (seen anywhere) 2.28318, (accept -2.28318), 3.83832	A1A1	
valid reasoning comparing correct distance values eg $3.84 - 2.28 < 2.28, 3.84 < 2 \times 2.28$	R1	
2.28 (m)	A1	N1
Note: Do not award the final A1 without the R1 .		[6 marks]

(a)	evid eg	ence of valid approach $f(x) = 0$, $y = 0$	(M1)	
	2.73 <i>p</i> =	205 2.73	A1	N2 [2 marks]
(b)	(i)	1.87938, 8.11721 (1.88, 8.12)	A2	N2
	(ii)	rate of change is 0 (do not accept decimals)	A1	N1 [3 marks]
(C)	(i)	METHOD 1 (using GDC)		
		valid approach $f''=0$, max/min on f' , $x=-1$	M1	
		sketch of either f' or f'' , with max/min or root (respectively)	(A1)	
		<i>x</i> =1	A1	N1
		Substituting their x value into f eg $f(1)$	(M1)	
		<i>y</i> = 4.5	A1	N1
		METHOD 2 (analytical)		
		$f'' = -6x^2 + 6$	A1	
		setting $f'' = 0$	(M1)	
		x = 1 substituting their x value into f	A1	N1
		substituting their x value into f eg $f(1)$	(M1)	
		<i>y</i> = 4.5	A1	N1

	(ii) recognizing rate of change is f' eg $y', f'(1)$ rate of change is 6	(M1) A1	N2
(d)	attempt to substitute either limits or the function into formula involving f^2 (accept absence of π and/or dx) eg $\pi \int (-0.5x^4 + 3x^2 + 2x)^2 dx$, $\int_1^{1.88} f^2$	(M1)	[7 marks]
	128.890 volume = 129	A2	N3 [3 marks]
		[Tota	15 marks]
Quest	cion 40		
(a)	valid approach eg $f(p) = 4$, intersection with $y = 4$, ± 2.32	(M1)	
	2.32143 $p = \sqrt{e^2 - 2}$ (exact), 2.32	A1	N2 [2 marks]
(b)	attempt to substitute either their limits or the function into volume formula (must involve f^2 , accept reversed limits and absence of π and/or dx, but do not accept any other errors) eg $\int_{-2.32}^{2.32} f^2$, $\pi \int (6 - \ln (x^2 + 2))^2 dx$, 105.675	(M1)	
	331.989 volume = 332	A2	N3 [3 marks]
		Total	[5 marks]

(a)	$t = \frac{2}{3}(\text{exact}), \ 0.667, \ t = 4$	A1A1	N2 [2 marks]
(b)	recognizing that <i>v</i> is decreasing when <i>a</i> is negative eg $a < 0$, $3t^2 - 14t + 8 \le 0$, sketch of <i>a</i>	(M1)	
	correct interval eg $\frac{2}{3} < t < 4$	A1	N2
			[2 marks]
(c)	valid approach (do not accept a definite integral) eg $v = \int a$	(M1)	
	correct integration (accept missing <i>c</i>) $t^3 - 7t^2 + 8t + c$	(A1)(A1)(A1)	
	substituting $t = 0$, $v = 3$ (must have c) eg $3 = 0^3 - 7(0^2) + 8(0) + c$, $c = 3$	(M1)	
	$v = t^3 - 7t^2 + 8t + 3$	A1	N6 [6 marks]
<mark>(d)</mark>	recognizing that <i>v</i> increases outside the interval found in part (b) eg $0 < t < \frac{2}{3}, 4 < t < 5$, diagram	(M1)	
	one correct substitution into distance formula eg $\int_{0}^{\frac{2}{3}} v , \int_{4}^{5} v , \int_{\frac{2}{3}}^{4} v , \int_{0}^{5} v $	(A1)	
	one correct pair eg 3.13580 and 11.0833, 20.9906 and 35.2097	(A1)	
	14.2191	A1	N2
	d = 14.2 (m)	Total	[4 marks] [14 marks]

