Subject - Math (Standard Level)
 Topic - Statistics and Probability
 Year - Nov 2011 - Nov 2019
 Paper-2

Question 1
(a) median $=174(\mathrm{~cm})$
(b) attempt to find number shorter than 161
e.g. line on graph, 12 boys
$p=\frac{12}{200}(=0.06)$
$A 1 \quad N 2$
[2 marks]
(c) METHOD 1
18% have a height less than h
(A1)
$0.18 \times 200=36$ (36 may be seen as a line on the graph)
(A1)
$h=166(\mathrm{~cm})$
A1
N2
[3 marks]

METHOD 2

$0.82 \times 200=164(164$ may be seen as a line on the graph $)$
(A1)
$200-164=36$
$h=166(\mathrm{~cm})$
A1
N2
[3 marks]
Total [6 marks]

Question 2

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with their working and check carefully for $\boldsymbol{F T}$.
(a) evidence of recognizing binomial (seen anywhere in the question)
(M1)
e.g. ${ }_{n} C_{r} p^{r} q^{n-r}, \mathrm{~B}(n, p),{ }^{10} C_{1}(0.012)^{1}(0.988)^{9}$
$p=0.108 \quad$ A1
(b) valid approach
(M1)

$$
\text { e.g. } \mathrm{P}(X \leq 1), 0.88627 \ldots+0.10764 \ldots
$$

$$
p=0.994
$$

(c) (i)

Note: Award $A 1$ for vertical line to right of mean, AI for shading to left of their vertical line.
(ii) valid approach
e.g. $\mathrm{P}(X<22.63)$
working to find standardized value
e.g. $\frac{22.63-22}{0.3}, 2.1$

$$
p=0.982
$$

N3

Question 3

(a) evidence of recognizing binomial distribution
(M1) e.g. $X \sim \mathrm{~B}(10,0.57), p=0.57, q=0.43$

EITHER

$\mathrm{P}(X \leq 3)=2.16 \times 10^{-4}+0.00286+0.01709+0.06041(=0.08057 \ldots)$
evidence of using complement
e.g. 1 - any probability, $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$
0.919423...
$\mathrm{P}(X \geq 4)=0.919$ A1

OR

summing the probabilities from $X=4$ to $X=10$
correct expression or values (A1)
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.57)^{r}(0.43)^{10-r}, 0.14013+0.2229+\ldots+0.02731+0.00362$
0.919424
$\mathrm{P}(X \geq 4)=0.919$
A1
N3
[4 marks]
(b) evidence of valid approach
e.g. three tails in nine tosses, $\binom{9}{3}(0.57)^{3}(0.43)^{6}$
correct calculation
e.g. $\binom{9}{3}(0.57)^{3}(0.43)^{6} \times 0.57,0.09834 \times 0.57$
0.05605178...
$\mathrm{P}\left(4^{\text {th }}\right.$ tail on $10^{\text {th }}$ toss $)=0.0561$

Question 4
(a) (i) $p=17, q=11$
(ii) $75 \leq T<85$

A1 N1 [3 marks]
(b) evidence of valid approach
(M1)
e.g. adding frequencies

$$
\begin{aligned}
& \frac{76}{93}=0.8172043 \ldots \\
& \mathrm{P}(T<95)=\frac{76}{93}=0.817
\end{aligned}
$$

$$
A 1
$$

$$
N 2
$$

(c) (i) 10

A1
N1
(ii) 50

A1
(d) (i) evidence of approach using mid-interval values (may be seen in part (ii)) (M1) 79.1397849

$$
\bar{x}=79.1
$$

A2
N3
(ii) 16.4386061

$$
\sigma=16.4
$$

(e) evidence of valid approach
e.g. standardizing, $z=0.9648$.
0.8326812
$\mathrm{P}(T<95)=0.833$

Question 5

(a) evidence of appropriate method
e.g. $\quad z=\frac{122.5-117}{5}$, sketch of normal curve showing mean and $122.5,1.1$
$\mathrm{P}(Z<1.1)=0.8643$
0.135666
$\mathrm{P}(\mathrm{H}>122.5)=0.136$
A1
(b) $z=0.3853$
set up equation
e.g. $\frac{X-117}{5}=0.3853$, sketch
$k=118.926602$
$k=199$
A1
N3
[3 marks]

Question 6

(a) evidence of recognizing binomial (seen anywhere)
(M1)
e.g. $\mathrm{B}(n, p), 0.95^{30}$
finding $\mathrm{P}(X=0)=0.21463876$
appropriate approach
(M1)
e.g. complement, summing probabilities
0.785361
probability is $0.785 \quad$ A1 [4 marks]
(b) identifying correct outcomes (seen anywhere)
e.g. $\mathrm{P}(X=1)+\mathrm{P}(X=2), 1$ or 2 defective, $0.3389 \ldots+0.2586 \ldots$
recognizing conditional probability (seen anywhere) R1
e.g. $\mathrm{P}(A \mid B), \mathrm{P}(X \leq 2 \mid X \geq 1), \mathrm{P}$ (at most 2|at least 1)
appropriate approach involving conditional probability
(M1)
e.g. $\frac{\mathrm{P}(X=1)+\mathrm{P}(X=2)}{\mathrm{P}(X \geq 1)}, \frac{0.3389 \ldots+0.2586 \ldots}{0.785 \ldots}, \frac{1 \text { or } 2}{0.785}$
0.760847
probability is 0.761

Question 7

correct z-values
(A1)(A1)

- $1.750686 \ldots, 0.524400$
attempt to set up their equations, must involve z-values, not $\%$
(M1)
e.g. one correct equation
two correct equations
A1A1
e.g. $\quad \mu-1.750686 \sigma=5, \quad 0.5244005=\frac{25-\mu}{\sigma}$
attempt to solve their equations
(M1)
e.g. substitution, matrices, one correct value
$\mu=20.39006 \ldots, \sigma=8.790874 \ldots$
$\mu=20.4[20.3,20.4], \sigma=8.79[8.79,8.80]$
A1A1
N4

Question 8

(a) valid approach
e.g. Venn diagram with intersection, union formula,

$$
\mathrm{P}(S \cap F)=0.75+0.40-1
$$

15 (accept 15%)

$$
A 1
$$

(b) valid approach involving subtraction
e.g. Venn diagram, 75-15
60 (accept 60%)
A1 N2
(c) (i) valid approach
(M1)
e.g. tree diagram, multiplying probabilities, $\mathrm{P}(S \mid G) \times \mathrm{P}(G)$
correct calculation
(A1)
e.g. 0.52×0.85
$\mathrm{P}(G \cap S)=0.442$ (exact)

$$
A 1
$$

(ii) valid reasoning, with words, symbols or numbers (seen anywhere) R1
e.g. $\mathrm{P}(G) \times \mathrm{P}(S) \neq \mathrm{P}(G \cap S), \mathrm{P}(S \mid G) \neq \mathrm{P}(S)$, not equal,
one correct value
e.g. $\quad \mathrm{P}(G) \times \mathrm{P}(S)=0.39, P(S \mid G)=0.85,0.39 \neq 0.442$
G and S are not independent
(d) METHOD 1
48% are boys (seen anywhere)
e.g. $\mathrm{P}(B)=0.48$
appropriate approach
e.g. $\quad \mathrm{P}($ girl and Spanish $)+\mathrm{P}($ boy and Spanish $)=\mathrm{P}($ Spanish $)$
correct approach to find P (boy and Spanish)
e.g. $\mathrm{P}(B \cap S)=\mathrm{P}(S)-\mathrm{P}(G \cap S), \mathrm{P}(B \cap S)=\mathrm{P}(S \mid B) \times \mathrm{P}(B), 0.308$
correct substitution
e.g. $\quad 0.442+0.48 x=0.75,0.48 x=0.308$
correct manipulation
e.g. $\quad \mathrm{P}(S \mid B)=\frac{0.308}{0.48}$
$\mathrm{P}($ Spanish \mid boy $)=0.641666 \ldots, 0.641 \overline{6}$
$\mathrm{P}($ Spanish \mid boy $)=0.642[0.641,0.642]$

METHOD 2

48% are boys (seen anywhere)	A1
e.g. $\quad 0.48$ used in tree diagram	

appropriate approach
e.g. tree diagram
correctly labelled branches on tree diagram
e.g. first branches are boy/girl, second branches are Spanish/not Spanish
correct substitution
e.g. $0.442+0.48 x=0.75$
correct manipulation
e.g. $\quad 0.48 x=0.308, \mathrm{P}(S \mid B)=\frac{0.308}{0.48}$
$P($ Spanish \mid boy $)=0.641666 \ldots, 0.641 \overline{6}$
$\mathrm{P}($ Spanish \mid boy $)=0.642[0.641,0.642]$

