Subject - Math (Standard Level)
 Topic - Calculus
 Year - Nov 2011 - Nov 2019
 Paper -2

Question1
(a)

AlAlAI
Note: Award A1 for approximately correct shape with inflexion/ change of curvature, A1 for maximum skewed to the left,
AI for asymptotic behaviour to the right.
(b) (i) $\quad x=3.33$
(ii) correct interval, with right end point $3 \frac{1}{3}$

A1A1
e.g. $0<x \leq 3.33,0 \leq x<3 \frac{1}{3}$

Note: Accept any inequalities in the right direction.
(c) valid approach
[3 marks]
e.g. quotient rule, product rule

2 correct derivatives (must be seen in product or quotient rule)
(M1)
e.g. $20,0.3 \mathrm{e}^{0.3 x}$ or $-0.3 \mathrm{e}^{-0.3 x}$
correct substitution into product or quotient rule
e.g. $\frac{20 \mathrm{e}^{0.3 x}-20 x(0.3) \mathrm{e}^{0.3 x}}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, 20 \mathrm{e}^{-0.3 x}+20 x(-0.3) \mathrm{e}^{-0.3 x}$
correct working
e.g. $\frac{20 \mathrm{e}^{0.3 x}-6 x \mathrm{e}^{0.3 x}}{\mathrm{e}^{0.6 x}}, \frac{\mathrm{e}^{0.3 x}(20-20 x(0.3))}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, \mathrm{e}^{-0.3 x}(20+20 x(-0.3))$
$f^{\prime}(x)=\frac{20-6 x}{\mathrm{e}^{0.3 x}}$
(d) consideration of f^{\prime} or $f^{\prime \prime}$
valid reasoning
e.g. sketch of $f^{\prime}, f^{\prime \prime}$ is positive, $f^{\prime \prime}=0$, reference to minimum of f^{\prime}
correct value $6.6666666 \ldots\left(6 \frac{2}{3}\right)$
correct interval, with both end points
e.g $\quad 6.67<x \leq 20, \quad 6 \frac{2}{3} \leq x<20$

Question 2

(a) evidence of valid approach
e.g. $y=0, \sin x=0$
$2 \pi=6.283185 \ldots$
$k=6.28$ A1 N2 [2 marks]
(b) attempt to substitute either limits or the function into formula (M1) (accept absence of $\mathrm{d} x$)
e.g. $V=\pi \int_{\pi}^{k}(f(x))^{2} \mathrm{~d} x, \pi \int((x-1) \sin x)^{2}, \pi \int_{\pi}^{6.28 \ldots} y^{2} \mathrm{~d} x$
correct expression
A2
e.g. $\pi \int_{\pi}^{6.28}(x-1)^{2} \sin ^{2} x \mathrm{~d} x, \pi \int_{\pi}^{2 \pi}((x-1) \sin x)^{2} \mathrm{~d} x$

[3 marks]

(c) $\quad \begin{aligned} V & =69.60192562 \ldots \\ V & =69.6\end{aligned}$ A2 N2

Question 3

(a) $\quad f^{\prime}(x)=-\mathrm{e}^{x} \sin \left(\mathrm{e}^{x}\right)$

A1A1
(b)

A1A1A1A1
Note: Award $\boldsymbol{A 1}$ for shape that must have the correct domain (from -2 to +2) and correct range (from -6 to 4), $\boldsymbol{A 1}$ for minimum in circle, $\boldsymbol{A 1}$ for maximum in circle and $\boldsymbol{A 1}$ for intercepts in circles.

Question 4

Question 5

Question 6
(a) $\quad x=2 \quad(\operatorname{accept}(2,0))$
(b) evidence of finding gradient of f at $x=2$
e.g. $f^{\prime}(2)$
the gradient is 10
A1
N2 [2 marks]
(c) evidence of negative reciprocal of gradient
e.g. $\frac{-1}{f^{\prime}(x)},-\frac{1}{10}$
evidence of correct substitution into equation of a line
e.g. $\quad y-0=\frac{-1}{10}(x-2), 0=-0.1(2)+b$
$y=-\frac{1}{10} x+\frac{2}{10} \quad($ accept $a=-0.1, b=0.2)$

N2
[3 marks]

Question 7

(a)

Note: Award A1 for approximately correct shape (do not accept line segments).
Only if this A1 is awarded, award the following:
A1 for maximum and minimum within circles,
$A 1$ for x-intercepts between 1 and 2 and between 4 and 5,
$\boldsymbol{A 1}$ for left endpoint at $(0,0)$ and right endpoint within circle.
(b) appropriate approach
e.g. recognizing that $v=s^{\prime}$, finding derivative, $a=s^{\prime \prime}$
valid method to find maximum
e.g. sketch of $v, v^{\prime}(t)=0, t=5.08698 \ldots$
$v=10.20025 \ldots$
$v=10.2[10.2,10.3]$

Question 8

(a)

Note: The shape must be an approximately correct upwards parabola.
Only if the shape is approximately correct, award the following:
$\boldsymbol{A 1}$ for vertex $x \approx 2, \boldsymbol{A 1}$ for x-intercepts between 0 and 1 , and 3 and 4, $\boldsymbol{A 1}$ for correct y-intercept $(0,1), \boldsymbol{A 1}$ for correct domain. $[-1,5]$.
Scale not required on the axes, but approximate positions need to be clear.
(b) $\quad p=2$
(c) correct vertical reflection, correct vertical translation
(A1)(A1)
e.g. $\quad-f(x),-\left((x-2)^{2}-3\right),-y,-f(x)+6, y+6$
transformations in correct order
e.g. $\quad-\left(x^{2}-4 x+1\right)+6,-\left((x-2)^{2}-3\right)+6$
simplification which clearly leads to given answer
e.g. $-x^{2}+4 x-1+6,-\left(x^{2}-4 x+4-3\right)+6$
$g(x)=-x^{2}+4 x+5$
$A G$
Note: If working shown, award A1A1A0A0 if transformations correct,
but done in reverse order, e.g. $-\left(x^{2}-4 x+1+6\right)$.
(d) valid approach
e.g. sketch, $f=g$
$-0.449489 \ldots, 4.449489 \ldots$
$(2 \pm \sqrt{6})$ (exact), $-0.449[-0.450,-0.449] ; 4.45[4.44,4.45]$
A1A1
(e) attempt to substitute limits or functions into area formula (accept absence of $\mathrm{d} x$) (M1)
e.g. $\int_{a}^{b}\left(\left(-x^{2}+4 x+5\right)-\left(x^{2}-4 x+1\right)\right) \mathrm{d} x, \int_{4.45}^{-0.449}(f-g)$,

$$
\int\left(-2 x^{2}+8 x+4\right) \mathrm{d} x
$$

approach involving subtraction of integrals/areas (accept absence of $\mathrm{d} x$)
e.g. $\int_{a}^{b}\left(-x^{2}+4 x+5\right)-\int_{a}^{b}\left(x^{2}-4 x+1\right), \int(f-g) \mathrm{d} x$
area $=39.19183 .$.
area $=39.2[39.1,39.2]$
A1
N3
[3 marks]

Question 9

(a)

Note: Award $A 1$ for approximately correct shape crossing x-axis with $3<x<3.5$. Only if this $\boldsymbol{A 1}$ is awarded, award the following:
 $\boldsymbol{A 1}$ for maximum in circle, $\boldsymbol{A 1}$ for endpoints in circle.