Quest			
(a)	initial velocity when $t = 0$	(M1)	
	eg v(0)		
	$v = 7 (m s^{-1})$	A1	N2
			[2 marks]
			-40
(b)	recognizing maximum speed when $ v $ is greatest	(M1)	
	eg minimum, maximum, $v' = 0$		
	one correct coordinate for minimum	(A1)	
	eg 6.37896, -24.6571		
	$24.7 \text{ (m s}^{-1})$	14	NO
	24.7 $(m s^{-1})$	A1	N2
			[3 marks]
(C)	recognizing $a = v'$	(M1)	
	eg $a = \frac{dv}{dt}$, correct derivative of first term		
	$\frac{dt}{dt}$, confect derivative of hist term		
	identifying when $a = 0$	(M1)	
	eg turning points of v , <i>t</i> -intercepts of v'		
	3	A1	N3
			[3 marks]
(d)	recognizing P changes direction when $v = 0$	(M1)	
	t = 0.863851	(A1)	
	-9.24689		
	$a = -9.25 \text{ (m s}^{-2})$	A2	N3
	$a = -9.25 \text{ (m s}^{-2})$		[4 marks]
(e)	correct substitution of limits or function into formula	(A1)	
. ,	eg $\int_{0}^{7} v , \int_{0}^{0.8638} v dt - \int_{0.8638}^{7} v dt, \int 7\cos x - 5x^{\cos x} dx, 3.32 + 60.6$		
	$J_0 [V], J_0 = V a = J_{0.8638} V a , J = V COS x = S x = [ax, 5.52 + 00.0]$		
	63.8874		
	63.9 (metres)	A2	N3
			[3 marks]
		[Total:	15 Marks]

(a)	valid approach eg $f(x) = 0$, $e^x = 180$ or $0 \dots$	(M1)	
	1.14472 $x = \ln \pi$ (exact), 1.14	A1	N2 [2 marks]
(b)	attempt to substitute either their limits or the function into formula involving f^2 eg $\int_0^{1.14} f^2$, $\pi \int (\sin(e^x))^2 dx$, 0.795135	(M1)	
	2.49799 volume = 2.50	A2	N3 [3 marks]
Quest	cion 44	[Total	: 5 marks]
(a)	-0.394791, 13 A (-0.395, 13)	A1A1	N2 [2 marks]
(b)	(i) 13	A1	N1
	(ii) 2π, 6.28	A1	N1 [2 marks]
(c)	valid approach eg recognizing that amplitude is p or shift is r	(M1)	
	$f(x) = 13\cos(x + 0.395)$ (accept $p = 13$, $r = 0.395$)	A1A1	N3
	<i>Note:</i> Accept any value of r of the form $0.395 + 2\pi k$, $k \in \mathbb{Z}$		[3 marks]

(d)	recognizing need for $d'(t)$ eg $-12\sin(t) - 5\cos(t)$	(M1)	
	correct approach (accept any variable for <i>t</i>) eg $-13\sin(t+0.395)$, sketch of <i>d'</i> , (1.18,-13), $t = 4.32$	(A1)	
	maximum speed =13 $(cm s^{-1})$	A1	N2 [3 marks]
(e)	recognizing that acceleration is needed $eg = a(t), d''(t)$	(M1)	
	correct equation (accept any variable for <i>t</i>)	(A1)	
	eg $a(t) = -2$, $\left \frac{d}{dt} (d'(t)) \right = 2$, $-12\cos(t) + 5\sin(t) = -2$		
	valid attempt to solve their equation eg sketch, 1.33	(M1)	
	1.02154		
	1.02	A2	N3 [5 marks]
		Total	[15 marks]

. (a) attempt to substitute correct limits or the function into formula involving f^2 (M1)

eg
$$\pi \int_{-2}^{2} y^{2} dy$$
, $\pi \int \left(\sqrt{\frac{4-x^{2}}{8}} \right)^{2} dx$
4.18879
volume = 4.19, $\frac{4}{3}\pi$ (exact) cm³)
Note: If candidates have their GDC incorrectly set in degrees, award **M** marks where
appropriate, but no **A** marks may be awarded. Answers from degrees are $p = 13.1243$
and $q = 26.9768$ in (b)(i) and 12.3130 or 28.3505 in (b)(ii).
[3 marks]
(b) (i) recognizing the volume increases when g' is positive (**M1**)
eg g'(t) > 0, sketch of graph of g' indicating correct interval
1.73387, 3.56393
 $p = 1.73$, $q = 3.56$
(ii) valid approach to find change in volume
eg g(q) = g(p), $\int_{p}^{q} g'(t) dt$
3.74541
total amount = 3.75 (m³)
A2 N3
[6 marks]
continued...