Question 9
(a) valid approach
eg $35-26,26+p=35$

$$
p=9
$$

A1
N2
[2 marks]
(b) (i) mean $=26.7$

A2
N2
(ii) recognizing that variance is $(\mathrm{sd})^{2}$
(M1)

$$
\text { eg } \quad 11.021 \ldots^{2}, \sigma=\sqrt{\operatorname{var}}, 11.158 \ldots^{2}
$$

$$
\sigma^{2}=121 \quad A 1
$$

Question 10
recognizing one quartile probability (may be seen in a sketch)
eg $\mathrm{P}\left(X<Q_{3}\right)=0.75,0.25$
finding standardized value for either quartile
eg $z=0.67448 \ldots, z=-0.67448 \ldots$
attempt to set up equation (must be with z - values)
eg $\quad 0.67=\frac{Q_{3}-150}{10},-0.67448=\frac{x-150}{10}$
one correct quartile
eg $Q_{3}=156.74 \ldots, Q_{1}=143.25 \ldots$
correct working
$e g$ other correct quartile, $Q_{3}-\mu=6.744$.
valid approach for IQR (seen anywhere)
eg $Q_{3}-Q_{1}, 2\left(Q_{3}-\mu\right)$
$\mathrm{IQR}=13.5$

Question 11

(a) evidence of appropriate approach
eg $\quad z=\frac{22.9-20}{5}$

$$
\begin{aligned}
& z=0.58 \\
& \mathrm{P}(X \leq 22.9)=0.719
\end{aligned}
$$

(b) z-score for 0.55 is $0.12566 \ldots$
valid approach (must be with $z-$ values)
eg using inverse normal, $0.1257=\frac{k-20}{5}$

$$
k=20.6
$$

Question 12

(a) METHOD 1

(i) appropriate approach
eg $\quad \frac{6}{10} \times \frac{6}{10}, \frac{6}{10} \times \frac{5}{9}, \frac{6}{10} \times \frac{5}{10}$
$\mathrm{P}(X=0)=\frac{9}{25}=0.36$
(ii) multiplying one pair of gold and silver probabilities
eg $\quad \frac{6}{10} \times \frac{4}{10}, \frac{6}{10} \times \frac{4}{9}, 0.24$
adding the product of both pairs of gold and silver probabilities
eg $\quad \frac{6}{10} \times \frac{4}{10} \times 2, \frac{6}{10} \times \frac{4}{9}+\frac{4}{10} \times \frac{6}{9}$
$\mathrm{P}(X=1)=\frac{12}{25}=0.48$
(iii) $\mathrm{P}(X=2)=0.16$ (seen anywhere)
correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 0 \times 0.36+1 \times 0.48+2 \times 0.16,0.48+0.32$
$\mathrm{E}(X)=\frac{4}{5}=0.8$

METHOD 2

(i) evidence of recognizing binomial (may be seen in part (ii))
eg $\quad X \sim \mathrm{~B}(2,0.6),\binom{2}{0}(0.4)^{2}(0.6)^{0}$
correct probability for use in binomial
eg $\quad p=0.4, X \sim \mathrm{~B}(2,0.4),{ }^{2} C_{0}(0.4)^{0}(0.6)^{2}$

$$
\mathrm{P}(X=0)=\frac{9}{25}=0.36
$$

(ii) correct set up
$e g \quad{ }_{2} C_{1}(0.4)^{1}(0.6)^{1}$
$\mathrm{P}(X=1)=\frac{12}{25}=0.48$

$$
\begin{aligned}
& \text { (iii) attempt to substitute into } n p \\
& e g \quad 2 \times 0.6 \\
& \text { correct substitution into } n p \\
& e g \quad 2 \times 0.4 \\
& \mathrm{E}(X)=\frac{4}{5}=0.8
\end{aligned}
$$

Let Y be the number of gold balls drawn from the bag in parts (b), (c), and (d).
(b) evidence of recognizing binomial (seen anywhere)
eg $\quad{ }_{14} C_{5}(0.4)^{5}(0.6)^{9}, \mathrm{~B}(14,0.4)$
$\mathrm{P}(Y=5)=0.207$
(c) recognize need to find $\mathrm{P}(Y \leq 5)$
(d) recognizing conditional probability

$$
\begin{aligned}
& \text { eg } \mathrm{P}(A \mid B), \mathrm{P}(Y=5 \mid Y \leq 5), \frac{\mathrm{P}(Y=5)}{\mathrm{P}(Y \leq 5)}, \frac{0.207}{0.486} \\
& \mathrm{P}(Y=5 \mid Y \leq 5)=0.42522518 \\
& \mathrm{P}(Y=5 \mid Y \leq 5)=0.43 \text { (to } 2 \mathrm{dp})
\end{aligned}
$$

Question 13
(a) correct approach
eg $\quad 0.5=0.2+\mathrm{P}(B), \mathrm{P}(A \cap B)=0$
$\mathrm{P}(B)=0.3 \quad A 1$
N2 [2 marks]
(b) Correct expression for $\mathrm{P}(A \cap B)$ (seen anywhere)
eg $\quad \mathrm{P}(A \cap B)=0.2 \mathrm{P}(B), 0.2 x$
attempt to substitute into correct formula for $\mathrm{P}(A \cup B)$
(M1)
eg $\quad \mathrm{P}(A \cup B)=0.2+\mathrm{P}(B)-\mathrm{P}(A \cap B), \mathrm{P}(A \cup B)=0.2+x-0.2 x$
correct working
(A1)
eg $\quad 0.5=0.2+\mathrm{P}(B)-0.2 \mathrm{P}(B), 0.8 x=0.3$

$$
\mathrm{P}(B)=\frac{3}{8}(=0.375, \text { exact })
$$

Question 14
(a) attempt to standardize
eg $\quad z=\frac{21.8-20}{1.25}, 1.44$
$\mathrm{P}(T<21.8)=0.925$

$$
A 1
$$

(b) attempt to subtract probabilities
eg $\quad \mathrm{P}(T<21.8)-\mathrm{P}(T<k)=0.3, \quad 0.925-0.3$
$\mathrm{P}(T<k)=0.625$
EITHER
finding the z-value for 0.625
eg $\quad z=0.3186$ (from tables), $z=0.3188$
attempt to set up equation using their z-value
eg $\quad 0.3186=\frac{k-20}{1.25},-0.524 \times 1.25=k-20$
$k=20.4$
A1

OR

$k=20.4$

- (a) appropriate approach
eg $\quad \mathrm{P}(R \cap B)+\mathrm{P}\left(R^{\prime} \cap B\right)$, tree diagram,
one correct multiplication
eg $\quad 0.2 \times 0.5,0.24$
correct working
eg $\quad 0.2 \times 0.5+0.8 \times 0.3,0.1+0.24$
P (bus) $=0.34$ (exact)
A1
(b) recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
correct working
eg $\frac{0.2 \times 0.5}{0.34}$
$\mathrm{P}(R \mid B)=\frac{5}{17}, 0.294$
A1
(c) recognizing binomial probability
eg $\quad X \sim \mathrm{~B}(n, p),\binom{5}{3}(0.34)^{3},(0.34)^{3}(1-0.34)^{2}$
$\mathrm{P}(X=3)=0.171$
A1 N2
[2 marks]
(M1)
evidence of using complement (seen anywhere)
eg $\quad 1-\mathrm{P}$ (none), $1-0.95$
valid approach
(M1)
eg $\quad 1-\mathrm{P}($ none $)>0.95, \mathrm{P}($ none $)<0.05,1-\mathrm{P}($ none $)=0.95$
correct inequality (accept equation)
eg $\quad 1-(0.66)^{n}>0.95,(0.66)^{n}=0.05$
$n>7.209$ (accept $n=7.209$)
$n=8$
METHOD 2
valid approach using guess and check/trial and error
eg finding $\mathrm{P}(X \geq 1)$ for various values of n
seeing the "cross over" values for the probabilities

$$
\begin{equation*}
n=7, \mathrm{P}(X \geq 1)=0.9454, n=8, \mathrm{P}(X \geq 1)=0.9639 \tag{R1}
\end{equation*}
$$

recognising $0.9639>0.95$
$n=8$

Question 16

(a) (i)	$a=0.486$ (exact)	A1	N1
	$b=-12.41$ (exact), -12.4	A1	N1
(ii)	correct substitution	(A1)	
	eg 0.486(172)-12.41		
	71.182		
	71.2 (kg)	A1	N2
			[4 marks]
(b) (i)	$r=0.997276$		
	$r=0.997$	A1	N1
(ii)	strong, positive (must have both correct)	A2	N2
			[3 marks]
		Tota	[7 marks]