(b) (i) $t=\pi$ (exact), 3.14
(ii) recognizing distance is area under velocity curve
eg $s=\int v$, shading on diagram, attempt to integrate v
valid approach to find the total area
$e g$ area $\mathrm{A}+$ area $\mathrm{B}, \int v \mathrm{~d} t-\int v \mathrm{~d} t, \int_{0}^{3.14} v \mathrm{~d} t+\int_{3.14}^{5} v \mathrm{~d} t, \int|v|$
correct working with integration and limits (accept $\mathrm{d} x$ or missing $\mathrm{d} t$)
$e g \quad \int_{0}^{3.14} v \mathrm{~d} t+\int_{5}^{3.14} v \mathrm{~d} t, 3.067 \ldots+0.878 \ldots, \int_{0}^{5}\left|\mathrm{e}^{\sin t}-1\right|$
distance $=3.95(\mathrm{~m})$

Question 10

(a) $f(0)=\frac{100}{51}$ (exact), 1.96
(b) setting up equation
eg $\quad 95=\frac{100}{1+50 \mathrm{e}^{-0.2 x}}$, sketch of graph with horizontal line at $y=95$
$x=34.3$
(c) upper bound of y is 100
lower bound of y is 0
range is $0<y<100$

(d) METHOD 1

setting function ready to apply the chain rule
eg $100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-1}$
evidence of correct differentiation (must be substituted into chain rule)
eg $\quad u^{\prime}=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}, v^{\prime}=\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct chain rule derivative
eg $\quad f^{\prime}(x)=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct working clearly leading to the required answer
eg $f^{\prime}(x)=1000 \mathrm{e}^{-0.2 x}\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}$
$f^{\prime}(x)=\frac{1000 \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)
eg $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}, \frac{u v^{\prime}-v u^{\prime}}{v^{2}}$
evidence of correct differentiation inside the quotient rule
eg $\quad f^{\prime}(x)=\frac{\left(1+50 e^{-0.2 x}\right)(0)-100\left(50 e^{-0.2 x} \times-0.2\right)}{\left(1+50 e^{-0.2 x}\right)^{2}}, \frac{100(-10) \mathrm{e}^{-0.2 x}-0}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
any correct expression for derivative (0 may not be explicitly seen)
$e g \frac{-100\left(50 \mathrm{e}^{-0.2 x} \times-0.2\right)}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
correct working clearly leading to the required answer
eg $\quad f^{\prime}(x)=\frac{0-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}, \frac{-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
$f^{\prime}(x)=\frac{1000 \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
$A G$
(M1)
N2
[2 marks]

A1
(e) METHOD 1
sketch of $f^{\prime}(x)$
eg

recognizing maximum on $f^{\prime}(x)$
(M1)
eg dot on max of sketch
finding maximum on graph of $f^{\prime}(x)$ A1
eg $\quad(19.6,5), x=19.560 \ldots$
maximum rate of increase is 5

METHOD 2

recognizing $f^{\prime \prime}(x)=0$
(M1)
finding any correct expression for $f^{\prime \prime}(x)$
$e g \frac{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}\left(-200 \mathrm{e}^{-0.2 x}\right)-\left(1000 \mathrm{e}^{-0.2 x}\right)\left(2\left(1+50 \mathrm{e}^{-0.2 x}\right)\left(-10 \mathrm{e}^{-0.2 x}\right)\right)}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{4}}$
finding $x=19.560 \ldots$
maximum rate of increase is 5

Question 11

(a) (i)

A1A1
Notes: Award A1 for the graph of f positive, increasing and concave up. Award $\boldsymbol{A 1}$ for graph of g increasing and linear with y-intercept of 0 . Penalize one mark if domain is not $[-5,5]$ and/or if f and g do not intersect in the first quadrant.
(ii) attempt to find intersection of the graphs of f and g
eg $\quad \mathrm{e}^{\frac{x}{4}}=x$
$x=1.42961$. .
valid attempt to find area of R
$e g \quad \int\left(x-\mathrm{e}^{\frac{x}{4}}\right) \mathrm{d} x, \int_{0}^{1}(g-f), \int(f-g)$
Area $=0.697 \quad$ A2
(b) recognize that area of R is a maximum at point of tangency
eg $\quad m=f^{\prime}(x)$
equating functions
eg $\quad f(x)=g(x), \mathrm{e}^{\frac{x}{4}}=m x$
$f^{\prime}(x)=\frac{1}{4} \mathrm{e}^{\frac{x}{4}}$
equating gradients
eg $\quad f^{\prime}(x)=g^{\prime}(x), \frac{1}{4} \mathrm{e}^{\frac{x}{4}}=m$
attempt to solve system of two equations for x
eg $\quad \frac{1}{4} \mathrm{e}^{\frac{x}{4}} \times x=\mathrm{e}^{\frac{x}{4}}$
$x=4$
attempt to find m
eg $\quad f^{\prime}(4), \frac{1}{4} \mathrm{e}^{\frac{4}{4}}$
$m=\frac{1}{4} \mathrm{e}$ (exact), 0.680

Question 12

(a) valid approach
eg $\quad f(x)=0$, sketch of parabola showing two x-intercepts
$x=1, x=4(\operatorname{accept}(1,0),(4,0))$
A1A1
N3
(b) attempt to substitute either limits or the function into formula involving f^{2} (M1)
eg $\quad \int_{1}^{4}(f(x))^{2} \mathrm{~d} x, \pi \int((x-1)(x-4))^{2}$
volume $=8.1 \pi($ exact $), 25.4$
A2
N3
[3 marks]
Total [6 marks]
Question 13
(a) expressing f as $x^{\frac{4}{3}}$

$$
f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}}\left(=\frac{4}{3} \sqrt[3]{x}\right)
$$

(M1)
A1 N2
[2 marks]
(b) attempt to integrate $\sqrt[3]{x^{4}}$
(M1)
eg $\frac{x^{\frac{4}{3}+1}}{\frac{4}{3}+1}$
$\int f(x) \mathrm{d} x=\frac{3}{7} x^{\frac{7}{3}}-\frac{x}{2}+c$

A1A1A1

Question 14

(a)

Notes: Award $A 1$ for approximately correct domain $0 \leq t \leq 4$.
The shape must be approximately correct, with maximum skewed left. Only if the shape is approximately correct, award $\boldsymbol{A} 2$ for all the following approximately correct features, in circle of tolerance where drawn (accept seeing correct coordinates for the maximum, even if point outside circle):

Maximum point, passes through origin, asymptotic to t-axis (but must not touch the axis).

If only two of these features are correct, award $\boldsymbol{A 1}$.
(b) valid approach (including 0 and 3)
(M1)
eg $\quad \int_{0}^{3} 10 t \mathrm{e}^{-1.7 t} \mathrm{~d} t, \int_{0}^{3} f(x)$, area from 0 to 3 (may be shaded in diagram)
distance $=3.33$ (m)
A1 N2
[2 marks]
(c) recognizing acceleration is derivative of velocity
eg $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$, attempt to find $\frac{\mathrm{d} v}{\mathrm{~d} t}$, reference to maximum on the graph of v
valid approach to find v when $a=0$ (may be seen on graph)
(M1)
eg $\quad \frac{\mathrm{d} v}{\mathrm{~d} t}=0,10 \mathrm{e}^{-1.7 t}-17 \mathrm{te}^{-1.7 t}=0, t=0.588$
velocity $=2.16\left(\mathrm{~ms}^{-1}\right)$
Note: Award R1M1A0 for $(0.588,2.16)$ if velocity is not identified as final answer

Question 15
(a) (i) valid approach (may be seen on diagram)
eg Q to 6 is x

$$
\mathrm{PQ}=6-2 x
$$

(ii) $A=(6-2 x) \sqrt{6 x-x^{2}}$
(b) (i) recognising $\frac{\mathrm{d} A}{\mathrm{~d} x}$ at $x=2$ needed (must be the derivative of area)

$$
\frac{\mathrm{d} A}{\mathrm{~d} x}=-\frac{7 \sqrt{2}}{2}, \quad-4.95
$$

(ii) $a=0.879 \quad b=3$

Question 16

METHOD 1

$S_{L}(0)=60$ (seen anywhere)
recognizing need to integrate V_{R}
eg $\quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
correct expression
eg $\quad 40 t-\frac{1}{3} t^{3}+C$

Note: Award $A 1$ for $40 t$, and $A 1$ for $-\frac{1}{3} t^{3}$.
equate displacements to find C
eg $\quad 40(0)-\frac{1}{3}(0)^{3}+C=60, S_{L}(0)=S_{R}(0)$
$C=60$
attempt to find displacement
eg $\quad S_{R}(10), 40(10)-\frac{1}{3}(10)^{3}+60$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)

METHOD 2

recognizing need to integrate V_{R}
eg $\quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
valid approach involving a definite integral
$e g \quad \int_{a}^{b} V_{R} \mathrm{~d} t$
correct expression with limits
eg $\quad \int_{0}^{10}\left(40-t^{2}\right) \mathrm{d} t, \int_{0}^{10} V_{R} \mathrm{~d} t,\left[40 t-\frac{1}{3} t^{3}\right]_{0}^{10}$
66.6666
$S_{L}(0)=60 \quad$ (seen anywhere)
valid approach to find total displacement
eg $\quad 60+66.666$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)

