Subject – Math (Standard Level))
Topic - Circular trigonometry	
Year - Nov 2011 – Nov 2019	
Paper -2	

(A1)	
A1	N2 [2 marks]
(A1)	
(A1)	
M1	
A1	N2 [4 marks]
	[
(M1)	
(A1)	
A1	
AI	N2 [4 marks]
	AI (A1) (A1) MI A1 (M1) (A1) A1

Total [6 marks]

	te: accept answers given in degrees, and minutes.		
(a)	evidence of choosing sine rule e.g. $\frac{\sin A}{a} = \frac{\sin B}{b}$	(M1)	
	e.g. $\frac{a}{a} = \frac{b}{b}$		
	correct substitution	A1	
	e.g. $\frac{\sin\theta}{10} = \frac{\sin 30^{\circ}}{7}, \ \sin\theta = \frac{5}{7}$		
	$A\hat{C}B = 45.6^{\circ}, \ A\hat{C}B = 134^{\circ}$	AIAI	N1N1
	Note: If candidates only find the acute angle in part (a), award no mar	ks for (b).	[4 marks]
(b)	Attempt to substitute their larger value into angle sum of triangle <i>e.g.</i> $180^\circ - (134.415^\circ + 30^\circ)$	(M1)	
	ABC = 15.6°	A1	N2
			[2 marks]
		Total	l [6 marks]

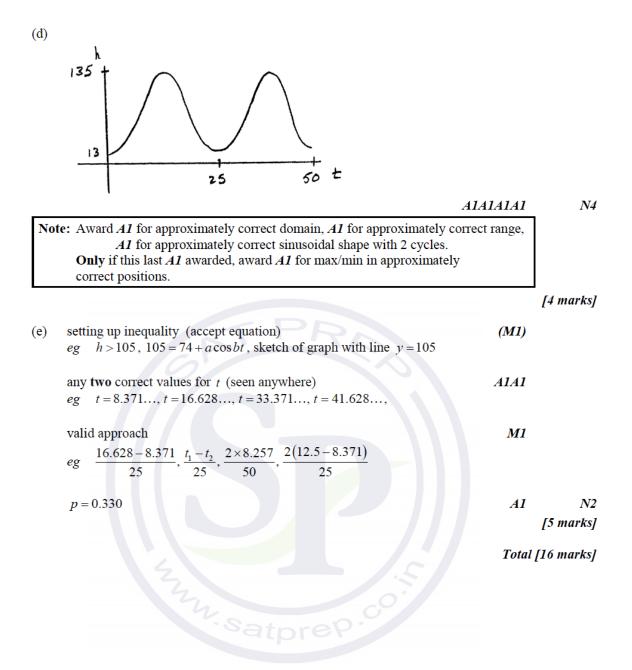
(a)	(i) evidence of valid approach <i>e.g.</i> choosing cosine rule		(M1)
	correct substitution <i>e.g.</i> $6^2 = (5p)^2 + (4p)^2 - 2 \times (4p) \times (5p) \cos 0.7$	(A1)	
	simplification e.g. $36 = 25p^2 + 16p^2 - 40p^2 \cos 0.7$	Al	
	$p^2(41 - 40\cos 0.7) = 36$	AG	NØ
	(ii) 1.85995 p = 1.86	A1	NI
	Note: Award <i>A</i> θ for $p = \pm 1.86$, <i>i.e.</i> not rejecting the negative value.		
			[4 marks]
(b)	BD = 6	A1	N1 [1 mark]
(c)	evidence of valid approach e.g. choosing sine rule	(M1)	
	correct substitution e.g. $\frac{\sin A\hat{D}B}{4p} = \frac{\sin 0.7}{6}$	Al	
	acute $\hat{ADB} = 0.9253166$ $\pi - 0.9253166 = 2.216275$	(A1)	
	ADB = 2.22	<i>A1</i>	N3 [4 marks]

(d)	(i)	evidence of valid approach <i>e.g.</i> recognize isosceles triangle, base angles equal	(M1)	
		$\pi - 2(0.9253)$	A1	
		CBD=1.29	AG	NØ
	(ii)	area of sector BCD e.g. $0.5 \times (1.29) \times (6)^2$	(A1)	
		area of triangle BCD e.g. $0.5 \times (6)^2 \sin 1.29$	(A1)	
		evidence of subtraction 5.92496	M1	
		5.937459 area = 5.94	A1	N3 [6 marks]
			Total	[15 marks]
Ques (a) (b)		$e = 65^{\circ}$ ence of choosing sine rule	A1 (M1)	N1 [1 mark]
	e.g.	ct substitution $\frac{PR}{\sin 45^{\circ}} = \frac{9}{\sin 65^{\circ}}$ 1854078	A1	
	PR=7		<i>A1</i>	N2 [3 marks]
(c)		ct substitution rea = $\frac{1}{2} \times 9 \times 7.02 \times \sin 70^{\circ}$	(A1)	
	29.6	9273008		
	area	= 29.7	A1	N2 [2 marks]
			Tota	ul [6 marks]

(a)	correct substitution into cosine rule e.g. $PQ^2 = r^2 + r^2 - 2(r)(r)\cos(2\theta)$, $PQ^2 = 2r^2 - 2r^2(\cos(2\theta))$	A1	
	<i>e.g.</i> $PQ = r^{2} + r^{2} - 2(r)(r)\cos(2\theta)$, $PQ = 2r^{2} - 2r^{2}(\cos(2\theta))$ substituting $1 - 2\sin^{2}\theta$ for $\cos 2\theta$ (seen anywhere) <i>e.g.</i> $PQ^{2} = 2r^{2} - 2r^{2}(1 - 2\sin^{2}\theta)$	<i>A1</i>	
	working towards answer e.g. $PQ^2 = 2r^2 - 2r^2 + 4r^2 \sin^2 \theta$	(A1)	
	recognizing $2r^2 - 2r^2 = 0$ (including crossing out) (seen anywhere) e.g. $PQ^2 = 4r^2 \sin^2 \theta$, $PQ = \sqrt{4r^2 \sin^2 \theta}$	A1	
	$PQ = 2r\sin\theta$	AG	NØ
(b)	$PRQ=r \times 2\theta (\text{seen anywhere})$	(A1)	[4 marks]
	correct set up e.g. $1.3 \times 2r \sin \theta - r \times (2\theta) = 0$	A1	
	attempt to eliminate r	(M1)	
	correct equation in terms of the one variable θ e.g. $1.3 \times 2\sin\theta - 2\theta = 0$	(A1)	
	1.221496215 $\theta = 1.22$ (accept 70.0° (69.9)	Al	N3
(c)	(i) y_{0}		[5 marks]
	Note: Award <i>A1</i> for approximately correct shape, <i>A1</i> for <i>x</i> -intercept in correct position, <i>A1</i> for domain. Do not penalise if sketch starts		N3 Itely
	(ii) 1.221496215 $\theta = 1.22$	A1	NI
			[4 marks]

(d)	evidence of appropriate approach (may be seen earlier) <i>e.g.</i> $2\theta < 2.6\sin\theta$, $0 < f(\theta)$, showing positive part of sketch	M2	
	$0 < \theta < 1.221496215$		
	$0 < \theta = 1.22$ (accept $\theta < 1.22$)	AI	N1 [3 marks]
0		Total	[16 marks]
Quest	tion 6		
(a)	(i) $a = 5$ (accept -5)	A1	N1
	(ii) $c = 3$ (accept $c = 7$, if $a = -5$)	<i>A1</i>	N1
Not	te: Accept other correct values of c , such as $11, -5$, etc.		
		[2	? marks]
(b)	attempt to find period	(M1)	
	<i>e.g.</i> 8, $b = \frac{2\pi}{\text{period}}$		
	0.785398		
	$b = \frac{2\pi}{8}$ (exact), $\frac{\pi}{4}$, 0.785 [0.785, 0.786] (do not accept 45)	<i>A1</i>	N2
		[2	? marks]
(c)	valid approach	(M1)	
	<i>e.g.</i> $f(x) = 0$, symmetry of curve		
	x = 5 (accept (5, 0))	A1	N2
		[2	? marks]
		Total [0	ó marks]