c)		-	
	Note: There may be slight differences in the final answer, depending on which values candidates carry through from previous parts. Accept answers that are consistent with correct working.		
	recognizing when the volume of water is a maximum eg maximum when $t = q$, $\int_{0}^{q} g'(t) dt$	(M1)	
	valid approach to find maximum volume of water eg $2.3 + \int_0^q g'(t) dt$, $2.3 + \int_0^p g'(t) dt + 3.74541$, 3.85745	(M1)	
	correct expression for the difference between volume of container and maximum value $(22 + \int_{a}^{a} f(x) h) = 4.10 + 2.05745$	(A1)	
	eg $4.18879 - \left(2.3 + \int_0^q g'(t) dt\right), \ 4.19 - 3.85745$		
	0.331334 0.331 (m ³)	A2	N3 [5 marks]
		Total	[14 marks]
est	ion 46		
)	valid approach eg $v(t) = 0$, sketch of graph	(M1)	
	2.95195 $t = \log_{1.4} 2.7$ (exact), $t = 2.95$ (s)	A1	N2 [2 marks]
	valid approach eg $a(t) = v'(t), v'(2)$	(M1)	
	0.659485 $a(2) = 1.96 \ln 1.4$ (exact), $a(2) = 0.659 \text{ (m s}^{-2})$	A1	N2 [2 marks]
	correct approach eg $\int_{0}^{5} v(t) dt$, $\int_{0}^{2.95} (-v(t)) dt + \int_{2.95}^{5} v(t) dt$	(A1)	
	5.3479 distance = 5.35 (m)	<mark>A</mark> 2	N3
		T-4-	[3 marks]
		Tota	[7 marks]

Ques			
(a)	valid approach eg $s_4(0)$, $s(0)$, $t = 0$	(M1)	
	eg $s_A(0)$, $s(0)$, $t = 0$ 15 (cm)	A1	N2 [2 marks]
(b)	valid approach eg $s_A = 0, s = 0, 6.79321, 14.8651$	(M1)	
	2.46941 t = 2.47 (seconds)	A1	N2 [2 marks]
(c)	recognizing when change in direction occurs eg slope of <i>s</i> changes sign, $s' = 0$, minimum point, 10.0144, (4.08, -4.66)	(M1)	
	4.07702 t = 4.08 (seconds)	A1	N2 [2 marks]
(d)	METHOD 1 (using displacement)		
	correct displacement or distance from P at $t = 3$ (seen anywhere) eg $-2.69630, 2.69630$	(A1)	
	valid approach eg $15+2.69630$, $s(3)-s(0)$, -17.6963	(M1)	
	17.6963 17.7 (cm)	A1	N2
	METHOD 2 (using velocity)		
	attempt to substitute either limits or the velocity function into distance formula involving $\left v \right $	(M1)	
	eg $\int_0^3 v dt$, $\int -1 - 18t^2 e^{-0.8t} + 4.8t^3 e^{-0.8t} $		
	17.6963 17.7 (cm)	A2	N2 [3 marks]

(e)	(i)	recognize the need to integrate velocity eg $\int v(t)$	(M1)	
		$8t - \frac{2t^2}{2} + c$ (accept x instead of t and missing c)	(A2)	
		substituting initial condition into their integrated expression	(M1)	
		$s_B(t) = 8t - t^2 + 15$	A1	N3
	(ii)	valid approach eg $s_A = s_B$, sketch, (9.30404, 2.86710)	(M 1)	
		9.30404 t = 9.30 (seconds)	A1	N2
	Note	e: If candidates obtain $s_B(t) = 8t - t^2$ in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last A1 in part (e)(ii) only if both solutions are given.		
				[7 marks]
		7	otal	[16 marks]
Ques	stion 4	8		
(a)	valid eg	approach $f(10)$ (M1)	
	235.4 235 (102 fish) (must be an integer)	A1	N2 [2 marks]
(b)	reco eg	gnizing rate of change is derivative rate = f' , $f'(10)$, sketch of f' , 35 (fish per month)	M1)	
	35.99 36.0	976 (fish per month)	A1	N2 [2 marks]
(c)	valid eg	approach (maximum of f' , $f'' = 0$	M1)	
	15.89 15.9	90 (months)	A1	N2 [2 marks]
			Total	[6 marks]