METHOD 3

$S_{L}(0)=60 \quad$ (seen anywhere)
recognizing need to integrate V_{R}
eg $\quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
correct expression
eg $\quad 40 t-\frac{1}{3} t^{3}+C$
Note: Award $A 1$ for $40 t$, and $A 1$ for $-\frac{1}{3} t^{3}$.
correct expression for Ramiro displacement
eg $\quad S_{R}(10)-S_{R}(0),\left[40 t-\frac{1}{3} t^{3}+C\right]_{0}^{10}$
66.6666
valid approach to find total displacement
eg $\quad 60+66.6666$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)

Question 17

recognizing need to find $f(2)$ or $f^{\prime}(2)$
$f(2)=\frac{18}{6}$ (seen anywhere)
correct substitution into the quotient rule
eg $\frac{6(5)-18(2)}{6^{2}}$
$f^{\prime}(2)=-\frac{6}{36}$
gradient of normal is 6
attempt to use the point and gradient to find equation of straight line
$e g \quad y-f(2)=-\frac{1}{f^{\prime}(2)}(x-2)$
correct equation in any form
eg $\quad y-3=6(x-2), y=6 x-9$
A1 N4
[7 marks]
Question 18
(a) recognizing $f(x)=0$
eg $\quad f=0, x^{2}=5$
$x= \pm 2.23606$
$x= \pm \sqrt{5}$ (exact), $x= \pm 2.24$
(b) attempt to substitute either limits or the function into formula involving f^{2}
$e g \quad \pi \int\left(5-x^{2}\right)^{2} \mathrm{~d} x, \pi \int_{-2.24}^{2.24}\left(x^{4}-10 x^{2}+25\right), 2 \pi \int_{0}^{\sqrt{5}} f^{2}$
187.328
volume $=187$
(a) substituting $t=1$ into v
eg $\quad v(1),\left(1^{2}-4\right)^{3}$
velocity $=-27\left(\mathrm{~ms}^{-1}\right)$

$$
A 1
$$

(b) valid reasoning
(R1)
eg $\quad v=0,\left(t^{2}-4\right)^{3}=0$
correct working
eg $\quad t^{2}-4=0, t= \pm 2$, sketch

$$
t=2
$$

(c) correct integral expression for distance
eg $\quad \int_{0}^{3}|v|, \int\left|\left(t^{2}-4\right)^{3}\right|,-\int_{0}^{2} v d t+\int_{2}^{3} v d t$,

$$
\left.\int_{0}^{2}\left(4-t^{2}\right)^{3} \mathrm{~d} t+\int_{2}^{3}\left(t^{2}-4\right)^{3} \mathrm{~d} t \text { (do not accept } \int_{0}^{3} v \mathrm{~d} t\right)
$$

86.2571
distance $=86.3(\mathrm{~m})$
(d) evidence of differentiating velocity
eg $\quad v^{\prime}(t)$
$a=3\left(t^{2}-4\right)^{2}(2 t)$
$a=6 t\left(t^{2}-4\right)^{2}$
(e) METHOD 1
valid approach
$e g \quad$ graphs of v and a
correct working
eg areas of same sign indicated on graph
$2<t \leq 3$ (accept $t>2$)
A2

METHOD 2

recognizing that $a \geq 0$ (accept a is always positive) (seen anywhere)
recognizing that v is positive when $t>2$ (seen anywhere)
$2<t \leq 3$ (accept $t>2$)

R1
(M1) A2
$A G$
[3 marks]

M1

N3
[3 marks]

No
(a)

[^0]A1 for approximately correct shape (concave up to concave down).
Only if this $A 1$ for shape is awarded, award $A 1$ for maximum point in circle.
(b) $\quad x=1 \quad x=1.83928$
$x=1$ (exact) $\quad x=1.84[1.83,1.84]$
A1A1
(c) attempt to substitute either $(\boldsymbol{F T})$ limits or function into formula with $f^{2} \quad$ (M1)
(accept absence of π or $\mathrm{d} x$, but do not accept any errors, including extra bits)
eg $\quad V=\pi \int_{1}^{1.84} f^{2}, \int\left(-x^{4}+2 x^{3}-1\right)^{2} \mathrm{~d} x$
0.636581
$V=0.637[0.636,0.637] \quad A 2$ 42 N3
[3 marks]
Total [8 marks]
(a) correct substitution of function and/or limits into formula
(accept absence of $\mathrm{d} t$, but do not accept any errors)
$e g \quad \int_{0}^{\frac{\pi}{2}} v, \int\left|\mathrm{e}^{\frac{1}{2} \cos t}-1\right| \mathrm{d} t, \int\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right)$
0.613747
distance is $0.614[0.613,0.614](\mathrm{m})$
(b) METHOD 1
valid attempt to find the distance travelled between $t=\frac{\pi}{2}$ and $t=4$
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{\cos t}}-1\right), \int_{0}^{4}\left|\mathrm{e}^{\frac{1}{2} \cos t}-1\right| \mathrm{d} t-0.614$
distance is 0.719565
valid reason, referring to change of direction (may be seen in explanation) R1
valid explanation comparing their distances R1
eg $0.719565>0.614$, distance moving back is more than distance moving forward

Note: Do not award the final $R 1$ unless the $A 1$ is awarded.
particle passes through A again

METHOD 2

valid attempt to find displacement
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right), \int_{0}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right)$
correct displacement
eg $\quad-0.719565,-0.105817$
recognising that displacement from 0 to $\frac{\pi}{2}$ is positive
eg displacement $=$ distance from 0 to $\frac{\pi}{2}$
valid explanation referring to positive and negative displacement
eg $0.719565>0.614$, overall displacement is negative, since displacement after $\frac{\pi}{2}$ is negative, then particle gone backwards more than forwards

Note: Do not award the final $R \mathbf{1}$ unless the $\boldsymbol{A 1}$ and the first $\boldsymbol{R 1}$ are awarded.

Note: Special Case. If all working shown, and candidates seem to have misread the question, using $v=\mathrm{e}^{\frac{1}{2} \cos t}$, award marks as follows:
(a) correct substitution of function and/or limits into formula (accept absence of $\mathrm{d} t$, but do not accept any errors)

$$
e g \quad \int_{0}^{\frac{\pi}{2}}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int\left|\mathrm{e}^{\frac{1}{2} \cos t}\right| \mathrm{d} t, \int\left(\mathrm{e}^{\frac{1}{2} \cos t}\right)
$$

2.184544
distance is $2.18[2.18,2.19]$ (m)
(b) METHOD 1
valid attempt to find the distance travelled between $t=\frac{\pi}{2}$ and $t=4$
eg $\quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int_{0}^{4} \mathrm{e}^{\frac{1}{2} \cos t} \mathrm{~d} t-2.18$
distance is 1.709638
reference to change of direction (may be seen in explanation)
reasoning/stating particle passes/does not pass through A again
METHOD 2
valid attempt to find displacement
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int_{0}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right)$
correct displacement
eg $1.709638,3.894182$
recognising that displacement from 0 to $\frac{\pi}{2}$ is positive
reasoning/stating particle passes/does not pass through A again

With method 2, there is no valid reasoning about whether the particle passes through A again or not, so they cannot gain the \boldsymbol{R} marks.

Question 22

recognizing that the gradient of tangent is the derivative
eg f^{\prime}
finding the gradient of f at P
eg $\quad f^{\prime}(0.25)=16$
evidence of taking negative reciprocal of their gradient at P
eg $\frac{-1}{m},-\frac{1}{f^{\prime}(0.25)}$
equating derivatives
M1
eg $\quad f^{\prime}(x)=\frac{-1}{16}, f^{\prime}=-\frac{1}{m}, \frac{x\left(\frac{1}{x}\right)-\ln (4 x)}{x^{2}}=16$
finding the x-coordinate of $\mathrm{Q}, x=0.700750$
$x=0.701 \quad$ A1
attempt to substitute their x into f to find the y-coordinate of Q (M1)
eg $f(0.7)$
$y=1.47083$
$y=1.47$