(a)	METHOD 1		
	choosing cosine rule (must have cos in it) e.g. $c^2 = a^2 + b^2 - 2ab \cos C$	(M1)	
	correct substitution (into rhs) e.g. $20^2 + 20^2 - 2(20)(20)\cos 1.5$, AB = $\sqrt{800 - 800\cos 1.5}$	<i>A1</i>	
	AB = 27.26555		
	AB = 27.3 [27.2, 27.3]	<i>A1</i>	N2 [3 marks]
	METHOD 2		
	choosing sine rule e.g. $\frac{\sin A}{a} = \frac{\sin B}{b}$, $\frac{AB}{\sin O} = \frac{AO}{\sin B}$	(M1)	
	correct substitution e.g. $\frac{AB}{\sin 1.5} = \frac{20}{\sin(0.5(\pi - 1.5))}$	A1	
	AB = 27.26555 AB = 27.3 [27.2, 27.3]	A1	N2 [3 marks]
(b)	correct substitution into area formula <i>e.g.</i> $\frac{1}{2}(20)(20)\sin 1.5$, $\frac{1}{2}(20)(27.2655504)\sin(0.5(\pi - 1.5))$ area = 199.498997 (accept 199.75106 = 200, from using 27.3)	<i>A</i> 1	
	area = 199 [199,200]	<i>A1</i>	N1 [2 marks]


(c)	appropriate method to find angle AOC <i>e.g.</i> $2\pi - 1.5 - 2.4$	(M1)	
	correct substitution into arc length formula e.g. $(2\pi - 3.9) \times 20$, 2.3831853×20	(A1)	
	arc length = 47.6637		
	arc length = 47.7 (47.6, 47.7] (<i>i.e.</i> do not accept 47.6)	A1	Nž
Not	es: Candidates may misread the question and use AOC = 2.4. If worki award <i>M0</i> then <i>A0MRA1</i> for the answer 48. Do not then penalize <i>A</i> part (d) which, if used, leads to the answer 679.498		
	However , if they use the prematurely rounded value of 2.4 for AOO for premature rounding for the answer 48 in (c). Do not then penalize		
			[3 marks]
(d)	calculating sector area using their angle AOC	(A1)	
	<i>e.g.</i> $\frac{1}{2}(2.38)(20^2)$, 200(2.38), 476.6370614		
	shaded area = their area of triangle $AOB + their$ area of sector <i>e.g.</i> 199.4989973+ 476.6370614, 199 + 476.637	(M1)	
	shaded area = 676.136 (accept 675.637 = 676 from using 199)		
	shaded area = 676 [676, 677],	A1	N2 [3 marks]
(e)	dividing to find number of cans $e.g. \frac{676}{140}, 4.82857$	(M1)	
	5 cans must be purchased	(A1)	
	multiplying to find cost of cans	(M1)	
	e.g. $5(32), \frac{676}{140} \times 32$		
	140		
	cost is 160 (dollars)	A1	NS
		A1	N3 [4 marks]

(a)	evidence of choosing cosine rule $eg c^2 = a^2 + b^2 - 2ab\cos C$, $CD^2 + AD^2 - 2 \times CD \times AD\cos D$	(M1)	
	correct substitution eg $11.5^2 + 8^2 - 2 \times 11.5 \times 8 \cos 104$, 196.25 - 184 cos 104	A1	
	AC = 15.5(m)	A1	N2 [3 marks]
(b)	(i) METHOD 1 evidence of choosing sine rule $eg = \frac{\sin A}{\sin A} = \frac{\sin B}{\sin A}, \frac{\sin A\hat{C}D}{\sin A} = \frac{\sin D}{\sin A}$	(M1)	
	a b AD AC correct substitution	A1	
	$eg \frac{\sin A\hat{C}D}{8} = \frac{\sin 104}{15.516}$ $A\hat{C}D = 30.0^{\circ}$	Al	N2
	METHOD 2 evidence of choosing cosine rule $eg c^2 = a^2 + b^2 - 2ab\cos C$	(M1)	
	correct substitution $eg = 8^2 = 11.5^2 + 15.516^2 - 2(11.5)(15.516)\cos C$ $\hat{ACD} = 30.0^\circ$	A1 A1	N2
	(ii) subtracting their \hat{ACD} from 73 eg 73 - \hat{ACD} , 70 - 30.017	(M1)	
	$\hat{ACB} = 43.0^{\circ}$	<i>A1</i>	N2 [5 marks]
(c)	correct substitution $eg \text{area } \Delta \text{ADC} = \frac{1}{2}(8)(11.5)\sin 104$	(A1)	
	area = 44.6 (m^2)	A1	N2 [2 marks]
(d)	attempt to subtract eg circle – ABCD, $\pi r^2 - \Delta ADC - \Delta ACB$	(M1)	
	area $\triangle ACB = \frac{1}{2}(15.516)(14)\sin 42.98 (= 74.0517)$	(A1)	
	correct working	A1	
	$eg = \pi(8)^2 - 44.6336 \frac{1}{2}(15.516)(14)\sin 42.98, \ 64\pi - 44.6 - 74.1$		
	shaded area is 82.4 (m^2)	<i>A1</i>	N3 [4 marks]

Total [14 marks]

(a)	valid approach eg 13 + diameter, 13+122	(M1)	
	maximum height = 135 (m)	A1	N2 [2 marks]
(b)	(i) $\text{period} = \frac{60}{2.4}$	A1	
	period = 25 (minutes)	AG	NØ
	(ii) $b = \frac{2\pi}{25}$ (= 0.08 π)	A1	N1 [2 marks]
	T PD		[2 marks]
(c)	METHOD 1 valid approach eg max-74, $ a = \frac{135-13}{2}$, 74-13	(M1)	
	a = 61 (accept $a = 61$)	(A1)	
	<i>a</i> = -61	A1	N2 [3 marks]
	METHOD 2		
	attempt to substitute valid point into equation for <i>h</i> eg $135 = 74 + a \cos\left(\frac{2\pi \times 12.5}{25}\right)$	(M1)	
	correct equation eg $135 = 74 + a \cos(\pi), 13 = 74 + a$	(A1)	
	a = -61	A1	N2 [3 marks]

[3 marks]

(a)	correct substitution into area formula $eg = \frac{1}{2}(18x)\sin 50$	(A1)	
	setting their area expression equal to 80 $eg = 9x \sin 50 = 80$	(M1)	
	<i>x</i> = 11.6	A1	N2 [3 marks]
(b)	evidence of choosing cosine rule eg $c^2 = a^2 + b^2 + 2ab\sin C$	(M1)	
	correct substitution into right hand side (may be in terms of x) $eg = 11.6^2 + 18^2 - 2(11.6)(18)\cos 50$	(A1)	
	BC =13.8	A1	N2 [3 marks]
		Tota	l [6 marks]

.,	triangle trigonometry	A1	
eg co	$0.81.4 = \frac{OC}{r}$		
OC = rc	os1.4	AG	N0 [1 mark]
	alue for BC		
eg B	C = $r \sin 1.4$, $\sqrt{r^2 - (r \cos 1.4)^2}$	(A1)	
area of A	$\Delta OBC = \frac{1}{2}r\sin 1.4 \times r\cos 1.4 \left(= \frac{1}{2}r^{2}\sin 1.4 \times \cos 1.4 \right)$	A1	
area of se	ector OAB = $\frac{1}{2}r^2 \times 1.4$ (= 0.7 r^2)	A1	
attempt t	o subtract in any order	(M1)	
eg se	ctor – triangle, $\frac{1}{2}r^2\sin 1.4 \times \cos 1.4 - 0.7r^2$		
correct e	-	<i>A1</i>	
<i>eg</i> 0.	$7r^2 - \frac{1}{2}r\sin 1.4 \times r\cos 1.4 = 25$		
attempt t	o solve their equation	(M1)	
<i>eg</i> sk	etch, writing as quadratic, $\frac{25}{0.616}$		
<i>r</i> = 6.37		<i>A1</i>	N4 [7 marks]
	ion to FT rule. Award $A1FT$ for a correct FT answer from a tic equation involving two trigonometric functions.	ı	
L		Tota	l [8 marks]