Question 17

(a) (i) 50 (g)
(ii) 65 rats weigh less than 70 grams
attempt to find a percentage
eg $\frac{65}{80}, \frac{65}{80} \times 100$

$$
81.25 \text { (\%) (exact), } 81.3
$$

A1	N3
[4 marks]	

(b) (i) $p=10$

$$
A 2
$$

(ii) subtracting to find q

$$
q=20
$$

(c) evidence of mid-interval values
eg $15,45,75,105$
$\bar{x}=52.5$ (exact), $\sigma=22.5$ (exact)
(d) 0.781650
78.2 (\%)

$$
A 2
$$

[2 marks]
(e) recognize binomial probability
eg $\quad X \sim \mathrm{~B}(n, p),\binom{5}{r} \times 0.782^{r} \times 0.218^{5-r}$
valid approach
(M1)
eg $\quad \mathrm{P}(X \leq 3)$
0.30067
0.301

Question 18
(a) (i) $a=0.0823604, b=0.306186$

$$
a=0.0824, b=0.306
$$

(ii) correct explanation with reference to number of litres required for 1 km

$$
A 1 \quad N 1
$$

eg a represents the (average) amount of fuel (litres) required to drive 1 km , (average) litres per kilometre, (average) rate of change in fuel used for each km travelled
(b) valid approach
(M1)
eg $\quad y=0.0824(110)+0.306$, sketch
9.36583
9.37 (litres)

A1 N2 [2 marks]

Total [5 marks]
Question 19
(a) correct substitution
eg $\quad 0.3 \times 0.6$
$\mathrm{P}(A \cap B)=0.18$
A1 N2 [2 marks]
(b) correct substitution
eg $\quad \mathrm{P}(A \cup B)=0.3+0.6-0.18$
$\mathrm{P}(A \cup B)=0.72$

A1 | $N 2$ |
| ---: |
| [2 marks] |

(c) (i)

(ii) appropriate approach
(M1)
eg $\quad 0.3-0.18, \mathrm{P}(A) \times \mathrm{P}\left(B^{\prime}\right)$

$$
\mathrm{P}\left(A \cap B^{\prime}\right)=0.12 \quad \text { (may be seen in Venn diagram) }
$$

A1 N2
[3 marks]
Total [7 marks]

Question 20
(a) (i) valid approach
eg $\quad \mathrm{P}(G)=\mathrm{P}(H>60), z=0.875, \mathrm{P}(H>60)=1-0.809, \mathrm{~N}\left(53,8^{2}\right)$
0.190786
$\mathrm{P}(G)=0.191 \quad$ A1 N2
(ii) finding $\mathrm{P}(H>70)=0.01679$ (seen anywhere)
recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(H>70 \mid H>60)$
correct working
eg $\frac{0.01679}{0.191}$
0.0880209
$\mathrm{P}(X>70 \mid G)=0.0880$
(b) attempt to square their $\mathrm{P}(G)$
eg 0.191^{2}
0.0363996
$\mathrm{P}($ both $G)=0.0364$
(c) (i) correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 100(0.191)$
$\mathrm{E}(G)=19.1[19.0,19.1] \quad$ A1
(ii) recognizing binomial probability (may be seen in part (c)(i))
eg $\quad X \sim \mathrm{~B}(n, p)$
valid approach (seen anywhere)
eg $\mathrm{P}(X \geq 25)=1-\mathrm{P}(X \leq 24), 1-\mathrm{P}(X<a)$
correct working
eg $\mathrm{P}(X \leq 24)=0.913 \ldots, 1-0.913 \ldots$
0.0869002
$P(X \geq 25)=0.0869$

Question 21
(a) evidence of set up
$e g \quad$ correct value for r (or for a or b, seen in (b))
0.996010
$r=0.996[0.996,0.997]$ A1
(b) $\quad a=3.15037, b=-15.4393$
$a=3.15[3.15,3.16], b=-15.4[-15.5,-15.4]$
A1A1 N2
[2 marks]
(c) substituting 26 into their equation
eg $\quad y=3.15(26)-15.4$
66.4704
$66.5[66.4,66.5] \quad A 1 \quad N 2$
Total [6 marks]

Question 22
(a) recognizing that the median is at half the total frequency
(M1)
eg $\frac{2000}{2}$
$m=2500$ (dollars)
A1
[2 marks]
(b) (i) 500 families have a monthly income less than 2000

A1 N1
(ii) correct cumulative frequency, 1850
subtracting their cumulative frequency from 2000
(M1)
eg 2000-1850
150 families have a monthly income of more than 4000 dollars A1 N2

Note: If working shown, award M1A1A1 for $128+22=150$, using the table.
(c) correct calculation
(A1)
eg $\quad 2000-(436+64+765+28+122), 1850-500-765$
$p=585$
A1 N2
[2 marks]
(d) (i) correct working
(A1)
eg $\quad 436+765+28$
0.6145 (exact)
$\frac{1229}{2000}, 0.615[0.614,0.615]$
A1
(ii) correct working/probability for number of families
$e g \quad 122+28, \frac{150}{2000}, 0.075$
0.186666
$\frac{28}{150}\left(=\frac{14}{75}\right), 0.187[0.186,0.187]$
$A 1 \quad N 2$
[4 marks]
(e) evidence of using correct mid-interval values $(1500,3000,4500)$
attempt to substitute into $\frac{\sum f x}{\sum f}$
(M1)
eg $\frac{1500 \times 64+3000 \times p+4500 \times 122}{64+585+122}$
3112.84

3110 [3110, 3120] (dollars)
${ }_{\text {Al }} \begin{array}{r}\mathrm{N} 2 \\ {[3 \mathrm{marks}]}\end{array}$
Total [15 marks]

Question 23

(a) (i) $\mathrm{P}(X>760)=0.5$ (exact), $[0.499,0.500]$

A1
(M1)
recognising symmetry, $\frac{0.7887}{2}, 1-\mathrm{P}(W<815), \frac{21.13}{2}+78.87 \%$ correct working
eg $\quad 0.5+0.39435,1-0.10565$,

0.89435 (exact), 0.894 [$0.894,0.895$]

A1
(b) (i) 1.24999

$$
z=1.25[1.24,1.25]
$$

$$
A 1
$$

N1
(ii) evidence of appropriate approach
eg $\quad \sigma=\frac{x-\mu}{1.25}, \frac{815-760}{\sigma}$
correct substitution
eg $\quad 1.25=\frac{815-760}{\sigma}, \frac{815-760}{1.24999}$
44.0003
$\sigma=44.0 \quad[44.0,44.1](\mathrm{g})$
A1
N2
[4 marks]
(c) correct working
eg $760-1.5 \times 44$
693.999
$694[693,694](\mathrm{g})$
(d) 0.0668056
$\mathrm{P}(X<694)=0.0668[0.0668,0.0669]$
(ii) evidence of valid approach

A1
(e) recognizing conditional probability (seen anywhere)
$e g \quad \mathrm{P}(\mathrm{A} \mid \mathrm{B}), \frac{0.025}{0.0668}$
appropriate approach involving conditional probability
eg $\quad \mathrm{P}(S \mid T)=\frac{\mathrm{P}(S \text { and } T)}{\mathrm{P}(T)}$,
correct working
$e g \quad \mathrm{P}($ salmon and tiddler $)=0.25 \times 0.1, \frac{0.25 \times 0.1}{0.0668}$
0.374220
0.374 [0.374, 0.375]

$$
A 1
$$

Question 24
(a) (i) evidence of valid approach
eg 1 correct value for r, (or for a or b, seen in (ii))
0.946591
$r=0.947$
A1 N2

$$
\text { (ii) } \quad \begin{aligned}
a & =0.500957, b=0.803544 \\
a & =0.501, b=0.804
\end{aligned}
$$

A1A1
N2
[4 marks]
(b) substituting $x=3.7$ into their equation

(M1)

eg $0.501(3.7)+0.804$
2.65708 (2 hours 39.4252 minutes)
$y=2.7$ (hours)(must be correct 1 dp , accept 2 hours 39.4 minutes)
(A1)