Question 23
(a) $p=6$

A1
recognising that turning points occur when $f^{\prime}(x)=0$
R1
N1
eg correct sign diagram
f^{\prime} changes from positive to negative at $x=6$
R1 N1 [3 marks]
(b) $\quad f^{\prime}(2)=-2$
(c) attempt to apply chain rule
eg $\quad \ln (x)^{\prime} \times f^{\prime}(x)$
correct expression for $g^{\prime}(x)$
eg $\quad g^{\prime}(x)=\frac{1}{f(x)} \times f^{\prime}(x)$
substituting $x=2$ into their g^{\prime}
eg $\frac{f^{\prime}(2)}{f(2)}$
-0.666667
$g^{\prime}(2)=-\frac{2}{3}($ exact $),-0.667$
A1 N3
[4 marks]
(d) evidence of integrating $g^{\prime}(x)$
eg $\left.\quad g(x)\right|_{2} ^{a},\left.g(x)\right|_{a} ^{2}$
applying the fundamental theorem of calculus (seen anywhere)
R1
eg $\quad \int_{2}^{a} g^{\prime}(x)=g(a)-g(2)$
correct substitution into integral
(A1)
eg $\quad \ln 3+g(a)-g(2), \ln 3+g(a)-\ln (f(2))$
$\ln 3+g(a)-\ln 3$
A1
$\ln 3+\int_{2}^{a} g^{\prime}(x)=g(a)$

A1 N1 [1 mark]
(e) METHOD 1
substituting $a=5$ into the formula for $g(a)$
eg $\quad \int_{2}^{5} g^{\prime}(x) \mathrm{d} x, g(5)=\ln 3+\int_{2}^{5} g^{\prime}(x) \mathrm{d} x \quad$ (do not accept only $g(5)$)
attempt to substitute areas
(M1)
eg $\quad \ln 3+0.66-0.21, \ln 3+0.66+0.21$
correct working
eg $\quad g(5)=\ln 3+(-0.66+0.21)$
0.648612
$g(5)=\ln 3-0.45$ (exact), $0.649 \quad$ A1
N3

METHOD 2

attempt to set up an equation for one shaded region
eg $\quad \int_{4}^{5} g^{\prime}(x) \mathrm{d} x=0.21, \int_{2}^{4} g^{\prime}(x) \mathrm{d} x=-0.66, \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.45$
two correct equations
eg $\quad g(5)-g(4)=0.21, g(2)-g(4)=0.66$
combining equations to eliminate $g(4)$
eg $\quad g(5)-[\ln 3-0.66]=0.21$

> 0.648612
> $g(5)=\ln 3-0.45$ (exact), 0.649

A1

METHOD 3
attempt to set up a definite integral
eg $\quad \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.66+0.21, \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.45$
correct working
eg $\quad g(5)-g(2)=-0.45$
correct substitution
eg $\quad g(5)-\ln 3=-0.45$
0.648612
$g(5)=\ln 3-0.45$ (exact), 0.649
(a) attempt to find intersection
eg $f=g$
$p=1, q=3 \quad$ A1A1 [3 marks]
(b) $\quad f^{\prime}(p)=-1$

A2
N2 [2 marks]
(c) (i) correct approach to find the gradient of the normal
eg $\quad m_{1} m_{2}=-1,-\frac{1}{f^{\prime}(p)}$, correct value of 1

EITHER

attempt to substitute coordinates (in any order) and correct normal gradient to find c
eg $3=-\frac{1}{f^{\prime}(p)} \times 1+c, 1=1 \times 3+c$

$$
\begin{aligned}
& c=2 \\
& y=x+2
\end{aligned}
$$

(A1)

OR

attempt to substitute coordinates (in any order) and correct normal gradient into equation of a straight line
eg $\quad y-3=-\frac{1}{f^{\prime}(p)}(x-1), y-1=1 \times(x-3)$
correct working
eg $\quad y=(x-1)+3$
(A1)

$$
y=x+2
$$

(ii) $(0,2)$

N1 [5 marks]
(d) appropriate approach involving subtraction
eg $\quad \int_{a}^{b}(L-g) \mathrm{d} x, \int\left(3 x^{2}-(x+2)\right)$
substitution of their limits or function
eg $\quad \int_{0}^{p}(L-g) \mathrm{d} x, \int\left((x+2)-3 x^{2}\right)$
area $=1.5$
A1

Question 25
(a) area of $\mathrm{ABCD}=\mathrm{AB}^{2}$ (seen anywhere)
choose cosine rule to find a side of the square
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos \theta$
correct substitution (for triangle AOB)
eg $\quad r^{2}+r^{2}-2 \times r \times r \cos \theta, \mathrm{OA}^{2}+\mathrm{OB}^{2}-2 \times \mathrm{OA} \times \mathrm{OB} \cos \theta$
correct working for AB^{2} A1
eg $2 r^{2}-2 r^{2} \cos \theta$

$$
\text { area }=2 r^{2}(1-\cos \theta) \quad \text { AG }
$$

Note: Award no marks if the only working is $2 r^{2}-2 r^{2} \cos \theta$.
(b) (i) $\frac{1}{2} \alpha r^{2}\left(\operatorname{accept} 2 r^{2}(1-\cos \alpha)\right)$
A1
N1
(ii) correct equation in one variable
Note: Award A1 for $\alpha=0.511$ and additional answers.
(c) Note: In this part, accept θ instead of β, and the use of equations instead of inequalities in the working.
attempt to find R
eg subtraction of areas, square - segment
correct expression for segment area
eg $\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta$
correct expression for R
eg $\quad 2 r^{2}(1-\cos \beta)-\left(\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta\right)$
correct inequality
eg $\quad 2 r^{2}(1-\cos \beta)-\left(\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta\right)>2\left(\frac{1}{2} \beta r^{2}\right)$
correct inequality in terms of angle only
eg $\quad 2(1-\cos \beta)-\left(\frac{1}{2} \beta-\frac{1}{2} \sin \beta\right)>\beta$
attempt to solve their inequality, must represent $R>$ twice sector
eg sketch, one correct value
ote: Do not award the second (M1) unless the first (M1) for attempting to find R has been awarded.
both correct values 1.30573 and 2.67369
correct inequality $1.31<\beta<2.67$

Question 26
(a) valid approach
eg horizontal translation 3 units to the right
$x=3$ (must be an equation)

A1 N2 [2 marks]
(b) valid approach
(M1)
eg $\quad f(x)=0, e^{0}=x-3$
$4, x=4,(4,0)$
A1
N2
[2 marks]
(c) attempt to substitute either their correct limits or the function into formula involving f^{2}
eg $\quad \int_{4}^{10} f^{2}, \pi \int(2 \ln (x-3))^{2} \mathrm{~d} x$
141.537
volume $=142$
A2
N3
[3 marks]
Total [7 marks]

Question 27
(a) recognizing particle at rest when $v=0$
eg $\quad(0.3 t+0.1)^{t}-4=0, x$-intercept on graph of v
$t=4.27631$
$t=4.28$ (seconds)
(b) valid approach to find t when a is 0
eg $\quad v^{\prime}(t)=0, v$ minimum,
$t=1.19236$
$t=1.19$ (seconds)

$$
A 2
$$

Question 28
7. (a) correct substitution into chain rule
eg $f^{\prime}(x)=\frac{1}{x^{2}} \times 2 x$

$$
f^{\prime}(x)=\frac{2}{x}
$$

There are many approaches to this question, especially the steps to set up the correct equation, for the two M marks. There are a few processes they may need to apply at some stage, for the M1M1. These include substituting $f^{\prime}(d)$ and points P and/or Q into the gradient of PQ or equation of the tangent line $P Q$. There may be other approaches, please check working and award marks in line with markscheme.
(b) at $\mathrm{P}, y=\ln \left(d^{2}\right)$ (seen anywhere)

A1

gradient of tangent at P is $\frac{2}{d}$ (seen anywhere)
substituting $(1,-3),\left(d, \ln d^{2}\right)$ or gradient $\frac{2}{d}$ into equation of tangent at P (M1)
eg $\quad y-(-3)=m(x-1), y=\left(\frac{2}{d}\right) x+b, y-\ln d^{2}=m(x-d)$
second substitution
eg $\quad y+3=\left(\frac{2}{d}\right)(x-1),-3=\left(\frac{2}{d}\right) 1+b, m=\frac{\ln d^{2}+3}{d-1}$
any correct equation (in d or x)
(a) METHOD 1
recognizing $s=\int v$
recognizing displacement of P in first 5 seconds (seen anywhere)
(accept missing $\mathrm{d} t$)
eg $\int_{0}^{5} v \mathrm{~d} t,-3.71591$
valid approach to find total displacement
eg $\quad 4+(-3.7159), s=4+\int_{0}^{5} v$
0.284086
0.284 (m)