(a) evidence of choosing sine rule

$$eg \quad \frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b}$$

correct substitution (A1)
$$eg \quad \frac{\sin \hat{A}}{10.4} = \frac{\sin 1.058}{12.2}$$

$$BAC = 0.837$$
 A1 N2

[3 marks]

(M1)

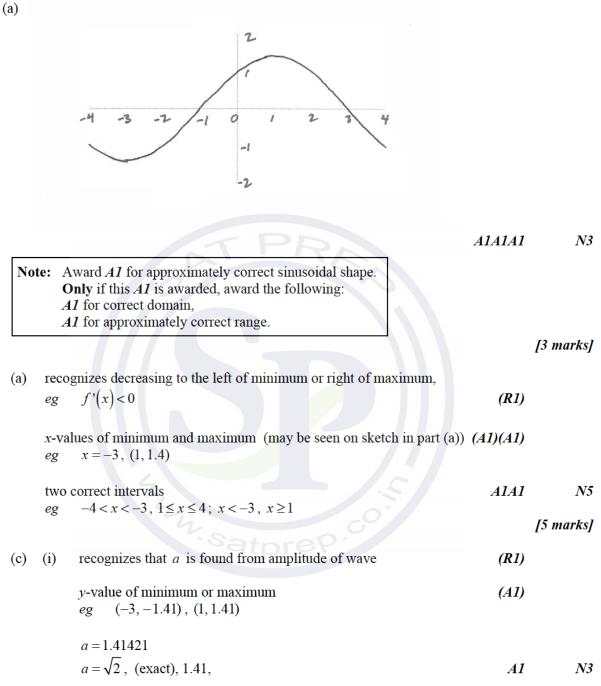
(b) METHOD 1

evidence of subtracting angles from π eg $ABC = \pi - A - C$	(M1)	
correct angle (seen anywhere)	<i>A1</i>	
$\hat{ABC} = \pi - 1.058 - 0.837, 1.246, 71.4^{\circ}$		
attempt to substitute into cosine or sine rule	(M1)	
correct substitution $eg = 12.2^2 + 10.4^2 - 2 \times 12.2 \times 10.4 \cos 71.4$, $\frac{AC}{\sin 1.246} = \frac{12.2}{\sin 1.058}$	(A1)	
AC = 13.3 (cm)	<i>A1</i>	<i>N3</i>
METHOD 2		
evidence of choosing cosine rule $eg \qquad a^2 = b^2 + c^2 - 2bc \cos A$	M1	
correct substitution <i>eg</i> $12.2^2 = 10.4^2 + b^2 - 2 \times 10.4b \cos 1.058$	(A2)	
AC = 13.3 (cm)	<i>A2</i>	N3
	[5	5 marks]
	•	-

(c) METHOD 1

valid approach	(M1)
$eg \qquad \cos A\hat{O}C = \frac{OA^2 + OC^2 - AC^2}{2 \times OA \times OC}, \ A\hat{O}C = 2 \times A\hat{B}C$	
correct working	(A1)
eg $13.3^2 = 7^2 + 7^2 - 2 \times 7 \times 7 \cos AOC$, $O = 2 \times 1.246$	
$\hat{AOC} = 2.492 (142.8^{\circ})$	(A1)
EITHER	
correct substitution for arc length (seen anywhere)	<i>A1</i>
<i>eg</i> 2.492 = $\frac{l}{7}$, $l = 17.4$, $14\pi \times \frac{142.8}{360}$	
subtracting arc from circumference	(M1)
$eg = 2\pi r - l, 14\pi - 17.4$	
OR	
attempt to find AOC reflex eg $2\pi - 2.492$, 3.79, 360 - 142.8	(M1)
	AI
correct substitution for arc length (seen anywhere) 217.2	AI
eg $l = 7 \times 3.79, 14\pi \times \frac{217.2}{360}$	
THEN	
arc ABC = 26.5	AI
METHOD 2	
valid approach to find AÔB or BÔC	(M1)
<i>eg</i> choosing cos rule, twice angle at circumference	
correct working for finding one value, AÔB or BÔC	(A1)
eg $\cos A\hat{OB} = \frac{7^2 + 7^2 - 12.2^2}{2 \times 7 \times 7}$, $A\hat{OB} = 2.116$, $B\hat{OC} = 1.6745$	
two correct calculations for arc lengths	
$eg \qquad AB = 7 \times 2 \times 1.058 (= 14.8135), 7 \times 1.6745 (= 11.7216)$	(A1)(A1)
adding their arc lengths (seen anywhere)	M1
<i>eg</i> $rAOB + rBOC$, 14.8135+11.7216, 7(2.116+1.6745)	M1
arc ABC = 26.5 (cm)	A1

[6 marks] Total [14 marks]


N4

N4

(a)	evidence of choosing cosine rule $eg = AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos(ABC)$	(M1)
	correct substitution into the right-hand side $eg = 6^2 + 10^2 - 2(6)(10)\cos 100^\circ$	(A1)
	AC = 12.5234 AC = 12.5 (cm)	A1 N2 [3 marks]
(b)	evidence of choosing a valid approach eg sine rule, cosine rule	(M1)
	correct substitution $eg = \frac{\sin(\hat{BCA})}{6} = \frac{\sin 100^{\circ}}{12.5}, \cos(\hat{BCA}) = \frac{(AC)^2 + 10^2 - 6^2}{2(AC)(10)}$	(A1)
	BCA = 28.1525 $BCA = 28.2^{\circ}$	A1 N2 [3 marks]
		Total [6 marks]
Quest	ion 14	
(a)	<i>t</i> = 5	<i>(A1)</i>
	correct substitution into formula eg $210\sin(0.5 \times 5 - 2.6) + 990$, P(5)	(A1)
	969.034982 969 (deer) (must be an integer)	A1 N3 [3 marks]
(b)	(i) evidence of considering derivative $eg P'$	(M1)
	104.475 104 (deer per month)	A1 N2
	(ii) (the deer population size is) increasing	A1 NI
		[3 marks]
		Total [6 marks]

Total [6 marks]

Questi	on 16			
(a) (i) correct substitution into arc length formula $eg = 0.7 \times 5$	(A1)		
	arc length $= 3.5$ (cm)	Al	N2	
(ii) valid approach eg 3.5+5+5, arc+2r	(M1)		
	perimeter = 13.5 (cm)	<i>A1</i>	N2 [4 marks]	
	orrect substitution into area formula	(AI)		
e	$g = \frac{1}{2}(0.7)(5)^2$			
а	rea = $8.75 (\mathrm{cm}^2)$	Al	N2 [2 marks]	
		Tota	l [6 marks]	
Questi	on 17			
(a)	correct substitution into area formula		<i>(A1)</i>	
	$eg = \frac{1}{2}(6)(8)\sin A = 16, \ \sin A = \frac{16}{24}$			
	correct working		<i>(A1)</i>	
	$eg \qquad A = \arcsin\left(\frac{2}{3}\right)$			
	A = 0.729727656, 2.41186499; (41.8103149°, 138.1896851°)			
	A = 0.730; 2.41		AIAI	N3
	(accept degrees <i>ie</i> 41.8°; 138°)			[4 marks]
	evidence of choosing cosine rule $eg = BC^2 = AB^2 + AC^2 - 2(AB)(AC)\cos A, a^2 + b^2 - 2ab\cos C$		(M1)	
	correct substitution into RHS (angle must be obtuse) $eg \qquad BC^2 = 6^2 + 8^2 - 2(6)(8)\cos 2.41, \ 6^2 + 8^2 - 2(6)(8)\cos 138^\circ,$		(A1)	
	$BC = \sqrt{171.55}$			
	BC = 13.09786			
	BC = 13.1 cm		<i>A1</i>	N2
				[3 marks]
			Total	[7 marks]

(a)
$$r = -4$$
 A2 N2

Note: Award A1 for r = 4.