A1
N3
[3 marks]
Total [7marks]

Question 25
(a) 0.0477903
probability $=0.0478$
A2 N2
(b) $\mathrm{P}($ volume $<250)=0.02$
(M1)
$z=-2.05374 \quad$ (may be seen in equation) A1
attempt to set up equation with z
(M1)
eg $\frac{\mu-260}{\sigma}=z, 260-2.05(\sigma)=250$
4.86914
$\sigma=4.87$ (ml)
A1 N3 [4 marks]
(c) (i) 0.968062
$\mathrm{P}(250<\mathrm{Vol}<271)=0.968$
A2 N2
(ii) recognizing conditional probability (seen anywhere, including in correct working)
eg $\quad \mathrm{P}(A \mid B), \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}, \mathrm{P}(A \cap B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$
correct value or expression for P (not underfilled)
eg $\quad 0.98,1-0.02,1-P(X<250)$
probability $=\frac{0.968}{0.98}$
0.987818
probability $=0.988$

(d) METHOD 1

evidence of recognizing binomial distribution (seen anywhere)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial cdf, $p=0.968, r=47$

$$
\begin{equation*}
\mathrm{P}(X \leq 47)=0.214106 \tag{A1}
\end{equation*}
$$

evidence of using complement
eg $\quad 1-\mathrm{P}(X \leq 47)$
0.785894
probability $=0.786$
A1

N3

METHOD 2

evidence of recognizing binomial distribution (seen anywhere)
(M1)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial cdf, $p=0.968, r=47$
$\mathrm{P}($ not pass $)=1-\mathrm{P}($ pass $)=0.0319378$
evidence of attempt to find P (2 or fewer fail)
eg 0,1 , or 2 not pass, $B(50,2)$
0.785894
probability $=0.786$

METHOD 3

evidence of recognizing binomial distribution (seen anywhere)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial cdf, $p=0.968, r=47$
evidence of summing probabilities
eg $\quad \mathrm{P}(X=48)+\mathrm{P}(X=49)+\mathrm{P}(X=50)$
correct working
eg $\quad 0.263088+0.325488+0.197317$
0.785894
probability $=0.786$

A1
[4 marks]

Question 26
(a) (i) evidence of set up eg correct value for a, b or r $a=4.8, b=1.2$
A1A1
(ii) $\quad r=0.988064$
$r=0.988$

A1 N1
[4 marks]
(A1)
eg $\quad 4.8 \times 7+1.2$
34.8 (millions of dollars) (accept 35 and 34800000)

A1 N2 [2 marks]

Total [6 marks]

Question 27
(a) valid approach
eg $\frac{L-\mu}{\sigma}$, using a value for σ, using 68% and 95%
correct working
$\mathrm{P}(-1<Z<2)$, correct probabilities $(0.6826 \ldots+0.1359 \ldots)$
(A1)
$\mathrm{P}(50-\sigma<L<50+2 \sigma)=0.818594$

$$
\mathrm{P}(50-\sigma<L<50+2 \sigma)=0.819
$$

A1 | N2 |
| ---: |
| [3 marks] |

(b) $z=1.95996$
(A1)
correct equation
eg $\frac{53.92-50}{\sigma}=1.95996, \sigma=2.00004$

$$
\sigma=2.00
$$

AG
(c) valid set up

M1
eg $\quad \mathrm{P}(L>t)=0.75$, right tail, \qquad , 0.25
$t=48.6510$
$t=48.7$ (do not accept 48.5 from using $z=-0.75$)
A2
N2
(d) (i) correct approach
eg from t to $50.1, \mathrm{P}(48.7<X<50.1), 0.269942$
recognize conditional probability (seen anywhere, including in correct working)
eg $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
correct substitution
eg $\quad \frac{\mathrm{P}(48.7<X<50.1)}{\mathrm{P}(X>48.7)}, \frac{0.269942}{0.75}$
0.359923
0.360
(ii) $\quad \mathrm{P}(X \geq 2)$
attempt to find $\mathrm{P}(X \geq 2)$
eg $\quad 1-\mathrm{P}(X=0)-\mathrm{P}(X=1), \mathrm{P}(X=2)+\mathrm{P}(X=3)+\ldots$
recognize binomial distribution
eg $\quad X \sim \mathrm{~B}(n, p)$
0.923741
0.924

Question 28
(a) evidence of using $\sum p_{i}=1$
(M1)
correct substitution A1
eg $0.15+k+0.1+2 k=1,3 k+0.25=1$
$k=0.25$
A1 N2 [3 marks]
(b) correct substitution
eg $\quad 0 \times 0.15+1 \times 0.25+2 \times 0.1+3 \times 0.5$
$\mathrm{E}(X)=1.95$

Question 29
(a) $\mathrm{P}(C \cap D)=2 k \times 3 k^{2}$
(A1)
$\mathrm{P}(C \cap D)=6 k^{3}$
A1 N2 [2 marks]
(b) their correct equation
eg $\quad 2 k \times 3 k^{2}=0.162,6 k^{3}=0.162$
$k=0.3$
A1 N2 [2 marks]
(c) METHOD 1
finding their $\mathrm{P}\left(C^{\prime} \cap D\right)$ (seen anywhere)
eg $0.4 \times 0.27,0.27-0.162,0.108$
correct substitution into conditional probability formula
eg $\quad \mathrm{P}\left(C^{\prime} \mid D\right)=\frac{\mathrm{P}\left(C^{\prime} \cap D\right)}{0.27}, \frac{(1-2 k)\left(3 k^{2}\right)}{3 k^{2}}$
$\mathrm{P}\left(C^{\prime} \mid D\right)=0.4$
A1 N2
METHOD 2
recognizing $\mathrm{P}\left(C^{\prime} \mid D\right)=\mathrm{P}\left(C^{\prime}\right)$
A1
finding their $\mathrm{P}\left(C^{\prime}\right)=1-\mathrm{P}(C)$ (only if first line seen)
(A1)
eg $\quad 1-2 k, 1-0.6$
$\mathrm{P}\left(C^{\prime} \mid D\right)=0.4$

A1
[3 marks]
Total [7 marks]

Question 30
(a) evidence of setup
eg correct value for a or b
13.3823, 137.482
$a=13.4, b=137 \quad$ A1A1
(b) correct substitution into their regression equation
eg $\quad 13.3823 \times 7+137.482$
(A1)
correct calculation
231.158

231 (coyotes) (must be an integer)
(c) recognizing $t=0$
eg $\quad f(0)$
correct substitution into the model
eg $\frac{2000}{1+99 e^{-k(0)}}, \frac{2000}{100}$
(A1)
20 (foxes)
A1
(d) recognizing $(5,64)$ satisfies the equation
(M1)
eg $\quad f(5)=64$
correct substitution into the model
eg $\quad 64=\frac{2000}{1+99 e^{-k(5)}}, 64\left(1+99 e^{-5 k}\right)=2000$
0.237124
$k=-\frac{1}{5} \ln \left(\frac{11}{36}\right)$ (exact), 0.237
(A1)

A1
(e) valid approach
eg $\quad c=f$, sketch of graphs
correct working
eg $\frac{2000}{1+99 e^{-0.237124 t}}=13.382 t+137.482$, sketch of graphs, table of values
$t=12.0403$
(A1)
2007
Note: Exception to the FT rule. Award A1FT on their value of t.