METHOD 2

recognizing $s=\int v$
correct integration
eg $\frac{1}{3} \sin 3 t+2 \cos t-\frac{t}{2}+c$ (do not penalize missing " c ")
attempt to find c
(M1)
eg $\quad 4=\frac{1}{3} \sin (0)+2 \cos (0)-\frac{0}{2}+c, 4=\frac{1}{3} \sin 3 t+2 \cos t-\frac{t}{2}+c, 2+c=4$
attempt to substitute $t=5$ into their expression with c
eg $s(5), \frac{1}{3} \sin (15)+2 \cos (5)-\frac{5}{2}+2$
0.284086
0.284 (m)
(b) recognizing that at rest, $v=0$

(M1)

$t=0.179900$
$t=0.180$ (secs)
A1
[2 marks]
(c) recognizing when change of direction occurs
eg $\quad v$ crosses t axis
2 (times)

A1
[2 marks]
(d) acceleration is v^{\prime} (seen anywhere)
eg $v^{\prime}(3)$
0.743631
$0.744\left(\mathrm{~ms}^{-2}\right) \quad$ A1
(e) valid approach involving max or min of v
eg $\quad v^{\prime}=0, a=0$, graph
one correct co-ordinate for min
(A1)
eg $1.14102,-3.27876$
$3.28\left(\mathrm{~ms}^{-1}\right) \quad$ A1
A1 N2
[3 marks]
Total [14 marks]
Question 30
correct approach
eg $s=\int v, \int_{0}^{p} 6 t-6 \mathrm{~d} t$
correct integration
eg $\int 6 t-6 \mathrm{~d} t=3 t^{2}-6 t+C,\left[3 t^{2}-6 t\right]_{0}^{p}$
recognizing that there are two possibilities
eg 2 correct answers, $s= \pm 2, c \pm 2$
two correct equations in p
eg $3 p^{2}-6 p=2,3 p^{2}-6 p=-2$
0.42265, 1.57735
$p=0.423$ or $p=1.58$
A1A1 N3

Question 31
(a) $y=2$ (correct equation only)
(b) valid approach
eg $\quad(x-1)^{-1}+2, f^{\prime}(x)=\frac{0(x-1)-1}{(x-1)^{2}}$
$-(x-1)^{-2}, f^{\prime}(x)=\frac{-1}{(x-1)^{2}}$
(c) correct equation for the asymptote of g
eg $\quad y=b$
$b=2$
A1 N2 [2 marks]
(d) correct derivative of g (seen anywhere)
eg $\quad g^{\prime}(x)=-a \mathrm{e}^{-x}$
correct equation
eg $\quad-\mathrm{e}=-a \mathrm{e}^{-1}$
7.38905
$a=\mathrm{e}^{2}$ (exact), 7.39
(e) attempt to equate their derivatives
eg $f^{\prime}(x)=g^{\prime}(x), \frac{-1}{(x-1)^{2}}=-a \mathrm{e}^{-x}$
valid attempt to solve their equation
(M1)
eg correct value outside the domain of f such as 0.522 or 4.51 ,
correct solution (may be seen in sketch)
eg $\quad x=2,(2,-1)$
gradient is -1
A1

Question 32
(a) valid attempt to find the intersection
eg $\quad f=g$, sketch, one correct answer
$p=0.357402, q=2.15329$
$p=0.357, q=2.15 \quad$ A1A1 N3
(b) attempt to set up an integral involving subtraction (in any order)
eg $\quad \int_{p}^{q}[f(x)-g(x)] \mathrm{d} x, \int_{p}^{q} f(x) \mathrm{d} x-\int_{p}^{q} g(x) \mathrm{d} x$
0.537667
area $=0.538$
A2 N3 [3 marks]
[Total 6 marks]
Question 33
(a) attempt to substitute correct limits or the function into the formula involving y^{2}
eg $\quad \pi \int_{-0.5}^{0.5} y^{2} \mathrm{~d} x, \pi \int\left(-0.8 x^{2}+0.5\right)^{2} \mathrm{~d} x$
0.601091
volume $=0.601\left(\mathrm{~m}^{3}\right)$
(b) attempt to equate half their volume to V
eg $\quad 0.30055=0.8\left(1-\mathrm{e}^{-0.1 t}\right)$, graph
4.71104
4.71 (minutes)

A2
[3 marks]
[Total 6 marks]

Question 34
(a) valid attempt to substitute $t=0$ into the correct function eg $-2(0)+2$

$$
2
$$

(b) recognizing $v=0$ when P is at rest
(M1)

A1 N2 [2 marks]
(c) (i) recognizing that $a=v^{\prime}$
(M1)
eg $\quad v^{\prime}=0$, minimum on graph
1.95343
$q=1.95$
A1
N2
(ii) valid approach to find their minimum
eg $\quad v(q),-1.75879$, reference to min on graph
1.75879
speed $=1.76\left(\mathrm{cms}^{-1}\right)$
A1 N2
[4 marks]
(d) (i) substitution of correct $v(t)$ into distance formula,
eg $\int_{1}^{p}\left|3 \sqrt{t}+\frac{4}{t^{2}}-7\right| \mathrm{d} t,\left|\int 3 \sqrt{t}+\frac{4}{t^{2}}-7 \mathrm{~d} t\right|$,
4.45368
distance $=4.45(\mathrm{~cm})$
A1
(ii) displacement from $t=1$ to $t=p$ (seen anywhere)
eg $\quad-4.45368, \int_{1}^{p}\left(3 \sqrt{t}+\frac{4}{t^{2}}-7\right) \mathrm{d} t$
displacement from $t=0$ to $t=1$
eg $\quad \int_{0}^{1}(-2 t+2) \mathrm{d} t, 0.5 \times 1 \times 2,1$
valid approach to find displacement for $0 \leq t \leq p$
eg $\quad \int_{0}^{1}(-2 t+2) \mathrm{d} t+\int_{1}^{p}\left(3 \sqrt{t}+\frac{4}{t^{2}}-7\right) \mathrm{d} t, \int_{0}^{1}(-2 t+2) \mathrm{d} t-4.45$
-3.45368
displacement $=-3.45(\mathrm{~cm})$

Question 35

METHOD 1

derivative of $f(x)$

A2

$7\left(x^{2}+3\right)^{6}(2 x)$
recognizing need to find x^{4} term in $\left(x^{2}+3\right)^{6}$ (seen anywhere)
eg $\quad 14 x\left(\operatorname{term}\right.$ in $\left.x^{4}\right)$
valid approach to find the terms in $\left(x^{2}+3\right)^{6}$
eg $\binom{6}{r}\left(x^{2}\right)^{6-r}(3)^{r},\left(x^{2}\right)^{6}(3)^{0}+\left(x^{2}\right)^{5}(3)^{1}+\ldots$, Pascal's triangle to 6th row
identifying correct term (may be indicated in expansion)
eg $\quad 5$ th term, $r=2,\binom{6}{4},\left(x^{2}\right)^{2}(3)^{4}$
correct working (may be seen in expansion)
eg $\binom{6}{4}\left(x^{2}\right)^{2}(3)^{4}, 15 \times 3^{4}, 14 x \times 15 \times 81\left(x^{2}\right)^{2}$

$17010 x^{5}$

A1

$R 1$

(M1)
eg $\binom{7}{r}\left(x^{2}\right)^{7-r}(3)^{r},\left(x^{2}\right)^{7}(3)^{0}+\left(x^{2}\right)^{6}(3)^{1}+\ldots$, Pascal's triangle to 7 th row
eg $\binom{7}{r}\left(x^{2}\right)^{7-r}(3)^{r},\left(x^{2}\right)^{7}(3)^{0}+\left(x^{2}\right)^{6}(3)^{1}+\ldots$, Pascal's
identifying correct term (may be indicated in expansion)
eg $\quad 6$ th term, $r=3,\binom{7}{3},\left(x^{2}\right)^{3}(3)^{4}$
correct working (may be seen in expansion)
eg $\binom{7}{4}\left(x^{2}\right)^{3}(3)^{4}, 35 \times 3^{4}$
correct term
$2835 x^{6}$
differentiating their term in x^{6}
eg $\quad\left(2835 x^{6}\right)^{\prime},(6)\left(2835 x^{5}\right)$

[^1]
METHOD 2

recognition of need to find x^{6} in $\left(x^{2}+3\right)^{7}$ (seen anywhere)
valid approach to find the terms in $\left(x^{2}+3\right)^{7}$
\qquad