 (a) valid approach
 (M1)

 eg f(x) = 0, $4 - 2e^x = 0$

 0.693147
 $x = \ln 2$ (exact), 0.693

 A1
 N2

[2 marks]

attempt to substitute either their correct limits or the function into formula (M1) (b) involving f^2 eg $\int_0^{0.693} f^2$, $\pi \int (4-2e^x)^2 dx$, $\int_0^{\ln 2} (4-2e^x)^2$ 3.42545 volume = 3.43A2 N3 [3 marks] Total [5 marks] Question 50 attempt to find f'(8)(a) (M1) eg $f'(x), y', -16x^{-2}$ -0.25 (exact) A1 N2 [2 marks] (b) $u = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ or any scalar multiple A2 N2 [2 marks] correct scalar product and magnitudes (A1)(A1)(A1) (C) scalar product = $1 \times 4 + 1 \times -1$ (= 3) magnitudes = $\sqrt{1^2 + 1^2}$, $\sqrt{4^2 + (-1)^2} \left(=\sqrt{2}, \sqrt{17}\right)$ substitution of their values into correct formula (M1) $\frac{4-1}{\sqrt{1^2+1^2}\sqrt{4^2+(-1)^2}}, \frac{-3}{\sqrt{2}\sqrt{17}}, 2.1112, 120.96^{\circ}$ eg 1.03037, 59.0362° angle = 1.03, 59.0° A1 N4 [5 marks]

(d) (i) attempt to form composite
$$(f \circ f)(x)$$

eg
$$f(f(x)), f(\frac{16}{x}), \frac{16}{f(x)}$$

correct working (A1)

correct working

eg
$$\frac{16}{16/x}, 16 \times \frac{x}{16}$$

(M1)

$$(f \circ f)(x) = x$$
 A1 N2

(ii)
$$f^{-1}(x) = \frac{16}{x} (\text{accept } y = \frac{16}{x}, \frac{16}{x})$$
 A1 N1

Note: Award A0 in part (ii) if part (i) is incorrect.

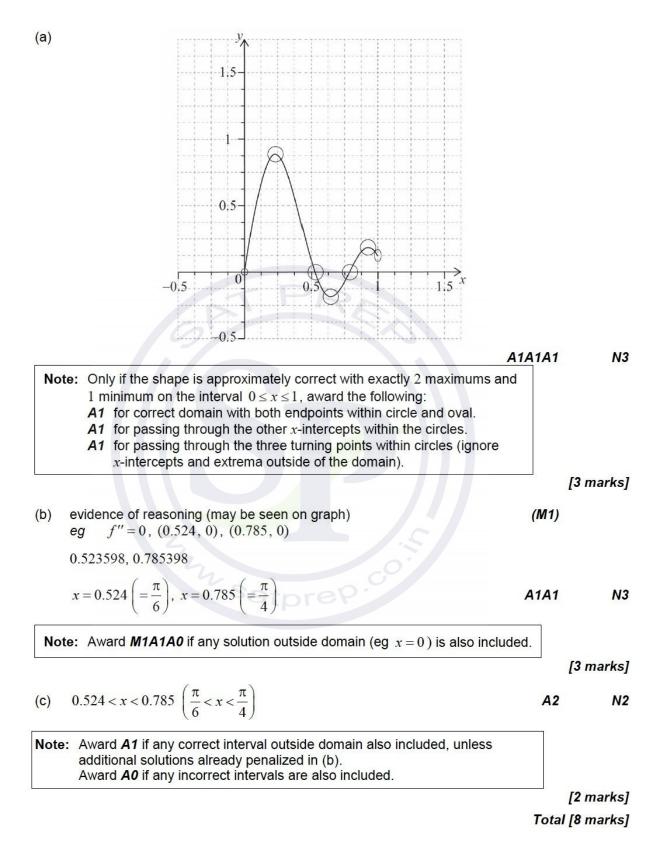
Award **A0** in part (ii) if the candidate has found $f^{-1}(x) = \frac{16}{x}$ by interchanging x and y.

METHOD 1 (iii)



METHOD 2

finding direction vector for tangent line at x = 2(A1) $\begin{pmatrix} -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ -4 \end{pmatrix}$ eg substitution of their values into correct formula (must be from vectors) (M1) $\frac{-4-4}{\sqrt{1^2+4^2}\sqrt{4^2+(-1)^2}}, \ \frac{8}{\sqrt{17}\sqrt{17}}$ eg 2.06075, 118.072° 2.06 (radians) (118 degrees) A1 N2 **METHOD 3** using trigonometry to find an angle with the horizontal (M1) $\tan\theta = -\frac{1}{4}, \ \tan\theta = -4$ eg finding both angles of rotation (A1) $\theta_1 = 0.244978, 14.0362^\circ$, $\theta_2 = 1.81577, 104.036^\circ$ eg 2.06075, 118.072° 2.06 (radians) (118 degrees) A1 N2 [7 marks] Total [16 marks]