Question 31
(a) finding standardized value for 4 kg (seen anywhere)
eg $\quad z=-1.64485$
attempt to standardize
eg $\quad \sigma=\frac{x-\mu}{z}, \frac{4-10}{\sigma}$
correct substitution
eg $\quad-1.64=\frac{4-10}{\sigma}, \frac{4-10}{-1.64}$
$\sigma=3.64774$
$\sigma=3.65$
A1 N2
[4 marks]
(b) valid approach
eg $\quad 1-p, 0.62, \frac{w-10}{3.65}=0.305$
$w=11.1143$
$w=11.1$
A1

N2

[2 marks]
(c) attempt to restrict melon population
eg 95% are delivered, P (medium | delivered), $57+38$
correct probability for medium watermelons
eg $\frac{0.57}{0.95}$
$\frac{57}{95}, 0.6,60 \%$
A1
(d) proportion of large watermelons (seen anywhere)
eg $\quad \mathrm{P}($ large $)=0.4,40 \%$
correct approach to find total sales (seen anywhere)
eg $150=$ sales -300 , total sales $=\$ 450$
correct expression
eg $\quad 1.75(0.6 x)+3(0.4 x), 1.75(0.6)+3(0.4)$
evidence of correct working
eg $\quad 1.75(0.6 x)+3(0.4 x)=450,2.25 x=450$
200 watermelons in the delivery

A1
[5 marks]

Question 32
(a)

A1A1
Note: Award A1 for vertical line clearly to right of mean, A1 for shading to left of their vertical line.
(b) $\mathrm{P}(X \leq 25)=0.894350$
$\mathrm{P}(X \leq 25)=0.89$ (must be 2 d.p.)
A1 N2
[2 marks]
(c) $c=22.0976$
$c=22.1$
A2
[2 marks]
Total [6 marks]

Question 33
(a) strong, negative (both required

A2 N2
[2 marks]
(b) METHOD 1
valid approach
eg $\quad \mathrm{e}^{\ln M}=\mathrm{e}^{-0.12 t+4.67}$
correct use of exponent laws for $\mathrm{e}^{-0.12 t+4.67}$
(A1)
eg $\quad \mathrm{e}^{-0.12 t} \times \mathrm{e}^{4.67}$
comparing coefficients/terms
(A1)
eg $\quad b^{t}=e^{-0.12 t}$
$b=\mathrm{e}^{-0.12}$ (exact), 0.887
A1

METHOD 2

valid approach
eg $\quad \ln \left(a \times b^{t}\right)=-0.12 t+4.67$
correct use of log laws for $\ln \left(a b^{t}\right)$
(A1)
eg $\quad \ln a+t \ln b$
comparing coefficients
(A1)
eg $\quad-0.12=\ln b$
$b=\mathrm{e}^{-0.12}$ (exact), 0.887

N3
[4 marks]
Total [6 marks]

Question 34
(a) evidence of summing to 1
eg $0.55+0.3+0.1+k=1$

$$
k=0.05 \quad \text { (exact) }
$$

A1 N2
 [2 marks]

(b) (i) 0.55

A1

N1
(ii) recognizing binomial probability
eg $\quad X: B(n, p),\binom{5}{4},(0.55)^{4}(1-0.55),\binom{n}{r} p^{r} q^{n-r}$
$\mathrm{P}(X=4)=0.205889$
$\mathrm{P}(X=4)=0.206$
A1

N2 [3 marks]
(c) correct substitution into formula for $\mathrm{E}(X)$
eg $0.2+(2 \times 0.08)+(3 \times 0.02)$
$\mathrm{E}(B)=0.42$ (exact)
A1N2
(d) (i) valid attempt to find one possible way of having 2 breakdowns eg $2 A, 2 B, 1 A$ and $1 B$, tree diagram one correct calculation for 1 way (seen anywhere)
eg $0.1 \times 0.7,0.55 \times 0.08,0.3 \times 0.2$
recognizing there are 3 ways of having 2 breakdowns
eg A twice or B twice or one breakdown each
correct working
eg $\quad(0.1 \times 0.7)+(0.55 \times 0.08)+(0.3 \times 0.2)$
$\mathrm{P}(2$ breakdowns $)=0.174$ (exact)

A1

(ii) recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(2 A \mid 2$ breakdowns $)$
correct working

> (A1)
eg $\frac{0.1 \times 0.7}{0.174}$
$\mathrm{P}(A=2 \mid$ two breakdowns $)=0.402298$
$\mathrm{P}(A=2 \mid$ two breakdowns $)=0.402$

Question 35
(a) 0.0668072
$\mathrm{P}(S<50)=0.0668$ (accept $\mathrm{P}(S \leq 49)=0.0548)$

A2 [2 marks]
(b) valid approach

Eg $\mathrm{P}(S<50) \times \mathrm{P}(R<x)$
correct equation (accept any variable)
eg $\quad \mathrm{P}(S<50) \times \mathrm{P}(R<x)=1 \%, 0.0668072 \times p=0.01, \mathrm{P}(R<x)=\frac{0.01}{0.0668}$
finding the value of $\mathrm{P}(R<x)$
eg $\quad \frac{0.01}{0.0668}, 0.149684$
9.40553
$x=9.41 \quad$ (accept $x=9.74$ from 0.0548)

Question 36
(a) (i) valid approach
eg correct value for r (or for a or b seen in (ii))
-0.994347
$r=-0.994$
A1
N2
(ii) $-1.58095,33480.3$
$a=-1.58, \quad b=33500$
A1A1 N2
[4 marks]
(b) correct substitution into their regression equation
eg $\quad-1.58095(11000)+33480.3$
16089.85 (16120 from 3sf)
price $=16100$ (dollars) (must be rounded to the nearest 100 dollars)
A1
N3 [3 marks]
(c) METHOD 1
valid approach
eg $\quad P \times(\text { rate })^{t}$
rate $=0.95$ (may be seen in their expression)
correct expression
eg 16100×0.95^{6}
11834.97

11800 (dollars)
A1
N2
METHOD 2
attempt to find all six terms
eg $(((16100 \times 0.95) \times 0.95) \ldots) \times 0.95$, table of values
5 correct values (accept values that round correctly to the nearest dollar) $15295,14530,13804,13114,12458$A2

11835
11800 (dollars)
A1
N2
[4 marks]
(d) METHOD 1
correct equation
eg $\quad 16100 \times 0.95^{x}=10000$
valid attempt to solve
(M1)
eg
, using logs

9.28453

METHOD 2

valid approach using table of values
both crossover values (accept values that round correctly to the nearest dollar)
eg $\quad P=10147$ (1 Jan 2019), $P=9639.7$ (1 Jan 2020)
year 2019

A1
[4 marks]
Total [15 marks]

Question 37
(a) valid approach
eg $\quad z=-1.61643$

2.48863
$w=2.49(\mathrm{~kg})$
(b) correct value or expression| (seen anywhere)
eg $\quad 0.053-\mathrm{P}(X \leq 2.15), 0.039465$
evidence of conditional probability
eg $\frac{\mathrm{P}(2.15 \leq X \leq w)}{\mathrm{P}(X \leq w)}, \frac{0.039465}{0.053}$
0.744631
0.745

A1
N2
[3 marks]
[Total 6 marks]
Question 38
(a) $\mathrm{P}($ red $)=\frac{5}{15+m}$

A1
N1
[1 mark]
(b) recognizing binomial distribution
(M1)
eg $\quad X \sim \mathrm{~B}(n, p)$
correct value for the complement of their p (seen anywhere)
eg $\quad 1-\frac{5}{15+m}, \frac{10+m}{15+m}$
correct substitution into $\operatorname{Var}(X)=n p(1-p)$
eg $\quad 4\left(\frac{5}{15+m}\right)\left(\frac{10+m}{15+m}\right), \frac{20(10+m)}{(15+m)^{2}}<0.6$
$m>12.2075$
(A1)
$m=13$

Question 39
(a) attempt to substitute into formula for mean
eg $\frac{\sum x}{10}, \frac{252}{n}, \frac{252}{10}$
mean $=25.2$ (hours)
A1
N2
[2 marks]
(b) (i) mean $=30.2$ (hours)
(ii) $\sigma=5$ (hours)

A1
(c) (i) valid approach
eg $95 \%, 5 \%$ of 27
correct working
eg $0.95 \times 27,27-(5 \%$ of 27$)$
median $=25.65$ (exact), 25.7 (hours)
A1
N2
(ii) METHOD 1
variance $=(\text { standard deviation })^{2}($ seen anywhere $)$
valid attempt to find new standard deviation
eg $\quad \sigma_{\text {new }}=0.95 \times 5,4.75$
variance $=22.5625$ (exact), 22.6

METHOD 2

variance $=(\text { standard deviation })^{2}($ seen anywhere $)$
(A1)
valid attempt to find new variance
eg $0.95^{2}, 0.9025 \times \sigma^{2}$
new variance $=22.5625$ (exact), 22.6
A1 N2
[6 marks]
(d) (i) both correct frequencies
eg 80, 150
subtracting their frequencies in either order
(M1)
eg $\quad 150-80,80-150$
70 (students) A1
(ii) evidence of a valid approach
eg 10% of $200,90 \%$
correct working
eg $0.90 \times 200,200-20,180$ students
$k=35$

A1
[6 marks]