Question 36
(a) (i) $t=2$

A1
N1
(ii) substitution of limits or function into formula or correct sum
eg $\quad \int_{0}^{8}|v| \mathrm{d} t, \int\left|v_{\mathrm{Q}}\right| \mathrm{d} t, \int_{0}^{2} v \mathrm{~d} t-\int_{2}^{4} v \mathrm{~d} t+\int_{4}^{6} v \mathrm{~d} t-\int_{6}^{8} v \mathrm{~d} t$
9.64782
distance $=9.65$ (metres)
A1
N2 [3 marks]
(b) correct approach
eg $\quad s=\int \sqrt{t}, \int_{0}^{k} \sqrt{t} \mathrm{~d} t, \int_{0}^{k}\left|v_{Q}\right| \mathrm{d} t$
correct integration
eg $\int \sqrt{t}=\frac{2}{3} t^{\frac{3}{2}}+c,\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{k}, \frac{2}{3} k^{\frac{3}{2}}$
equating their expression to the distance travelled by their P
eg $\frac{2}{3} k^{\frac{3}{2}}=9.65, \int_{0}^{k} \sqrt{t} \mathrm{~d} t=9.65$
5.93855
5.94 (seconds)

Question 37
(a) (i) $\quad q=2$
A1
N1
(ii) $\quad h=0$
A1 N1
(iii) $k=3$
A1
N1

Note: Accept $q=1, h=0$, and $k=3-\ln (2), 2.31$ as candidate may have rewritten $g(x)$ as equal to $3+\ln (x)-\ln (2)$.
(b) (i) 2.72409
2.72

A2
N2
(ii) recognizing area between $y=x$ and h equals 2.72
(M1)
eg

recognizing graphs of h and h^{-1} are reflections of each other in $y=x$
eg area between $y=x$ and h equals between $y=x$ and h^{-1}
$2 \times 2.72, \int_{0.111}^{3.31}\left(x-h^{-1}(x)\right) \mathrm{d} x=2.72$
5.44819
5.45

A1
(c) valid attempt to find d
eg difference in y-coordinates, $d=h(x)-x$
correct expression for d
eg $\quad\left(\ln \frac{1}{2} x+3\right)(\cos 0.1 x)-x$
valid approach to find when d is a maximum
(M1)
eg max on sketch of d, attempt to solve $d^{\prime}=0$

$$
0.973679
$$

$x=0.974$
A2
N4
substituting their x value into $h(x)$
(M1)
2.26938
$y=2.27$ A1

Question 38

METHOD 1 (displacement)

recognizing $s=\int v \mathrm{~d} t \quad$ (M1)
consideration of displacement at $t=2$ and $t=5$ (seen anywhere) M1
eg $\int_{0}^{2} v$ and $\int_{0}^{5} v$
Note: Must have both for any further marks.

```
correct displacement at t=2 and t=5 (seen anywhere)
-2.28318 (accept 2.28318), 1.55513
```

valid reasoning comparing correct displacementsR1
eg $\quad|-2.28|>|1.56|$, more left than right
2.28 (m) A1 N1

Note: Do not award the final $\boldsymbol{A 1}$ without the $\boldsymbol{R 1}$.

METHOD 2 (distance travelled)

```
recognizing distance }=\int|v|\textrm{d}
```

consideration of distance travelled from t=0 to 2 and t=2 to 5 (seen anywhere)M1

```
eg \(\quad \int_{0}^{2} v\) and \(\int_{2}^{5} v\)

Note: Must have both for any further marks.
```