[2 marks]

(b) (i) evidence of valid approach (M1)

$$eg \quad \frac{\max y \text{ value} - \min y \text{ value}}{2}$$
, distance from $y = 10$

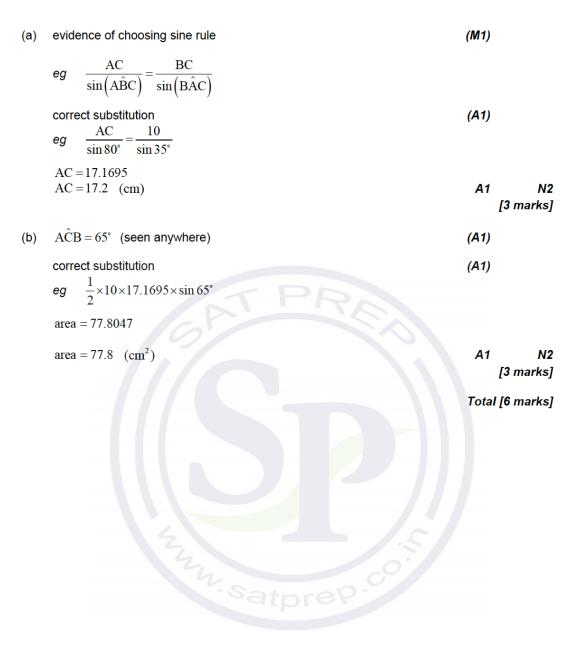
$$p=8$$
 A1 N2

(ii) valid approach (M1) eg period is 24, $\frac{360}{24}$, substitute a point into their f(x)

$$q = \frac{2\pi}{24} \left(\frac{\pi}{12}, \text{ exact}\right), 0.262 \text{ (do not accept degrees)}$$
 A1 N2

[4 marks]

(c) valid approach (M1) eg line on graph at y = 7, $8\cos\left(\frac{2\pi}{24}(x-4)\right)+10=7$ x = 11.46828 x = 11.5 (accept (11.5, 7)) A1 N2 [2 marks] Note: Do not award the final A1 if additional values are given. If an incorrect value of q leads to multiple solutions, award the final A1 only if all solutions within the domain are given. Total [8 marks]


(a)	correct substitution into formula $eg \qquad l = 1.2 \times 8$	(A1)	
	9.6 (cm)	A1 [N2 2 marks]
(b)	METHOD 1	1	1
	evidence of choosing cosine rule $eg = 2r^2 - 2 \times r^2 \times \cos(A\hat{O}B)$	(M1)	
	correct substitution into right hand side $eg = 8^2 + 8^2 - 2 \times 8 \times 8 \times \cos(1.2)$	(A1)	
	9.0342795 AB = 9.03 [9.03, 9.04] (cm)	Al	N2
	METHOD 2 evidence of choosing sine rule $eg = \frac{AB}{\sin(A\hat{O}B)} = \frac{OB}{\sin(O\hat{A}B)}$	(M1)	
	finding angle OAB or OBA (may be seen in substitution) $eg = \frac{\pi - 1.2}{2}, 0.970796$	<i>(A1)</i>	
	AB = 9.03 [9.03, 9.04] (cm)	<i>A1</i>	N2
		Į	3 marks]
(c)	correct working eg $P = 9.6 + 9.03$	<u>(</u> <i>A</i> 1)	
	18.6342 18.6 [18.6, 18.7] (cm)	A1	N2 [2 marks]
		Tota	1 [7 mantra]

Total [7 marks]

(a)	valid approach	(M1)	
	$eg = \frac{2-1}{2}, 2-1.5$		
	p = 0.5	<i>A1</i>	N2 [2 marks]
(b)	valid approach 1+2	(M1)	
	$eg = \frac{1+2}{2}$		
	r=1.5	A1	N2 [2 marks]
(c)	METHOD 1		
	valid approach (seen anywhere) $eg q = \frac{2\pi}{\text{period}}, \frac{2\pi}{\left(\frac{2\pi}{3}\right)}$	M1	
	period = $\frac{2\pi}{3}$ (seen anywhere)	(A1)	
	<i>q</i> = 3	A1	N2
	METHOD 2		
	attempt to substitute one point and their values for p and r into y	M1	
	eg $2 = 0.5 \sin\left(q\frac{\pi}{6}\right) + 1.5, \frac{\pi}{2} = 0.5 \sin\left(q1\right) + 1.5$		
	correct equation in q eg $q\frac{\pi}{6} = \frac{\pi}{2}, q\frac{\pi}{2} = \frac{3\pi}{2}$	(A1)	
	q = 3	<i>A1</i>	N2
	METHOD 3		
	valid reasoning comparing the graph with that of $\sin x$ eg position of max/min, graph goes faster	R 1	
	correct working	(AI)	
	eg max at $\frac{\pi}{6}$ not at $\frac{\pi}{2}$, graph goes 3 times as fast		
	q = 3	A1	N2 [3 marks]
		Tota	l [7 marks]

(a)	valid approach	(M1)	
	eg speed = $\frac{\text{distance}}{\text{time}}$, 6×1.5		
	SL = 9 (km)	A1	N2 [2 marks]
(b)	evidence of choosing sine rule	(M1)	
	eg $\frac{\sin A}{a} = \frac{\sin B}{b}$, $\sin \theta = \frac{(\text{SL})\sin 20^\circ}{5}$		
	correct substitution	(A1)	
	$eg \frac{\sin\theta}{9} = \frac{\sin 20^{\circ}}{5}$		
	37.9981		
	$SPL = 38.0^{\circ}$	A1	N2
	recognition that second angle is the supplement of first $eg = 180 - x$	(M1)	
	142.001		
	$\hat{SQL} = 142^{\circ}$	A1	N2 [5 marks]
			[e marke]

(C)	(i)	new store is at Q	A1	N1
	(ii)	METHOD 1 attempt to find third angle eg $\hat{SLP} = 180 - 20 - 38$, $\hat{SLQ} = 180 - 20 - 142$	(M1)	
		$\hat{SLQ} = 17.998^{\circ}$ (seen anywhere)	A1	
		evidence of choosing sine rule or cosine rule correct substitution into sine rule or cosine rule $eg \frac{x}{\sin 17.998} = \frac{5}{\sin 20} \left(= \frac{9}{\sin 142} \right), \ 9^2 + 5^2 - 2(9)(5)\cos 17.998^\circ$	(M1) (A1)	
		4.51708 km 4.52 (km)	A1	N3
		METHOD 2		
		evidence of choosing cosine rule correct substitution into cosine rule eg $9^2 = x^2 + 5^2 - 2(x)(5)\cos 142^\circ$	(M1) A1	
		attempt to solve eg sketch; setting quadratic equation equal to zero; $0 = x^2 + 7.88x - 56$	(M1)	
		one correct value for x eg $x = -12.3973$, $x = 4.51708$	(A1)	
		4.51708 4.52 (km)	A1 [⁰	N3 6 marks]
		satprep.	Total [1	3 marks]