(a)	choosing product rule eg $uv' + vu'$, $(x^2)'(e^{3x}) + (e^{3x})'x^2$	(M1)	
	correct derivatives (must be seen in the rule) eg $2x$, $3e^{3x}$	A1A1	
	$f'(x) = 2xe^{3x} + 3x^2e^{3x}$	A1	N4 [4 marks]
(b)	valid method eg $f'(x) = 0$, ,	(M1)	
	$a = -0.667 \left(= -\frac{2}{3} \right)$ (accept $x = -0.667$)	A1	N2
			[2 marks]
		Tota	l [6 marks]
Quest	tion 53		
(a)	recognizing that $v = \int a$	(M1)	
	correct integration eg $-120\cos(2t) + c$	A1	
	attempt to find c using their $v(t)$ eg $-120\cos(0) + c = 140$	(M1)	
	$v(t) = -120\cos(2t) + 260$	A1	N3 [4 marks]
(b)	evidence of valid approach to find time taken in first stage eg graph, $-120\cos(2t) + 260 = 375$	(M1)	
	k = 1.42595	A1	
	attempt to substitute their <i>v</i> and/or their limits into distance formula eg $\int_{0}^{1.42595} v , \int 260 - 120\cos(2t), \int_{0}^{k} (260 - 120\cos(2t)) dt$	(M1)	
	353.608 distance is 354 (m)	A1	N3 [4 marks]

(C)	reco	ognizing velocity of second stage is linear (seen anywhere)	R1	
	eg	graph, $s = \frac{1}{2}h(a+b)$, $v = mt + c$		
	vali	d approach	(M1)	
	eg	$\int v = 353.608$		
	corr	rect equation	(A1)	
	eg	$\frac{1}{2}h(375+500) = 353.608$		
	time	e for stage two = 0.808248 (0.809142 from 3 sf)	A2	
		3420 (2.23914 from 3 sf)		
	2.23	3 (seconds) (2.24 from 3 sf)	A1	N [6 mark:
			Total	14 marks
)uest	tion !	54 PR		
(a)	evid eg	ence of valid approach $f(x) = 0$, $y = 0$	(M1)	
	1.13	843		
	<i>p</i> =	1.14	A1	N2
			I	2 marks]
(b)	(i)	0.562134, 16.7641 (0.562, 16.8)	A2	N2
	(ii)	valid approach eg tangent at maximum point is horizontal, $f' = 0$	(M1)	
		y = 16.8 (must be an equation)	A1	N2
			l	[4 marks]
(C)	(i)	METHOD 1 (using GDC) valid approach		
		valid approach $f'' = 0$, max/min on f' , $x = -3$	M1	
		sketch of either f' or f'' , with max/min or root (respectively)	(A1)	
		<i>x</i> = 3	A1	N1
		substituting their x value into f	(M1)	
		eg $f(3)$		

METHOD 2 (analytical)

 $f'' = 12x^2 - 108$ A1

valid approach (M1) $f'' = 0, x = \pm 3$ eg x = 3A1 N1 substituting their x value into f(M1) eg f(3)y = -225 (exact) (accept (3, -225)) N1 A1 (ii) recognizing rate of change is f'(M1) eg y', f'(3)rate of change is -156 (exact) A1 N2 [7 marks] (d) attempt to substitute either their limits or the function into volume formula (M1) $\int_{114}^{3} f^2, \ \pi \int (x^4 - 54x^2 + 60x)^2 \, dx, \ 25752.0$ eg 80902.3 volume = 80900A2 N3 [3 marks] Total [16 marks] **Question 55** attempt to form composite (in any order) (a) (M1) eq $f(x^4-3), (x-8)^4-3$ $h(x) = x^4 - 11$ A1 N2 [2 marks] (b) recognizing that the gradient of the tangent is the derivative (M1) h' eg correct derivative (seen anywhere) (A1) $h'(x) = 4x^3$ correct value for gradient of f (seen anywhere) (A1) f'(x) = 1, m = 1setting their derivative equal to 1 (M1) $4x^3 = 1$ 0 629960 $x = \sqrt[3]{\frac{1}{4}}$ (exact), 0.630 A1 N3

[5 marks]

Total [7 marks]