correct distances travelled (seen anywhere)
2.28318, (accept -2.28318), 3.83832

```
valid reasoning comparing correct distance valuesR1eg \(\quad 3.84-2.28<2.28,3.84<2 \times 2.28\)
2.28 (m) ..... A1
Note: Do not award the final \(\boldsymbol{A 1}\) without the \(\boldsymbol{R 1}\).
(a) evidence of valid approach
eg \(\quad f(x)=0, y=0\)
2.73205
\[
p=2.73
\]
A1
(b) (i) \(1.87938,8.11721\)
\((1.88,8.12)\)
A2 N2
(ii) rate of change is 0 (do not accept decimals)
A1 N1 [3 marks]
(c) (i) METHOD 1 (using GDC)
valid approach
eg \(\quad f^{\prime \prime}=0, \max / \min\) on \(f^{\prime}, x=-1\)
sketch of either \(f^{\prime}\) or \(f^{\prime \prime}\), with max/min or root (respectively)
(A1)
\(x=1\)
A1
N1
Substituting their \(x\) value into \(f\)
eg \(\quad f(1)\)
\(y=4.5\)
METHOD 2 (analytical)
\(f^{\prime \prime}=-6 x^{2}+6\)
A1
setting \(f^{\prime \prime}=0\)
\(x=1\)
A1
substituting their \(x\) value into \(f\)
eg \(\quad f(1)\)
\(y=4.5\)
A1
N1
(ii) recognizing rate of change is \(f^{\prime}\)

\section*{(M1)}
eg \(\quad y^{\prime}, f^{\prime}(1)\)
rate of change is 6
A1 N2 [7 marks]
(d) attempt to substitute either limits or the function into formula
(M1) involving \(f^{2}\) (accept absence of \(\pi\) and/or \(\mathrm{d} x\) )
eg \(\quad \pi \int\left(-0.5 x^{4}+3 x^{2}+2 x\right)^{2} \mathrm{~d} x, \int_{1}^{1.88} f^{2}\)
128.890
volume \(=129\)
A2 [3 marks]
[Total 15 marks]
Question 40
(a) valid approach
eg \(\quad f(p)=4\), intersection with \(y=4, \pm 2.32\)
2.32143
\(p=\sqrt{\mathrm{e}^{2}-2}\) (exact), 2.32
A1 N2 [2 marks]
(b) attempt to substitute either their limits or the function into volume formula (must involve \(f^{2}\), accept reversed limits and absence of \(\pi\) and/or \(\mathrm{d} x\), but do not accept any other errors)
eg \(\quad \int_{-2.32}^{2.32} f^{2}, \pi \int\left(6-\ln \left(x^{2}+2\right)\right)^{2} \mathrm{~d} x, 105.675\)
331.989
volume \(=332\)

Question 41
(a) \(t=\frac{2}{3}\) (exact), \(0.667, t=4 \quad\) A1A1
(b) recognizing that \(v\) is decreasing when \(a\) is negative
eg \(\quad a<0,3 t^{2}-14 t+8 \leq 0\), sketch of \(a\)
correct interval
A1
eg \(\quad \frac{2}{3}<t<4\)
(c) valid approach (do not accept a definite integral)
eg \(\quad v=\int a\)
correct integration (accept missing c)
\(t^{3}-7 t^{2}+8 t+c\)
substituting \(t=0, v=3\) (must have \(c\) )
eg \(\quad 3=0^{3}-7\left(0^{2}\right)+8(0)+c, c=3\)
\(v=t^{3}-7 t^{2}+8 t+3\)
A1 N6
[6 marks]
(d) recognizing that \(v\) increases outside the interval found in part (b)
eg \(\quad 0<t<\frac{2}{3}, 4<t<5\), diagram
one correct substitution into distance formula
eg \(\quad \int_{0}^{\frac{2}{3}}|v|, \int_{4}^{5}|v|, \int_{\frac{2}{3}}^{4}|v|, \int_{0}^{5}|v|\)
one correct pair
eg 3.13580 and 11.0833, 20.9906 and 35.2097
14.2191

A1
N2
\(d=14.2\) (m)

Question 42
(a) initial velocity when \(t=0\)
(M1)
eg \(\quad v(0)\)
\(v=7\left(\mathrm{~ms}^{-1}\right)\)
A1
[2 marks]
(b) recognizing maximum speed when \(|v|\) is greatest
eg minimum, maximum, \(v^{\prime}=0\)
one correct coordinate for minimum
(A1)
eg 6.37896, -24.6571
\(24.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\)
recognizing \(a=v^{\prime}\)
(M1)
eg \(\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}\), correct derivative of first term
identifying when \(a=0\)
(M1)
eg turning points of \(v, t\)-intercepts of \(v^{\prime}\)
3
A1
N3
[3 marks]
(M1)
(A1)

A2
N3
[4 marks]
(A1)
eg \(\quad \int_{0}^{7}|v|, \int_{0}^{0.8638} v \mathrm{~d} t-\int_{0.8638}^{7} v \mathrm{~d} t, \int\left|7 \cos x-5 x^{\cos x}\right| \mathrm{d} x, 3.32+60.6\)
63.8874
63.9 (metres)

A2
[3 marks]

Question 43
(a) valid approach
eg \(\quad f(x)=0, \mathrm{e}^{x}=180\) or \(0 \ldots\)
1.14472
\(x=\ln \pi\) (exact), 1.14
A1
N2 [2 marks]
(b) attempt to substitute either their limits or the function into formula involving \(f^{2}\)
eg \(\quad \int_{0}^{1.14} f^{2}, \pi \int\left(\sin \left(\mathrm{e}^{x}\right)\right)^{2} \mathrm{~d} x, 0.795135\)
2.49799
volume \(=2.50\)
A2 N3 [3 marks]
[Total: 5 marks]
Question 44
(a) \(-0.394791,13\)
A \((-0.395,13)\)
A1A1
(b) (i) 13
A1 N1
(ii) \(2 \pi, 6.28\)
(c) valid approach
eg recognizing that amplitude is \(p\) or shift is \(r\)
\(f(x)=13 \cos (x+0.395)\) (accept \(p=13, r=0.395\) )
A1A1
N3
Note: Accept any value of \(r\) of the form \(0.395+2 \pi k, k \in \mathbb{Z}\)
(d) recognizing need for \(d^{\prime}(t)\)
eg \(\quad-12 \sin (t)-5 \cos (t)\)
correct approach (accept any variable for \(t\) )
eg \(\quad-13 \sin (t+0.395)\), sketch of \(d^{\prime},(1.18,-13), t=4.32\)
maximum speed \(=13\left(\mathrm{cms}^{-1}\right) \quad\) A1
(e) recognizing that acceleration is needed
\[
\text { eg } \quad a(t), d^{\prime \prime}(t)
\]
correct equation (accept any variable for \(t\) )
eg \(\quad a(t)=-2,\left|\frac{\mathrm{~d}}{\mathrm{~d} t}\left(d^{\prime}(t)\right)\right|=2,-12 \cos (t)+5 \sin (t)=-2\)
valid attempt to solve their equation
(M1)
eg sketch, 1.33
1.02154
1.02

A2
N3

\section*{Question 45}
. (a) attempt to substitute correct limits or the function into formula involving \(f^{2}\)
eg \(\quad \pi \int_{-2}^{2} y^{2} \mathrm{~d} y, \pi \int\left(\sqrt{\frac{4-x^{2}}{8}}\right)^{2} \mathrm{~d} x\)
4.18879
volume \(=4.19, \frac{4}{3} \pi \quad(\) exact \()\left(\mathrm{m}^{3}\right)\)
A2

Note: If candidates have their GDC incorrectly set in degrees, award \(\boldsymbol{M}\) marks where appropriate, but no \(\boldsymbol{A}\) marks may be awarded. Answers from degrees are \(p=13.1243\) and \(q=26.9768\) in (b)(i) and 12.3130 or 28.3505 in (b)(ii).
(b) (i) recognizing the volume increases when \(g^{\prime}\) is positive
eg \(\quad g^{\prime}(t)>0\), sketch of graph of \(g^{\prime}\) indicating correct interval
1.73387, 3.56393
\(p=1.73, q=3.56\)
A1A1
(ii) valid approach to find changel in volume
eg \(\quad g(q)-g(p), \int_{p}^{q} g^{\prime}(t) \mathrm{d} t\)
3.74541
total amount \(=3.75\left(\mathrm{~m}^{3}\right)\)
continued...
(c)

Note: There may be slight differences in the final answer, depending on which values candidates carry through from previous parts. Accept answers that are consistent with correct working.
recognizing when the volume of water is a maximum
eg maximum when \(t=q, \int_{0}^{q} g^{\prime}(t) \mathrm{d} t\)
valid approach to find maximum volume of water
eg \(\quad 2.3+\int_{0}^{q} g^{\prime}(t) \mathrm{d} t, 2.3+\int_{0}^{p} g^{\prime}(t) \mathrm{d} t+3.74541,3.85745\)
correct expression for the difference between volume of container and maximum value
eg \(\quad 4.18879-\left(2.3+\int_{0}^{q} g^{\prime}(t) \mathrm{d} t\right), 4.19-3.85745\)
0.331334
\(0.331\left(\mathrm{~m}^{3}\right)\)

Question 46
(a) valid approach
eg \(\quad v(t)=0\), sketch of graph
2.95195
\(t=\log _{1.4} 2.7\) (exact), \(t=2.95\) (s)
A1 N2
[2 marks]
(b) valid approach
(M1)
eg \(\quad a(t)=v^{\prime}(t), v^{\prime}(2)\)
0.659485
\(a(2)=1.96 \ln 1.4\) (exact), \(a(2)=0.659\left(\mathrm{~ms}^{-2}\right)\)
A1 N2
[2 marks]
(c) correct approach
eg \(\quad \int_{0}^{5}|v(t)| \mathrm{d} t, \int_{0}^{2.95}(-v(t)) \mathrm{d} t+\int_{2.95}^{5} v(t) \mathrm{d} t\)
5.3479
distance \(=5.35(\mathrm{~m})\)
A2
N3
[3 marks]

Question 47
(a) valid approach
eg \(\quad s_{A}(0), s(0), t=0\)
\(15(\mathrm{~cm}) \quad\) A1 A1 N2 [2 marks]
(b) valid approach
eg \(\quad s_{A}=0, s=0,6.79321,14.8651\)
2.46941
\(t=2.47\) (seconds)
(c) recognizing when change in direction occurs
eg slope of \(s\) changes sign, \(s^{\prime}=0\), minimum point, \(10.0144,(4.08,-4.66)\)
4.07702
\(t=4.08\) (seconds)
(d) METHOD 1 (using displacement)
correct displacement or distance from P at \(t=3\) (seen anywhere)
eg -2.69630, 2.69630
valid approach
eg \(15+2.69630, s(3)-s(0),-17.6963\)
17.6963
17.7 (cm)

A1
METHOD 2 (using velocity)
attempt to substitute either limits or the velocity function into distance
formula involving \(|v|\)
eg \(\quad \int_{0}^{3}|v| \mathrm{d} t, \int\left|-1-18 t^{2} \mathrm{e}^{-0.8 t}+4.8 t^{3} \mathrm{e}^{-0.8 t}\right|\)