Question 40
(a) (i) $\operatorname{mode}=10$
(ii) valid approach
eg $x_{\text {max }}-x_{\text {min }}$, interval 2 to 11
range $=9$
A1 N2 [3 marks]
(b) (i) 7.14666
mean $=7.15$ A2
(ii) recognizing that variance is $(\mathrm{sd})^{2}$
eg $\quad \mathrm{var}=\sigma^{2}, 2.90605^{2}, 2.92562^{2}$

$$
\sigma^{2}=8.44515
$$

$$
\sigma^{2}=8.45 \quad \boldsymbol{A 1}
$$

$$
A 1 \quad N 2
$$

Question 41
(a) evidence of binomial distribution (may be seen in part (b))
eg $n p, 150 \times 0.08$

$$
k=12
$$

(b) (i) $\quad \mathrm{P}(X=12)=\binom{150}{12}(0.08)^{12}(0.92)^{138}$
0.119231
probability $=0.119 \quad$ A1
(ii) recognition that $X \leq 11$
(M1)
0.456800
$\mathrm{P}(X<12)=0.457$

Question 42
(a) valid approach
eg $\quad \mathrm{P}(X<\mu)=0.5,0.5-0.3$
$\mathrm{P}(X<9)=0.2$ (exact)
A1 N2 [2 marks]
(b) $z=-0.841621 \quad$ (may be seen in equation)
valid attempt to set up an equation with their z
eg $-0.842=\frac{\mu-X}{\sigma},-0.842=\frac{X-\mu}{\sigma}, z=\frac{9-\mu}{2.1}$
10.7674
$\mu=10.8$
A1 N3 [3 marks]
(c) $\mathrm{P}(X>9)=0.8$ (seen anywhere)
valid approach
eg $\quad \mathrm{P}(A) \times \mathrm{P}(B)$
correct equation
(A1)
eg $0.8 \times \mathrm{P}(Y>9)=0.4$
$\mathrm{P}(Y>9)=0.5$
A1
$\lambda=9$
A1 N3
[5 marks]
(d) finding $\mathrm{P}(9<Y<13)=0.373450$ (seen anywhere)
(A2)
recognizing conditional probability
(M1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(Y<13 \mid Y>9)$
correct working
eg $\frac{0.373}{0.5}$
0.746901
0.747

A1 N3 [5 marks]

Question 43
(a) (i) evidence of set up
eg correct value for a or b
0.667315, 22.2117
$a=0.667, b=22.2 \quad$ A1A1
(ii) 0.922958
$r=0.923 \quad$ A1
(b) valid approach
(M1)
eg $\quad 0.667(15)+22.2, N(15)$
32.2214
(A1)
32 (visitors) (must be an integer)
A1
N2

Question 44
(a) (i) correct substitution into $\mathrm{E}(X)$ formula
eg $\quad 0(p)+1(0.5)+2(0.3)+3(q)=1.2$
$q=\frac{1}{30}, 0.0333$
A1
(ii) evidence of summing probabilities to 1
eg $\quad p+0.5+0.3+q=1$
$p=\frac{1}{6}, 0.167$
A1
(b) (i) $\mathrm{P}(3$ blue $)=\frac{1}{30}, 0.0333$

A1
(ii) valid reasoning

R1
eg $\quad \mathrm{P}(3$ white $)=\mathrm{P}(0$ blue $)$

$$
P(3 \text { white })=\frac{1}{6}
$$

AG NO
(iii) valid method
eg $\mathrm{P}(3$ white $)=\frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8}, \frac{{ }_{w} C_{3}}{{ }_{10} C_{3}}$
correct equation
eg $\quad \frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8}=\frac{1}{6}, \frac{{ }_{w} C_{3}}{{ }_{10} C_{3}}=0.167$
$w=6$
A1
(c) valid approach
eg $\quad \mathrm{B}(n, p),\binom{n}{r} p^{r} q^{n-r},(0.167)^{2}(0.833)^{7},\binom{9}{2}$
0.279081
0.279
(d) recognizing one prize in first seven attempts
eg $\binom{7}{1},\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6}$
correct working
(A1)
eg $\binom{7}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6}, 0.390714$
correct approach
eg $\binom{7}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6} \times \frac{1}{6}$
0.065119
0.0651

Question 45
(a) valid approach
eg total probability $=1$
correct equation
eg $\quad 0.475+2 k^{2}+\frac{k}{10}+6 k^{2}=1,8 k^{2}+0.1 k-0.525=0$

$$
k=0.25
$$

(b) $\mathrm{P}(X=2)=0.025$

A1 [1 mark]
eg $\quad 1-0.475,2\left(0.25^{2}\right)+0.025+6\left(0.25^{2}\right), 1-\mathrm{P}(X=0), 2 k^{2}+\frac{k}{10}+6 k^{2}$
correct substitution into formula for conditional probability
eg $\frac{0.025}{1-0.475}, \frac{0.025}{0.525}$
0.0476190
$\mathrm{P}(X=2 \mid X>0)=\frac{1}{21}$ (exact), 0.0476

A1 N2
[3 marks]
Total [8 marks]
finding the z-value for 0.17
(A1)
eg $z=-0.95416$
setting up equation to find σ,
eg $z=\frac{168-180}{\sigma},-0.954=\frac{-12}{\sigma}$
$\sigma=12.5765$
EITHER (Properties of the Normal curve)
correct value (seen anywhere)
(A1)
eg $\quad \mathrm{P}(X<192)=0.83, \mathrm{P}(X>192)=0.17$
correct working
eg $\mathrm{P}(X<192-h)=0.83-0.8, \mathrm{P}(X<192-h)=1-0.8-0.17$, $\mathrm{P}(X>192-h)=0.8+0.17$
correct equation in h
eg $\quad \frac{(192-h)-180}{12.576}=-1.88079,192-h=156.346$
35.6536
$h=35.7$
OR (Trial and error using different values of h)
two correct probabilities whose 2 sf will round up and down, respectively, to 0.8
eg $\mathrm{P}(192-35.6<X<192)=0.799706, \mathrm{P}(157<X<192)=0.796284$, $\mathrm{P}(192-36<X<192)=0.801824$
$h=35.7$
(a) evidence of setup
eg correct value for a or b
$a=6.96103, b=-454.805$
$a=6.96, b=-455$ (accept 6.96x-455)
A1A1
(b) substituting $N=270$ into their equation
eg 6.96(270)-455
1424.67
$P=1420$ (g) A
A1 N2
[2 marks]
(c) 40 (hives)
(d) (i) valid approach
eg $128+40$
168 hives have a production less than k
(A1)
$k=1640$
A1
N3
(ii) valid approach
eg 200-168
32 (hives)
(M1)
A1
N2
[5 marks]
(e) recognize binomial distribution (seen anywhere)
(M1)
eg $\quad X \sim \mathrm{~B}(n, p),\binom{n}{r} p^{r}(1-p)^{n-r}$
correct values
eg $\quad n=40($ check $\boldsymbol{F T})$ and $p=0.75$ and $r=30,\binom{40}{30} 0.75^{30}(1-0.75)^{10}$
0.144364
0.144

Question 48
(a) (i) evidence of using $\sum p_{i}=1$
eg $k+0.98+0.01=1$
$k=0.01 \quad$ A1
N2
(ii) recognizing that 93 and 119 are symmetrical about μ
(M1)
eg μ is midpoint of 93 and 119
correct working to find μ
A1
$\frac{119+93}{2}$
$\mu=106$
AG
(b) finding standardized value for 93 or 119
eg $z=-2.32634, z=2.32634$
correct substitution using their z value
eg $\quad \frac{93-106}{\sigma}=-2.32634, \frac{119-106}{2.32634}=\sigma$
$\sigma=5.58815$
0.024508
$\mathrm{P}(X<95)=0.0245$
(c) evidence of recognizing binomial
eg ${ }_{n} C_{a} \times p^{a} \times q^{n-a}, n=10$ and $p=0.0245, \mathrm{~B}(n, p)$
valid approach
eg $\mathrm{P}(X \leq 1), \mathrm{P}(X=0)+\mathrm{P}(X=1)$
0.976285
0.976
(A1)
(M1)
(A1)
(A1)

A2

A1
[3 marks]
(d) (i) recognizing new binomial probability
eg $B(50,0.976)$
correct substitution
eg $\mathrm{E}(X)=50(0.976285)$
48.81425
48.8 A1
(ii) valid approach
eg $\mathrm{P}(\mathrm{X} \geq 48), 1-\mathrm{P}(\mathrm{X} \leq 47)$
0.884688
0.885