(a)	correct substitution eg $l = 1.3 \times 3$	(A1)	
	l = 3.9 (cm)	A1	N2 [2 marks]
(b)	METHOD 1		
	valid approach eg finding reflex angle, $2\pi - \hat{COA}$	(M1)	
	correct angle $eg = 2\pi - 1.3$, 4.98318	(A1)	
	correct substitution	(A1)	
	eg $\frac{1}{2}(2\pi - 1.3)3^2$		
	22.4243		
	area = $9\pi - 5.85$ (exact), 22.4 (cm ²)	A1	N3
	METHOD 2		
	correct area of small sector	(A1)	
	$eg = \frac{1}{2}(1.3)3^2, 5.85$		
	valid approach	(M1)	
	eg circle – small sector, $\pi r^2 - \frac{1}{2}\theta r^2$		
	correct substitution	(A1)	
	eg $\pi(3^2) - \frac{1}{2}(1.3)3^2$		
	22.4243		
	22.4243 area = $9\pi - 5.85$ (exact), 22.4 (cm ²)	A1	N3 [4 marks]
		Tota	[4 marks] I [6 marks]

(a)	evidence of choosing sine rule $eg = \frac{AC}{\sin C\hat{B}A} = \frac{AB}{\sin A\hat{C}B}$	(M1)	
	correct substitution eg $\frac{AC}{\sin 44^{\circ}} = \frac{15}{\sin 83^{\circ}}$	(A1)	
	10.4981 AC = 10.5 (cm)	A1	N2 [3 marks]
(b)	finding \hat{CAB} (seen anywhere) eg $180^{\circ} - 44^{\circ} - 83^{\circ}$, $\hat{CAB} = 53^{\circ}$	(A1)	
	correct substitution for area of triangle ABC eg $\frac{1}{2} \times 15 \times 10.4981 \times \sin 53^{\circ}$	A1	
	62.8813 area = 62.9 (cm^2)	A1	N2
(C)	correct substitution for area of triangle DAC eg $\frac{1}{2} \times 6 \times 10.4981 \times \sin \theta$	(A1)	[3 marks]
	attempt to equate area of triangle ACD to half the area of triangle ABC eg area ACD = $\frac{1}{2}$ × area ABC; 2ACD = ABC	(M1)	
	correct equation	A1	
	eg $\frac{1}{2} \times 6 \times 10.4981 \times \sin \theta = \frac{1}{2} (62.9), \ 62.9887 \sin \theta = 62.8813, \ \sin \theta = 0.9$	998294	
	86.6531, 93.3468 $\theta = 86.7^{\circ}, \ \theta = 93.3^{\circ}$	A1A1	N2 [5 marks]
(d)	Note: Note: If candidates use an acute angle from part (c) in the cosine award <i>M1A0A0</i> in part (d).	rule ,	
	evidence of choosing cosine rule eg $CD^2 = AD^2 + AC^2 - 2 \times AD \times AC \times \cos \theta$	(M1)	
	correct substitution into rhs eg $CD^2 = 6^2 + 10.498^2 - 2(6)(10.498)\cos 93.336^\circ$	(A1)	
	12.3921 12.4 (cm)	A1	N2 [3 marks]
		Total	[14 marks]

•		
(a)	valid approach eg 70+(180-115), 360-(110+115)	(M1)
	$\hat{ABC} = 135^{\circ}$	A1 N2 [2 marks]
(b)	choosing cosine rule eg $c^2 = a^2 + b^2 - 2ab\cos C$	(M1)
	correct substitution into RHS eg $5^2 + 8^2 - 2 \times 5 \times 8 \cos 135$	(A1)
	12.0651 12.1 (km)	A1 N2 [3 marks]
(C)	correct substitution (must be into sine rule)	A1
	$\sin A\hat{C}B = \sin 135$	
	$eg \frac{dm HeB}{5} = \frac{dm HBB}{AC}$	
	17.0398	
	ACB = 17.0	A1 N1 [2 marks]
		Total [7 marks]
Quest	tion 26	
<mark>(</mark> a)	evidence of choosing sine rule	(M1)
	$eg \frac{a}{\sin A} = \frac{b}{\sin B}$	
	correct substitution	(A1)
	$eg \frac{a}{1} = \frac{7}{1}$	
	sin1.75 sin0.82 Satore?	
	9.42069 BD = 9.42 (cm)	A1 N2
	BD = 9.42 (CIII)	[3 marks]
(b)	evidence of choosing cosine rule	(M1)
	eg $\cos B = \frac{d^2 + c^2 - b^2}{2dc}, \ a^2 = b^2 + c^2 - 2bc\cos B$	
	correct substitution	(A1)
	eg $\frac{8^2 + 9.42069^2 - 12^2}{2 \times 8 \times 9.42069}$, 144 = 64 + BD ² - 16 BD cos B	
	1.51271	
	$\hat{DBC} = 1.51$ (radians) (accept 86.7°)	A1 N2 [3 marks]
		Total [6 marks]

(a)	valid approach eg $h(0)$, $-15\cos(1.2 \times 0) + 17$, $-15(1) + 17$	(M1)	
	h(0) = 2 (m)	A1	N2
(b)	correct substitution into equation eg $20 = -15\cos 1.2t + 17$, $-15\cos 1.2k = 3$	(A1)	[2 marks]
	valid attempt to solve for <i>k</i>	(M1)	
	eg , $\cos 1.2k = -\frac{3}{15}$		
	1.47679		
	k = 1.48	A1	N2
(C)	recognize the need to find the period (seen anywhere) eg next t value when $h = 20$	(M1)	[3 marks]
	correct value for period	(A1)	
	eg period = $\frac{2\pi}{1.2}$, 5.23598, 6.7–1.48		
	5.2 (min) (must be 1 dp)	A1 Tota	N2 [3 marks] I [8 marks]

(a)
$$\theta = \frac{2\pi}{5}$$
 A1 N1

		[1 mark]
(b) correct expression for area $1 \frac{1}{2}(2\pi) \pi r^2$	(A1)	
eg $A = \frac{1}{2}r^2\left(\frac{2\pi}{5}\right), \frac{\pi r^2}{5}$		
evidence of equating their expression to 20π	(M1)	
eg $\frac{1}{2}r^2\left(\frac{2\pi}{5}\right) = 20\pi$, $r^2 = 100$, $r = \pm 10$		
r = 10	A1	N2 [3 marks]
(c) METHOD 1		
evidence of choosing cosine rule eg $a^2 = b^2 + c^2 - 2bc \cos A$	(M1)	
correct substitution of their r and θ into RHS	(A1)	
eg $10^2 + 10^2 - 2 \times 10 \times 10 \cos\left(\frac{2\pi}{5}\right)$		
11.7557		
AB = 11.8 (mm)	A1	N2
METHOD 2		
evidence of choosing sine rule $\sin A + \sin B$	(M1)	
$eg \frac{\sin A}{a} = \frac{\sin B}{b}$		
correct substitution of their r and θ	(A1)	
correct substitution of their <i>r</i> and θ eg $\frac{\sin\frac{2\pi}{5}}{AB} = \frac{\sin\left(\frac{1}{2}\left(\pi - \frac{2\pi}{5}\right)\right)}{10}$		
$eg \frac{5}{AB} = \frac{10}{10}$		
11.7557		
AB = 11.8 (mm)	A1	N2 [3 marks]
	[Tota	al 7 marks]

(a) (i)	valid approach $eg = \frac{5+17}{2}$	(M1)	
	<i>c</i> =11	A1	N2
(ii)	valid approach	(M1)	
	eg period is 12, per = $\frac{2\pi}{b}$, 9–3		
	$b = \frac{2\pi}{12}$	A1	
	$b = \frac{\pi}{6}$	AG	NO
(iii)	METHOD 1		
	valid approach	(M1)	
	eg $5 = a \sin\left(\frac{\pi}{6} \times 3\right) + 11$, substitution of points		
	a = -6	A1	N2
	METHOD 2		
	valid approach	(M1)	
	eg $\frac{17-5}{2}$, amplitude is 6		
	a = -6	A1	N2
			[6 marks]
(b) (i)	a = -6 $k = 2.5$ (7)	A1	N1
(ii)	$g(x) = -6\sin\left(\frac{\pi}{6}(x-2.5)\right) + 11$	A2	N2
			[3 marks]