17.6963
17.7 (cm)

A2
N2
[3 marks]
(e) (i) recognize the need to integrate velocity
eg \(\int v(t)\)
\(8 t-\frac{2 t^{2}}{2}+c\) (accept \(x\) instead of \(t\) and missing \(c\) )
substituting initial condition into their integrated expression
(must have \(c\) )
eg \(\quad 15=8(0)-\frac{2(0)^{2}}{2}+c, c=15\)
\(s_{B}(t)=8 t-t^{2}+15 \quad\) A1
(ii) valid approach
eg \(s_{A}=s_{B}\), sketch, \((9.30404,2.86710)\)
9.30404
\(t=9.30\) (seconds)
A1
Note: If candidates obtain \(s_{B}(t)=8 t-t^{2}\) in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last A1 in part (e)(ii) only if both solutions are given.

Question 48
(a) valid approach
(M1)
eg \(\quad f(10)\)
235.402

235 (fish) (must be an integer)
A1 N2
[2 marks]
(b) recognizing rate of change is derivative
(M1)
eg rate \(=f^{\prime}, f^{\prime}(10)\), sketch of \(f^{\prime}, 35\) (fish per month)
35.9976
36.0 (fish per month)

A1 N2 [2 marks]
(c) valid approach
(M1)
eg maximum of \(f^{\prime}, f^{\prime \prime}=0\)
15.890
15.9 (months)

A1 N2 [2 marks]

Question 49
(a) valid approach
eg \(\quad f(x)=0,4-2 \mathrm{e}^{x}=0\)
0.693147
\(x=\ln 2\) (exact), \(0.693 \quad\) A1
(b) attempt to substitute either their correct limits or the function into formula
involving \(f^{2}\)
eg \(\quad \int_{0}^{0.693} f^{2}, \quad \pi \int\left(4-2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x, \int_{0}^{\ln 2}\left(4-2 \mathrm{e}^{x}\right)^{2}\)
3.42545
volume \(=3.43 \quad\) A2
N3 [3 marks]

Total [5 marks]
Question 50
(a) attempt to find \(f^{\prime}(8)\)
eg \(f^{\prime}(x), y^{\prime},-16 x^{-2}\)
-0.25 (exact)
A1
(b) \(\quad \boldsymbol{u}=\binom{4}{-1}\) or any scalar multiple

A2
(c) correct scalar product and magnitudes
scalar product \(=1 \times 4+1 \times-1 \quad(=3)\)
magnitudes \(=\sqrt{1^{2}+1^{2}}, \sqrt{4^{2}+(-1)^{2}}(=\sqrt{2}, \sqrt{17})\)
substitution of their values into correct formula
eg \(\frac{4-1}{\sqrt{1^{2}+1^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{-3}{\sqrt{2} \sqrt{17}}, 2.1112,120.96^{\circ}\)
1.03037, \(59.0362^{\circ}\)
angle \(=1.03,59.0^{\circ}\)
A1
(d) (i) attempt to form composite \((f \circ f)(x)\)
eg \(f(f(x)), f\left(\frac{16}{x}\right), \frac{16}{f(x)}\)
correct working
eg \(\frac{16}{16 / x}, 16 \times \frac{x}{16}\)
\((f \circ f)(x)=x\)
(ii) \(f^{-1}(x)=\frac{16}{x}\left(\right.\) accept \(y=\frac{16}{x}, \frac{16}{x}\) )

Note: Award \(\boldsymbol{A O}\) in part (ii) if part (i) is incorrect.
Award \(\boldsymbol{A} 0\) in part (ii) if the candidate has found \(f^{-1}(x)=\frac{16}{x}\) by interchanging \(x\) and \(y\).
(iii) METHOD 1
recognition of symmetry about \(y=x\)
eg

eg \(2 \times 1.03,2 \times 59.0\)
\(2.06075,118.072^{\circ}\)
2.06 (radians) (118 degrees)

\section*{METHOD 2}
finding direction vector for tangent line at \(x=2\)
eg \(\binom{-1}{4},\binom{1}{-4}\)
substitution of their values into correct formula (must be from vectors) (M1)
eg \(\frac{-4-4}{\sqrt{1^{2}+4^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{8}{\sqrt{17} \sqrt{17}}\)
\(2.06075,118.072^{\circ}\)
2.06 (radians) (118 degrees)

A1 N2

\section*{METHOD 3}
using trigonometry to find an angle with the horizontal
(M1)
eg \(\tan \theta=-\frac{1}{4}, \tan \theta=-4\)
finding both angles of rotation
eg \(\quad \theta_{1}=0.244978,14.0362^{\circ}, \theta_{2}=1.81577,104.036^{\circ}\)
\(2.06075,118.072^{\circ}\)
2.06 (radians) (118 degrees)
A1

\section*{Question 51}
(a)


A1A1A1
Note: Only if the shape is approximately correct with exactly 2 maximums and 1 minimum on the interval \(0 \leq x \leq 1\), award the following:
A1 for correct domain with both endpoints within circle and oval.
A1 for passing through the other \(x\)-intercepts within the circles.
A1 for passing through the three turning points within circles (ignore \(x\)-intercepts and extrema outside of the domain).
(b) evidence of reasoning (may be seen on graph)
eg \(f^{\prime \prime}=0,(0.524,0),(0.785,0)\)
\(0.523598,0.785398\)
\[
x=0.524\left(=\frac{\pi}{6}\right), x=0.785\left(=\frac{\pi}{4}\right)
\]

A1A1

Note: Award M1A1AO if any solution outside domain \((\mathrm{eg} x=0)\) is also included.
(c) \(0.524<x<0.785\left(\frac{\pi}{6}<x<\frac{\pi}{4}\right)\)

Note: Award A1 if any correct interval outside domain also included, unless additional solutions already penalized in (b).
Award \(\boldsymbol{A O}\) if any incorrect intervals are also included.
(a) choosing product rule
eg \(\quad u v^{\prime}+v u^{\prime},\left(x^{2}\right)^{\prime}\left(\mathrm{e}^{3 x}\right)+\left(\mathrm{e}^{3 x}\right)^{\prime} x^{2}\)
correct derivatives (must be seen in the rule)
A1A1
eg \(2 x, 3 \mathrm{e}^{3 x}\)
\(f^{\prime}(x)=2 x \mathrm{e}^{3 x}+3 x^{2} \mathrm{e}^{3 x}\)
A1 \(\begin{array}{r}\text { N4 } \\ \text { [4 marks] }\end{array}\)
(M1)

\(a=-0.667\left(=-\frac{2}{3}\right)\) (accept \(x=-0.667\) )
A1

Total [6 marks]
Question 53
(a) recognizing that \(v=\int a\)

\section*{(M1)}
correct integration
eg \(\quad-120 \cos (2 t)+c\)
attempt to find \(c\) using their \(v(t)\)
eg \(\quad-120 \cos (0)+c=140\)
\(v(t)=-120 \cos (2 t)+260\)
(b) evidence of valid approach to find time taken in first stage
eg graph, \(-120 \cos (2 t)+260=375\)
\(k=1.42595\)
attempt to substitute their \(v\) and/or their limits into distance formula
eg \(\quad \int_{0}^{1.42595}|v|, \int 260-120 \cos (2 t), \int_{0}^{k}(260-120 \cos (2 t)) \mathrm{d} t\)
353.608
distance is 354 (m)

A1
[4 marks]
(M1)
(c) recognizing velocity of second stage is linear (seen anywhere)
eg graph, \(s=\frac{1}{2} h(a+b), v=m t+c\)
valid approach
(M1)
eg \(\quad \int v=353.608\)
correct equation
(A1)
eg \(\quad \frac{1}{2} h(375+500)=353.608\)
time for stage two \(=0.808248(0.809142\) from 3 sf\()\)
A2
2.23420 (2.23914 from 3 sf )
2.23 (seconds) (2.24 from 3 sf )

A1

Question 54
(a) evidence of valid approach
\[
\text { eg } \quad f(x)=0, y=0
\]
1.13843
\(p=1.14\)
A1 N2
[2 marks]
(b) (i) \(0.562134,16.7641\)
\((0.562,16.8)\)
A2 N2
(ii) valid approach
(M1)
eg tangent at maximum point is horizontal, \(f^{\prime}=0\)
\(y=16.8\) (must be an equation)
A1 N2
[4 marks]
(c) (i) METHOD 1 (using GDC)
valid approach
M1
eg \(\quad f^{\prime \prime}=0, \mathrm{max} / \mathrm{min}\) on \(f^{\prime}, x=-3\)
sketch of either \(f^{\prime}\) or \(f^{\prime \prime}\), with max/min or root (respectively)
(A1)
\(x=3 \quad\) A1
N1
(M1)
eg \(\quad f(3)\)
\(y=-225\) (exact) (accept \((3,-225))\)

\section*{METHOD 2 (analytical)}
\[
\begin{array}{lcc}
f^{\prime \prime}=12 x^{2}-108 & \text { A1 } \\
\text { valid approach } & \text { (M1) } \\
\text { eg } f^{\prime \prime}=0, x= \pm 3 & \text { A1 } & \text { N1 } \\
x=3 & \text { (M1) } & \\
\text { substituting their } x \text { value into } f \\
\text { eg } f(3) & \text { A1 } & \text { N1 } \\
y=-225 \text { (exact) (accept }(3,-225)) & \text { (M1) } & \\
\text { (ii) } \begin{array}{l}
\text { recognizing rate of change is } f^{\prime} \\
\text { eg } y^{\prime}, f^{\prime}(3) \\
\text { rate of change is }-156 \text { (exact) }
\end{array} & \text { A1 } & \text { N2 } \\
\end{array}
\]
(d) attempt to substitute either their limits or the function into volume formula
eg \(\quad \int_{1.14}^{3} f^{2}, \pi \int\left(x^{4}-54 x^{2}+60 x\right)^{2} \mathrm{~d} x, 25752.0\)
80902.3
volume \(=80900\)
A2 N3
[3 marks]
Total [16 marks]
Question 55
(a) attempt to form composite (in any order)
eg \(\quad f\left(x^{4}-3\right),(x-8)^{4}-3\)
\[
h(x)=x^{4}-11
\]
(b) recognizing that the gradient of the tangent is the derivative
eg \(h^{\prime}\)
correct derivative (seen anywhere)
\(h^{\prime}(x)=4 x^{3}\)
correct value for gradient of \(f\) (seen anywhere)
\(f^{\prime}(x)=1, m=1\)
setting their derivative equal to 1
\(4 x^{3}=1\)
0.629960
\(x=\sqrt[3]{\frac{1}{4}}\) (exact), 0.630
A1 N3
[5 marks]```


[^0]:    Note: Award $A 1$ for both endpoints in circles,

[^1]:    $17010 x^{5}$