A1

Question 49
(a) (i) valid approach
eg correct value for a or b (or for r seen in (ii))

$$
\begin{aligned}
& a=1.91966 \quad b=7.97717 \\
& a=1.92, b=7.98
\end{aligned}
$$

(ii) 0.984674
$r=0.985$

A1 N1 [4 marks]

(b) correct substitution into their equation
eg $\quad 1.92 \times 1.95+7.98$
11.7205
$11.7(\mathrm{~kg})$
A1 N2 [2 marks]
[Total: 6 marks]
Question 50
(a) correct approach indicating subtraction
eg $\quad 0.79-0.095$, appropriate shading in diagram
$\mathrm{P}(289<w<310)=0.695$ (exact), 69.5%

A1
[2 marks]
(b) METHOD 1
(i) valid approach
eg $1-p, 21$
-0.806421
$z=-0.806$
A1
N2
(ii) attempt to standardize
(M1)
eg $\quad \sigma=\frac{289-297}{z}, \frac{289-297}{\sigma}$
correct substitution with their z (do not accept a probability)
eg $-0.806=\frac{289-297}{\sigma}, \frac{289-297}{-0.806}$
9.92037
$\sigma=9.92$
A1

METHOD 2

(i) \& (ii)
correct expression for z (seen anywhere)
eg $\frac{289-\mu}{\sigma}$
valid approach
eg $1-p, 21$
-0.806421
$z=-0.806$ (seen anywhere)

A1

N2
valid attempt to set up an equation with their z
(do not accept a probability)
eg $\quad-0.806=\frac{289-297}{\sigma}, \frac{289-297}{-0.806}$
9.92037
$\sigma=9.92 \quad$ A1
(c) valid approach
eg $\mathrm{P}(W<w)=0.35,-0.385320$ (accept 0.385320), diagram showing values in a standard normal distribution correct score at the 35th percentile
eg 293.177
294 (g)
A1

Note: If working shown, award (M1)(A1)A0 for 293.
If no working shown, award N1 for 293.177, N1 for 293.
Exception to the FT rule: If the score is incorrect, and working shown, award A1FT for correctly finding their minimum weight (by rounding up)
[3 marks]
(d) evidence of recognizing binomial (seen anywhere)
eg $\quad X \sim \mathrm{~B}(36, p),{ }_{n} \mathrm{C}_{a} \times p^{a} \times q^{n-a}$
correct probability (seen anywhere)
eg 0.65
(M1)

EITHER

finding $\mathrm{P}(X \leq 18)$ from GDC
eg 0.045720
evidence of using complement
eg $\quad 1-\mathrm{P}(X \leq 18)$
0.954279
$\mathrm{P}(X>18)=0.954$
OR
recognizing $\mathrm{P}(X>18)=\mathrm{P}(X \geq 19)$
summing terms from 19 to 36
eg $\mathrm{P}(X=19)+\mathrm{P}(X=20)+\ldots+\mathrm{P}(X=36)$
0.954279
$\mathrm{P}(X>18)=0.954$

A1 [5 marks]
(e) correct calculation
$0.954^{2},\binom{2}{2} 0.954^{2}(1-0.954)^{0}$
0.910650
0.911

A1
N2
[2 marks]

Question 51
(a) $-0.394791,13$
$\mathrm{A}(-0.395,13) \quad$ A1A1 $\begin{array}{r}\text { N2 } \\ \text { [2 marks] }\end{array}$
(b) (i) 13

A1 N1
(ii) $2 \pi, 6.28$

A1 N1 [2 marks]
(c) valid approach
(M1)
eg recognizing that amplitude is p or shift is r
$f(x)=13 \cos (x+0.395)$ (accept $p=13, r=0.395$)
Note: Accept any value of r of the form $0.395+2 \pi k, k \in \mathbb{Z}$
A1A1 N3
[3 marks]
(M1)
(A1)

A1 N2
[3 marks]
(M1)
(A1)
correct equation (accept any variable for t)
eg $\quad a(t)=-2,\left|\frac{\mathrm{~d}}{\mathrm{~d} t}\left(d^{\prime}(t)\right)\right|=2,-12 \cos (t)+5 \sin (t)=-2$
valid attempt to solve their equation
(M1)
eg sketch, 1.33
1.02154
1.02

N3
[5 marks]
Total [15 marks]

Question 52
(a) valid approach
eg Venn diagram, $\mathrm{P}(A)-\mathrm{P}(A \cap B), 0.62-0.18$
$\mathrm{P}\left(A \cap B^{\prime}\right)=0.44$
(b) valid approach to find either $\mathrm{P}\left(B^{\prime}\right)$ or $\mathrm{P}(B)$
eg

correct calculation for $\mathrm{P}\left(B^{\prime}\right)$ or $\mathrm{P}(B)$
eg $\quad 0.44+0.19,0.81-0.62+0.18$
correct substitution into $\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$
eg $\frac{0.44}{0.19+0.44}, \frac{0.44}{1-0.37}$
0.698412
$\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{44}{63}$ (exact), 0.698
A1 N3
[4 marks]
Total [6 marks]
Question 53
(a) evidence of summing to 1
eg $0.28+k+0.15+0.3=1,0.73+k=1$
$k=0.27$
A1 N2 [2 marks]
(A1)

A1 N2 [2 marks]
(c) valid approach
(M1)
eg $n p, 80 \times 0.15$
12

A1 N2
[2 marks]
Total [6 marks]

Question 54
(a) 0.010724
0.0107

A2
N2
(b) correct z-value
0.263714...
evidence of appropriate approach
eg $\quad \frac{0.65-0.592}{\sigma}, 0.264=\frac{x-\mu}{\sigma}$
correct substitution
eg $\quad 0.263714=\frac{0.65-0.592}{\sigma}, \sigma=\frac{0.65-0.592}{0.264}$
0.219934
$\sigma=0.220$
A1
N3
(c) correct work for P (group X and $t>0.65$) or P (group Y and $t>0.65$) (may be
seen anywhere)
eg $\mathrm{P}($ group X$) \times \mathrm{P}(t>0.65 \mid \mathrm{X}), \mathrm{P}(X \cap t>0.65)=0.0107 \times 0.38(=0.004075)$,
$\mathrm{P}(Y \cap t>0.65)=0.396 \times 0.62$
recognizing conditional probability (seen anywhere)
(M1)
eg $\quad \mathrm{P}(\mathrm{X} \mid t>0.65), \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
valid approach to find $\mathrm{P}(t>0.65)$
eg

$\mathrm{P}(\mathrm{X}$ and $t>0.65)+\mathrm{P}(\mathrm{Y}$ and $t>0.65)$
correct work for $\mathrm{P}(t>0.65)$
eg $0.0107 \times 0.38+0.396 \times 0.62,0.249595$
correct substitution into conditional probability formula
A1
eg $\frac{0.0107 \times 0.38}{0.0107 \times 0.38+0.396 \times 0.62}, \frac{0.004075}{0.249595}$
0.016327
$\mathrm{P}(\mathrm{X} \mid t>0.65)=0.0163270 \quad$ A1
N3
(d) recognizing binomial probability
(M1)
(M1)
eg $\quad \mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1), 1-\mathrm{P}(X<a)$, summing terms from 2 to 10 (accept binomcdf($10,0.0163,2,10)$)
0.010994
$\mathrm{P}(X \geq 2)=0.0110 \quad$ A1
A1 N2
[3 marks]
Total [15 marks]

Question 55
(a) (i) evidence of set up
(M1)
eg correct value for a or b or r (seen in (ii)) or $r^{2}(=0.973)$

$$
9.91044,-31.3194
$$

$$
a=9.91, b=-31.3, y=9.91 x-31.3
$$

$$
\text { (ii) } \begin{aligned}
& 0.986417 \\
& r=0.986
\end{aligned}
$$

A1A1
(b) substituting $x=21.5$ into their equation

(M1)

eg 9.91(21.5)-31.3
181.755

182 (cm)

Question 56
(a) valid approach
$\left(A \cap M^{\prime}\right)+(A \cap M), \frac{17}{35}, 11+6$
number of students taking art class $=17$
A1 N2 [2 marks]
(b) (i) valid approach
(M1)
$13+5,35-17,18,1-\mathrm{P}(A)$
0.514285
$\mathrm{P}\left(A^{\prime}\right)=\frac{18}{35} \quad$ (exact), 0.514
(ii) valid approach
(M1)
$11+13,35-6-5,24$
0.685714
$\mathrm{P}(A$ or M but not both $)=\frac{24}{35}$ (exact), 0.686