(C)	(i)	METHOD 1 Using g
-----	-----	------------------

	recognizing that a point of inflexion is required eg sketch, recognizing change in concavity	M1	
	evidence of valid approach eg $g''(x) = 0$, sketch, coordinates of max/min on g'	(M1)	
	w = 8.5 (exact)	A1	N2
	METHOD 2 Using f		
	recognizing that a point of inflexion is required eg sketch, recognizing change in concavity	M1	
	evidence of valid approach involving translation $eg = x = w - k$, sketch, $6 + 2.5$	(M1)	
	w = 8.5 (exact)	A1	N2
(ii)	valid approach involving the derivative of <i>g</i> or <i>f</i> (seen anywhere) eg $g'(w)$, $-\pi \cos\left(\frac{\pi}{6}x\right)$, max on derivative, sketch of derivative	(M1)	
	attempt to find max value on derivative eg $-\pi \cos\left(\frac{\pi}{6}(8.5-2.5)\right), f'(6)$, dot on max of sketch	M1	
	3.14159 max rate of change = π (exact), 3.14	A1	N2
		[6	marks]
		[Total 15	marks]

attempt to find the central angle or half central angle

correct working

correct working (A1)
eg
$$\cos\theta = \frac{8^2 + 8^2 - 12^2}{2 \cdot 8 \cdot 8}$$
, $\sin^{-1}\left(\frac{6}{8}\right)$, 0.722734, 41.4096°, $\frac{\pi}{2} - \sin^{-1}\left(\frac{6}{8}\right)$

correct angle AOB (seen anywhere)

eg 1.69612, 97.1807°,
$$2 \times \sin^{-1}\left(\frac{6}{8}\right)$$
 (A1)

correct sector area

eg
$$\frac{1}{2}(8)(8)(1.70), \frac{97.1807}{360}(64\pi), 54.2759$$
 (A1)

area of triangle (seen anywhere)

eg
$$\frac{1}{2}(8)(8)\sin 1.70$$
, $\frac{1}{2}(8)(12)\sin 0.722$, $\frac{1}{2} \times \sqrt{64 - 36} \times 12$, 31.7490

appropriate approach (seen anywhere)(M1)
$$eg$$
 $A_{triangle} - A_{sector}$, their sector-their triangle

22.5269

area of shaded region = $22.5 \text{ (cm}^2)$

N4

(M1)

(A1)

A1

(a)	(i)	attempt to find the difference of <i>x</i> -values of A and B $eg = 6.25-12.5$	(M1)	
		6.25 (hours), (6 hours 15 minutes)	A1	N2
	(ii)	attempt to find the difference of <i>y</i> -values of A and B eg $1.5-0.6$	(M1)	
		0.9 (m)	A1	N2 [4 marks]
(b)	(i)	valid approach $eg = \frac{\max - \min}{2}, \ 0.9 \div 2$	(M1)	
		<i>p</i> = 0.45	A1	N2
	(ii)	METHOD 1 period = 12.5 (seen anywhere)	(A1)	
		valid approach (seen anywhere) eg period = $\frac{2\pi}{b}$, $q = \frac{2\pi}{\text{period}}$, $\frac{2\pi}{12.5}$ 0.502654	(M1)	
		$q = \frac{4\pi}{25}, 0.503 \left(\text{or } -\frac{4\pi}{25}, -0.503 \right)$	A1	N2
		METHOD 2 attempt to use a coordinate to make an equation e.g. $p\cos(6.25q) + r = 0.6$, $p\cos(12.5q) + r = 1.5$	(M1)	
		correct substitution eg $0.45\cos(6.25q)+1.05=0.6$, $0.45\cos(12.5q)+1.05=1.5$	(A1)	
		0.502654		
		$q = \frac{4\pi}{25}, 0.503 \left(\text{or } -\frac{4\pi}{25}, -0.503 \right)$	A1	N2
	(iii)	valid method to find r eg $\frac{\max + \min}{2}$, $0.6 + 0.45$	(M1)	
		r = 1.05	A1	N2 [7 marks]

(c)		HOD 1 npt to find start or end <i>t</i> -values for 12 December 3 + 24, $t = 27$, $t = 51$	(M1)	
	finds $t = 50$	<i>t</i> -value for second max	(A1)	
	23:00) (or 11 pm)	A1	N3
	valid	HOD 2 approach to list either the times of high tides after $21:00$ or the <i>t</i> -value tides after $21:00$, showing at least two times $21:00 + 12.5, 21:00 + 25, 12.5 + 12.5, 25 + 12.5$	alues <i>(M1)</i>	
	corre eg	ct time of first high tide on 12 December 10:30 (or 10:30 am)	(A1)	
	time	of second high tide = $23:00$	A1	N3
		HOD 3 npt to set their <i>h</i> equal to 1.5 $h(t) = 1.5, \ 0.45 \cos\left(\frac{4\pi}{25}t\right) + 1.05 = 1.5$	(M1)	
	corre eg	ct working to find second max $0.503t = 8\pi$, $t = 50$	(A1)	
	23:00) (or 11 pm)	A1	N3
				[3 marks]
			Total [[14 marks]
	Ques	tion 32		
	(a)	correct substitution into arc length formula eg (40)(1.9)	(A1)	
		arc length = 76 (cm)	A1	N2 [2 marks]
	(b)	valid approach eg arc+2 r , 76+40+40	(M1)	
		perimeter=156 (cm)	A1	N2 [2 marks]
	(C)	correct substitution into area formula	(A1)	
		$eg = \frac{1}{2}(1.9)(40)^2$		
		area = 1520 (cm ²)	A1	N2 [2 marks]
			[Tota	al 6 marks]

(a)	valid approach eg $\frac{\max - \min}{2}$, sketch of graph, $9.7 = p\cos(0) + 7.5$	(M1)	
	<i>p</i> = 2.2	A1	N2 [2 marks]
(b)	valid approach eg $B = \frac{2\pi}{\text{period}}$, period is 14, $\frac{360}{14}$, $5.3 = 2.2\cos 7q + 7.5$	(M1)	
	0.448798 $q = \frac{2\pi}{14} \left(\frac{\pi}{7}\right)$, 0.449 (do not accept degrees)	A1	N2 [2 marks]
(c)	valid approach eg $d(10), 2.2 \cos\left(\frac{20\pi}{14}\right) + 7.5$	(M1)	[2 IIIdr x 5]
	7.01045 7.01 (m)	A1	N2 [2 marks]
		[Tota	al 6 marks]

(a)	valid method eg 180+55, 360-90-35	(M1)	
	235° (accept S55W, W35S)	A1	N2 [2 marks]
(b)	valid approach to find \hat{AEC} (may be seen in (a)) eg $\hat{AEC} = 180 - 55 - \hat{ACE}$, $134 = E + 55$	(M1)	
	correct working to find \hat{AEC} (may be seen in (a)) eg $180-55-46$, $134-55$, $\hat{AEC} = 79^{\circ}$	(A1)	
	evidence of choosing sine rule (seen anywhere) eg $\frac{a}{\sin A} = \frac{b}{\sin B}$	(M1)	
	correct substitution into sine rule eg $\frac{CE}{\sin 55^{\circ}} = \frac{175}{\sin A\hat{E}C}$ 146.034	(A1)	
	CE = 146 (km)	A1	N2 [5 marks]
(c)	evidence of choosing cosine rule $eg DE^2 = DC^2 + CE^2 - 2 \times DC \times CE \times \cos\theta$	(M1)	
	correct substitution into right-hand side eg $60^2 + 146.034^2 - 2 \times 60 \times 146.034 \cos 134$	(A1)	
	192.612 DE = 193 (km)	A1	N2 [3 marks]
(d)	valid approach for locating B eg BE is perpendicular to ship's path, angle $B = 90$	(M1)	
	correct working for BE eg $\sin 46^{\circ} = \frac{BE}{146.034}$, BE = 146.034 sin 46°, 105.048	(A1)	
	valid approach for expressing time eg $t = \frac{d}{s}$, $t = \frac{d}{r}$, $t = \frac{192.612}{50}$	(M1)	
	correct working equating time eg $\frac{146.034 \sin 46^{\circ}}{r} = \frac{192.612}{50}, \frac{s}{105.048} = \frac{50}{192.612}$	(A1)	
	27.2694 27.3 (km per hour)	A1 [Total	N3 [5 marks] 15 marks]

(a)	evidence of choosing sine rule eg $\frac{\sin A}{a} = \frac{\sin B}{b}$	(M1)	
	correct substitution eg $\frac{BC}{\sin 50} = \frac{5}{\sin 112}$	(A1)	
	4.13102		
	BC = 4.13 (cm)	A1	N2 [3 marks]
(b)	correct working eg $\hat{B} = 180 - 50 - 112$, 18°, AC = 1.66642	(A1)	
	correct substitution into area formula eg $\frac{1}{2} \times 5 \times 4.13 \times \sin 18$, 0.5(5)(1.66642) $\sin 50$, $\frac{1}{2}$ (4.13)(1.66642) $\sin 112$ 3.19139	(A1)	
	$area = 3.19 (cm^2)$	A1	N2 [3 marks]
		Tota	l [6 marks]

(a)		tituting $x = 2\pi$	М1	
	eg	$2\pi + a\sin\left(2\pi - \frac{\pi}{2}\right) + a$		
	2π+	$a\sin\left(\frac{3\pi}{2}\right) + a$	(A1)	
	2π-	a + a	A1	
	f(2	π) = 2 π	AG	N0 [3 marks]
(b)	(i)	substituting the value of k	(M1)	
		$P_0(0, 0), P_1(2\pi, 2\pi)$	A1A1	N3
	(ii)	attempt to find the gradient	(M1)	
		$eg = \frac{2\pi - 0}{2\pi - 0}, m = 1$		
		correct working $v = 2\pi$	(A1)	
		eg $\frac{y-2\pi}{x-2\pi} = 1$, $b = 0$, $y-0 = 1(x-0)$		
		<i>y</i> = <i>x</i>	A1	N3 [6 marks]
(c)	subt	racting x-coordinates of P_{k+1} and P_k (in any order)	(M1)	
()	eg	$2(k+1)\pi - 2k\pi, \ 2k\pi - 2k\pi - 2\pi$		
	corre eg	ect working (must be in correct order) $2k\pi + 2\pi - 2k\pi$, $ 2k\pi - 2(k+1)\pi $	A1	
	dista	ance is 2π	AG	N0 [2 marks]

(d) METHOD 1

·satprev	[6 marks]
33 (teeth)	A1 N2
33.7618 33 (teeth)	(A1)
dividing 300 by their value of <i>x</i> eg	(M1)
dividing 200 by their value of r	(101)
$x = \sqrt{8\pi^2}$ (exact), 8.88576	(A1)
eg $x^2 = (2\pi)^2 + (2\pi)^2$	()
attempt to find the hypotenuse for one tooth	(M1)
vertical distance of a tooth is 2π (may be seen anywhere)	(A1)
METHOD 2	
33 (teeth)	A1 N2
33.7618	(A1)
$eg = \frac{212.132}{2\pi}$	
dividing their value of x by $2\pi \left(\text{do not accept } \frac{300}{2\pi} \right)$	(M1)
dividing their value of v by 2π (denot exact 300)	(884)
$x = \frac{300}{\sqrt{2}}$ (exact), 212.132	(A1)
•	(• • •
correct working (using their equation of <i>L</i>) eg $300^2 = x^2 + x^2$	(A1)
$eg 300^2 = x^2 + y^2$, sketch	
recognizing the toothed-edge as the hypotenuse	(M1)
METHODI	

Total [17 marks]

(a)	valid	approach to find k	(M1)	
	eg	8 minutes is half a turn, k + diameter, k +111=117		
	<i>k</i> =	6	A1	N2
			I	2 marks]

(b) METHOD 1

valid approach (M1) $eg = \frac{\max - \min}{2}$, a =radius

$$|a| = \frac{117 - 6}{2}, 55.5$$
 (A1)
 $a = -55.5$ A1 N2

METHOD 2

attempt to substitute valid point into equation for <i>f</i>	(M1)
eg $h(0) = 6, h(8) = 117$	
correct equation	(A1)

eg	$6 = 61.5 + a\cos\left(\frac{\pi}{8} \times 0\right), 117 =$	$(61.5 + a\cos\left(\frac{\pi}{8} \times 8\right), \ 6 = 61.5 + a$	
<i>a</i> –	55.5		11

- a = -55.5 A1 N2 [3 marks]
- (c) valid approach (M1) eg sketch of h and y = 30, h = 30, $61.5 - 55.5 \cos\left(\frac{\pi}{8}t\right) = 30$, t = 2.46307, t = 13.5369

18.4630 t = 18.5 (minutes)

A2 N3 [3 marks]

[Total: 8 marks]

(a)	evidence of choosing sine rule	(M1)
	$eg \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$		
	correct substitution $eg = \frac{DB}{\sin 59^\circ} = \frac{11}{\sin 100^\circ}$	(A1)
	9.57429 DB = 9.57 (cm)	A	1 N2 [3 marks]
(b)	evidence of choosing cosine rule	(M1)
	eg $a^2 = b^2 + c^2 - 2bc\cos(A)$, $DC^2 = DB^2 + BC^2 - 2DB \times BC \times \cos(D\hat{B}C)$		
	correct substitution into RHS eg $9.57^2 + 6^2 - 2 \times 9.57 \times 6 \times \cos 82^\circ$, 111.677	(A1)
	10.5677 DC = 10.6 (cm)	A	1 N2 [3 marks]
0		[Tot	al: 6 marks]
-	tion 39		
(a)	-0.394791, 13 A (-0.395, 13)	<mark>A1A1</mark>	N2 [2 marks]
(b)	(i) 13	A1	N1
	(ii) 2π , 6.28 valid approach eq recognizing that amplitude is p or shift is r	A1	N1 [2 marks]
(c)	valid approach eg recognizing that amplitude is p or shift is r	(M1)	
	$f(x) = 13\cos(x + 0.395)$ (accept $p = 13$, $r = 0.395$)	A1A1	N3
	Note: Accept any value of r of the form $0.395 + 2\pi k$, $k \in \mathbb{Z}$		
			[3 marks]

correct substitution into the formula for area of a triangle	(A1)
eg $15 = \frac{1}{2} \times 8.1 \times 12.3 \times \sin C$	
correct working for angle <i>C</i> eg sin $C = 0.301114$, 17.5245, 0.305860	(A1)
recognizing that obtuse angle needed eg 162.475, 2.83573, $\cos C < 0$	(M1)
evidence of choosing the cosine rule eg $a^2 = b^2 + c^2 - 2bc\cos(A)$	(M1)
correct substitution into cosine rule to find <i>c</i> eg $c^{2} = (8.1)^{2} + (12.3)^{2} - 2(8.1)(12.3) \cos C$	(A1)
c = 20.1720	(A1)
8.1+12.3+20.1720 = 40.5720	
perimeter = 40.6	A1 N4
	Total [7 marks]
Question 41	
(a) valid approach to find area of segment	(M1)
eg area of sector – area of triangle, $\frac{1}{2}r^2(\theta - \sin\theta)$	()
correct substitution	(A1)
eg $\frac{1}{2}(4)^2\theta - \frac{1}{2}(4)^2\sin\theta$, $\frac{1}{2} \times 16[\theta - \sin\theta]$	
area = $8\theta - 8\sin\theta$, $8(\theta - \sin\theta)$	A1 N2 [3 marks]
(b) setting their area expression equal to 12 eg $12 = 8(\theta - \sin \theta)$	(M1)
2.26717	
$\theta = 2.27$ (do not accept an answer in degrees)	A2 N3
	[3 marks]
	Total (Computed)

Total [6 marks]

(a) recognizing TR = 32 (seen anywhere, including diagram) A1
correct working A1
eg
$$32^2 = x^2 + 38^2 - 2(x)(38)\cos 43^\circ$$
, $1024 = 1444 + x^2 - 76(x)\cos 43^\circ$
 $x^2 - (76\cos 43^\circ)x + 420 = 0$ AG N0
[2 marks]

(b)

Note: There are many approaches to this question, depending on which triangle the candidate has used, and whether they used the cosine rule and/or the sine rule. Please check working carefully and award marks in line with the markscheme.