Question 57
(a) METHOD 1
multiplication of $\mathrm{P}(A)$ and $\mathrm{P}(D)$
eg $0.70 \times 0.85,0.595$
correct reasoning for their probabilities
eg $\quad 0.595 \neq 0.65,0.70 \times 0.85 \neq \mathrm{P}(A \cap D)$
A and D are not independent
AG

METHOD 2

calculation of $\mathrm{P}(D \mid A)$
eg $\frac{13}{14}, 0.928$
correct reasoning for their probabilities
R1
eg $\quad 0.928 \neq 0.85, \frac{0.65}{0.7} \neq \mathrm{P}(D)$
A and D are not independent
AG
(b) (i) correct working
eg $\quad \mathrm{P}(A)-\mathrm{P}(A \cap D), 0.7-0.65$, correct shading and/or value on Venn diagram

$$
\mathrm{P}\left(A \cap D^{\prime}\right)=0.05 \quad \text { A1 }
$$

(ii) recognizing conditional probability (seen anywhere)
eg $\frac{\mathrm{P}\left(D^{\prime} \cap A\right)}{\mathrm{P}(A)}, \mathrm{P}(A \mid B)$
correct working
eg $\frac{0.05}{0.7}$
0.071428
$\mathrm{P}\left(D^{\prime} \mid A\right)=\frac{1}{14}, 0.0714 \quad$ A1
(c) finding standardized value for 28 hours (seen anywhere)
eg $z=1.28155$
correct working to find σ
eg $\quad 1.28155=\frac{28-25}{\sigma}, \frac{28-25}{1.28155}$
2.34091
$\sigma=2.34$
A1 N2
[3 marks]
(d) $\mathrm{P}(X>30)=0.0163429$
valid approach (seen anywhere)
eg $[\mathrm{P}(X>30)]^{2},(0.01634)^{2}, \mathrm{~B}(2,0.0163429), 2.67 \mathrm{E}-4,2.66 \mathrm{E}-4$
0.0267090
0.0267\%

Question 58
(a) (i) valid approach
(M1)
eg correct value for a or b (or for correct r or $r^{2}=0.955631$ seen in (ii))

$$
\begin{gathered}
0.141120,11.1424 \\
a=0.141, b=11.1
\end{gathered}
$$

A1A1
N3
(ii) 0.977563
$r=0.978$
A1 N1
(b) correct substitution into their regression equation
eg $0.141(95)+11.1$
24.5488
24.5

A1 N2 [2 marks]

Total [6 marks]
Question 59
(a) (i) valid approach to find P (one red)
eg ${ }_{n} C_{a} \times p^{a} \times q^{n-a}, \mathrm{~B}(n, p), 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2},\binom{3}{1}$
listing all possible cases for exactly one red (may be indicated on tree diagram)
$P(1$ red $)=0.444\left(=\frac{4}{9}\right)[0.444,0.445]$
(ii) valid approach
eg $\quad \mathrm{P}(X=2)+\mathrm{P}(X=3), 1-\mathrm{P}(X \leq 1)$, binomcdf $\left(3, \frac{1}{3}, 2,3\right)$ correct working
eg $\frac{2}{9}+\frac{1}{27}, 0.222+0.037,1-\left(\frac{2}{3}\right)^{3}-\frac{4}{9}$
0.259259
$\mathrm{P}($ at least two red $)=0.259\left(=\frac{7}{27}\right)$
(b) recognition that winning $\$ 10$ means rolling exactly one green
recognition that winning $\$ 10$ also means rolling at most 1 red
eg "cannot have 2 or more reds"
correct approach
eg $\quad \mathrm{P}(1 \mathrm{G} \cap 0 \mathrm{R})+\mathrm{P}(\mathrm{lG} \cap 1 \mathrm{R}), \mathrm{P}(1 \mathrm{G})-\mathrm{P}(\mathrm{lG} \cap 2 \mathrm{R})$, "one green and two yellows or one of each colour"

Note: Because this is a "show that" question, do not award this A1 for purely numerical expressions.
one correct probability for their approach
eg $3\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{2}, \frac{6}{27}, 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}, \frac{1}{9}, \frac{2}{9}$
correct working leading to $\frac{1}{3}$
eg $\frac{3}{27}+\frac{6}{27}, \frac{12}{27}-\frac{3}{27}, \frac{1}{9}+\frac{2}{9}$
probability $=\frac{1}{3}$
(c) (i) $x=\frac{7}{27}, 0.259$ (check FT from (a)(ii))

A1 N1
(ii) evidence of summing probabilities to 1
eg $\quad \Sigma=1, x+y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}=1,1-\frac{7}{27}-\frac{9}{27}-\frac{6}{27}-\frac{1}{27}$
0.148147 (0.148407 if working with their x value to 3 sf)
$y=\frac{4}{27}$ (exact), 0.148
A1
(d) correct substitution into the formula for expected value
eg $\quad-w \cdot \frac{7}{27}+10 \cdot \frac{9}{27}+20 \cdot \frac{6}{27}+30 \cdot \frac{1}{27}$
correct critical value (accept inequality)
eg $\quad w=34.2857\left(=\frac{240}{7}\right), w>34.2857$
$\$ 40$
A1

Question 60
(a) valid approach
eg correct value for a or b (ignore incorrect labels)
$a=6.92986, b=8.80769$
$a=6.93, b=8.81$ (accept $y=6.93 x+8.81$)
(b) valid approach
eg $750=x+y$, edge + interior $=750$
correct working
eg $750-x=6.9298 x+8.807,93.4684$
93 (pieces) (accept 94) A1

Question 61
(a) evidence of finding $\frac{\sum x}{n}$
eg $\frac{0.3+0.4+3+\ldots+10}{10}, \frac{48.2}{10}$

$$
\bar{x}=4.82 \text { (exact) }
$$

(b) $\quad p=4.25$ (exact)
(c) valid approach
eg $Q_{3}-Q_{1} 3-8,3$ to 8
$\mathrm{IQR}=5$
A1
N2
[2 marks]
Total [5 marks]

Question 62

(ii) finding $\mathrm{P}(X=10)$ (seen anywhere)
eg $\quad\binom{12}{10} \times 0.83^{10} \times 0.17^{2}(=0.295952)$
recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(X=10 \mid X \geq 7), \frac{\mathrm{P}(X=10 \cap X \geq 7)}{\mathrm{P}(X \geq 7)}$
correct working
(A1)
eg $\frac{0.295952}{0.991248}$
0.298565
0.299

A1
Note: Exception to the FT rule: if the candidate uses an incorrect value for the probability that a flight is on time in (i) and working shown, award full $\boldsymbol{F T}$ in (ii) as appropriate.
(d) correct equation
eg $\quad\binom{20}{19} p^{19}(1-p)+p^{20}=0.788$
valid attempt to solve
(M1)
eg graph
0.956961
0.957

Question 63
(a) correct approach
eg $0.2+0.5+b+a=1,0.7+a+b=1$
$b=0.3-a$
(b) correct substitution into $\mathrm{E}(X)$
eg $\quad 0.2+4 \times 0.5+a \times b+(a+b-0.5) \times a, 0.2+2+a \times b-0.2 a$
valid attempt to express $\mathrm{E}(X)$ in one variable
eg $0.2+4 \times 0.5+a \times(0.3-a)+(-0.2) \times a, 2.2+0.1 a-a^{2}$, $0.2+4 \times 0.5+(0.3-b) \times b+(-0.2) \times(0.3-b), 2.14+0.5 b-b^{2}$
correct value of greatest $\mathrm{E}(X)$
2.2025 (exact)
valid attempt to find least value
eg graph with minimum indicated, $\mathrm{E}(0)$ and $\mathrm{E}(0.3)$,
$(0,2.2)$ and $(0.3,2.14)$ if $\mathrm{E}(X)$ in terms of a $(0,2.14)$ and $(0.3,2.2)$ if $\mathrm{E}(X)$ in terms of b
correct value of least $\mathrm{E}(X)$
eg 2.14 (exact)
difference $=0.0625$ (exact)
A1

Question 64
(a) evidence of set up
(M1)
eg correct value for a or b (accept $r=0.966856$)
$4.30161,163.330$
$a=4.30, b=163$ (accept $y=4.30 x+163$)
(b) valid approach
eg $4.30(154)+163$
825.778 (825.2 from 3 sf values)
(A1)
number of messages $=826$ (must be an integer)