METHOD 1

correct values for x (seen anywhere) x = 9.02007, 46.5628	A1A1	
recognizing the need to find difference in values of x eg 46.5-9.02, $x_1 - x_2$	(M1)	
37.5427 37.5 (km)	A1	N2
METHOD 2		
correct use of sine rule in Δ SRT		
eg $\frac{\sin S\hat{R}T}{38} = \frac{\sin 43^{\circ}}{32}$, $S\hat{R}T = 54.0835^{\circ}$	(A1)	
recognizing isosceles triangle (seen anywhere)	(M1)	
eg $\hat{T} = 180^{\circ} - 2.54.0835^{\circ}$, two sides of 32		
correct working to find distance	A1	
eg $\sqrt{32^2 + 32^2 - 2 \cdot 32 \cdot 32 \cos(180^\circ - 2 \cdot 54.0835^\circ)}$,		
$\frac{\sin 71.8329^{\circ}}{d} = \frac{\sin 54.0835^{\circ}}{32}, \ 32^2 = 32^2 + x^2 - 2 \cdot 32x \cos(0.944)$		
37.5427		
37.5 (km)	A1	N2 [4 marks]

Total [6 marks]

NO

(a)
$$\cos\theta = \frac{\mathrm{OC}}{r}$$
 A1

$$OC = r \cos \theta$$
 AG NO

[1 mark]

(b) valid approach (M1)
eg
$$\frac{1}{2}$$
OC×OB sin θ , BC = $r \sin \theta$, $\frac{1}{2}r \cos \theta \times BC$, $\frac{1}{2}r \sin \theta \times OC$
area = $\frac{1}{2}r^2 \sin \theta \cos \theta \left(=\frac{1}{4}r^2 \sin(2\theta)\right)$ (must be in terms of r and θ) A1 N2
[2 marks]

(c) valid attempt to express the relationship between the areas (seen anywhere) (M1)
eg
$$OCB = \frac{3}{5}OBA$$
, $\frac{1}{2}r^2 \sin\theta\cos\theta = \frac{3}{5} \times \frac{1}{2}r^2\theta$, $\frac{1}{4}r^2 \sin 2\theta = \frac{3}{10}r^2\theta$
correct equation in terms of θ only A1
eg $\sin\theta\cos\theta = \frac{3}{5}\theta$, $\frac{1}{4}\sin 2\theta = \frac{3}{10}\theta$
valid attempt to solve their equation
eg sketch, -0.830017, 0
0.830017
 $\theta = 0.830$ A1 N2
Note: Do not award final A1 if additional answers given.
[4 marks]
Question 44
(a) choosing cosine rule
eg $c^2 = a^2 + b^2 - 2ab\cos C$ (M1)

correct substitution into RHS (A1) eg $4.83^2 + 3.80^2 - 2 \times 4.83 \times 3.80 \times \cos 78.2$, 30.2622, $4.83^2 + 3.80^2 - 2(4.83)(3.80)\cos 1.36$ 5 50111

5.50111 5.50 (cm)	A1	N2
		marks]

(b) correct substitution for area of triangle ABD (A1)
eg
$$\frac{1}{2} \times 6.73 \times 5.50111 \sin \theta$$

correct equation A1
eg $\frac{1}{2} \times 6.73 \times 5.50111 \sin \theta = 18.5$, $\sin \theta = 0.999393$
88.0023, 91.9976, 1.53593, 1.60566
 $\theta = 88.0$ (degrees) or 1.54 (radians)
 $\theta = 92.0$ (degrees) or 1.61 (radians)
A1A1 N2
[4 marks]

(a)	valid attempt to find range eg 16, max = 6 min = 2, $2\sin\left(3\times\frac{\pi}{6}\right)+4$ and $2\sin\left(3\times\frac{\pi}{2}\right)+4$, $2(1)+4$ and $2(-1)+4$,	(M1)	
	k = 2, m = 6	A1A1	N3
			[3 marks]
(b)	$10 \le y \le 30$	A2	N2
	Satprep.		[2 marks]
(C)	(i) evidence of substitution (may be seen in part (b)) eg $5(2\sin(3(2x))+4), 3(2x)$	(M1)	
	$b = 6$, $c = 20$ (accept $10\sin(6x) + 20$)	A1A1	N3
	Note: If no working shown, award N2 for one correct value.		
	(ii) correct working eg $\frac{2\pi}{b}$ 1.04719	(A1)	
	$\frac{2\pi}{6}\left(=\frac{\pi}{3}\right), 1.05$	A1	N2
	6 (3)		[5 marks]

(d) valid approach

20

10-

eg

th (M1) $\int \int \sin^{-1} \left(-\frac{8}{10}\right), \ 6x = -0.927, \ -0.154549, \ x = 0.678147$

Note: Award M1 for any correct value for x or $6x$ which lies outside th 3.81974, 4.03424	0	
x = 3.82, $x = 4.03$ (do not accept answers in degrees)	A1A1	N3
	Total [13	ma <mark>rks</mark>]
testion 46		
evidence of choosing cosine rule eg $a^2 = b^2 + c^2 - 2bc \cos A$	(M1)	
correct substitution to find AB eg $28.4^2 = x^2 + (x+2)^2 - 2x(x+2)\cos(0.667)$	(A1)	
x = 42.2822	A2	
appropriate approach to find AD	(M1)	
eg AD = $x \cos(0.611)$, $\cos(0.611) = \frac{AD}{42.2822}$		
34.6322		
AD = 34.6	A1 Total [6	N3 marks]

(a) correct working

$$eg \sin \alpha = \frac{8}{10}, \cos \theta = \frac{6}{10}, \cos B\hat{A}C = \frac{6^2 + 10^2 - 8^2}{2 \times 6 \times 10}$$
(A1)
0.927295
 $B\hat{A}C = 0.927 \ (= 53.1^\circ)$
(A1) N2
[2 marks]

(b)

Note: There may be slight differences in the final answer, depending on the approach the candidate uses in part (b). Accept a final answer that is consistent with their working.

correct area of sector ABF (seen anywhere)	(A1)
eg $\frac{1}{2} \times 6^2 \times 0.927$, $\frac{53.1301^\circ}{360^\circ} \times \pi \times 6^2$, 16.6913	
correct expression (or value) for either [AD] or [BD] (seen anywhere) eg $AD = 6\cos(BAC)$ (=3.6)	(A1)
$BD = 6 \sin (53.1^{\circ}) (=4.8)$ correct area of triangle ABD (seen anywhere)	(11)
eg $\frac{1}{2} \times 6 \cos B\hat{A}D \times 6 \sin B\hat{A}D$, $9 \sin (2B\hat{A}C)$, 8.64 (exact)	(A1)
appropriate approach (seen anywhere)	(M1)
eg $A_{triangle ABD}$ - A_{sector} , their sector - their triangle ABD	
8.05131	
area of shaded region = 8.05 (cm^2)	A1 N2 [5 marks]

Total [7 marks]