Subject – Math (Standard Level) Topic - Statistics and Probability Year - Nov 2011 – Nov 2019 Paper -2

(a)	median = 174 (cm)	AI	N1 [1 mark]
(b)	attempt to find number shorter than 161 <i>e.g.</i> line on graph, 12 boys	(M1)	
	$p = \frac{12}{200} \ (=0.06)$	AI	N2 [2 marks]
(c)	METHOD 1		
	18 % have a height less than h	(A1)	
	$0.18 \times 200 = 36$ (36 may be seen as a line on the graph)	(A1)	
	h = 166 (cm)	AI	N2 [3 marks]
	METHOD 2		
	$0.82 \times 200 = 164$ (164 may be seen as a line on the graph)	(A1)	
	200-164=36	(A1)	
	h = 166 (cm)	AI	N2 [3 marks]
	Zu.satpreP.co.	Total [6 ma	

(c)

(i)

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with **their** working and check carefully for *FT*.

(a) evidence of recognizing binomial (seen anywhere in the question) (M1) e.g.
$$_{n}C_{r}$$
 p^{r} q^{n-r} , B(n, p), $_{10}^{10}C_{1}(0.012)^{1}(0.988)^{9}$

$$p = 0.108$$
 A1 N2 [2 marks]

(b) valid approach
$$e.g. P(X \le 1), 0.88627...+ 0.10764...$$
 (M1)

$$p = 0.994$$
 A1 N2 [2 marks]

N2

A1 for shading to left of their vertical line.

(ii) valid approach e.g. P(X < 22.63)

working to find standardized value (A1) e.g.
$$\frac{22.63-22}{0.3}$$
, 2.1

$$p = 0.982$$
 A1 N3 [5 marks]

(a) evidence of recognizing binomial distribution (M1) e.g.
$$X \sim B(10, 0.57)$$
, $p = 0.57$, $q = 0.43$

EITHER

$$P(X \le 3) = 2.16 \times 10^{-4} + 0.00286 + 0.01709 + 0.06041 \ (= 0.08057...)$$
 (A1) evidence of using complement (M1) e.g. $1 - \text{any probability}, \ P(X \ge 4) = 1 - P(X \le 3)$

$$0.919423...$$
 $P(X \ge 4) = 0.919$ A1 N3

OR

summing the probabilities from
$$X = 4$$
 to $X = 10$ (M1) correct expression or values (A1)

e.g.
$$\sum_{r=4}^{10} {10 \choose r} (0.57)^r (0.43)^{10-r}$$
, $0.14013 + 0.2229 + ... + 0.02731 + 0.00362$

$$0.919424$$
 $P(X \ge 4) = 0.919$ A1 N3 [4 marks]

(b) evidence of valid approach

e.g. three tails in nine tosses,
$$\binom{9}{3}(0.57)^3(0.43)^6$$

correct calculation

e.g.
$$\binom{9}{3} (0.57)^3 (0.43)^6 \times 0.57, 0.09834 \times 0.57$$
 (A1)

0.05605178... $P(4^{th} tail on 10^{th} toss) = 0.0561$

Total [7 marks]

(a) (i)
$$p = 17, q = 11$$
 A1A1 N2

(ii)
$$75 \le T < 85$$
 A1 N1 [3 marks]

$$\frac{76}{93} = 0.8172043...$$

$$P(T < 95) = \frac{76}{93} = 0.817$$
 A1 N2

[2 marks]

$$\overline{x} = 79.1$$
 A2 N3

(ii)
$$16.4386061$$
 $\sigma = 16.4$ A1 N1

(e) evidence of valid approach e.g. standardizing, z = 0.9648... (M1)

$$0.8326812$$
 $P(T < 95) = 0.833$

A1 N2 [2 marks]

[4 marks]

Total [13 marks]

(a) evidence of appropriate method (M1) e.g. $z = \frac{122.5 - 117}{5}$, sketch of normal curve showing mean and 122.5, 1.1

$$P(Z<1.1)=0.8643$$
 (A1)

0.135666

$$P (H>122.5) = 0.136$$
 A1 N3 [3 marks]

(b)
$$z = 0.3853$$
 (A1)

e.g.
$$\frac{X-117}{5} = 0.3853$$
, sketch $k = 118.926602$

(a) evidence of recognizing binomial (seen anywhere)
$$e.g. B(n, p)$$
, 0.95^{50} finding $P(X = 0) = 0.21463876$ (A1) appropriate approach $e.g.$ complement, summing probabilities 0.785361 probability is 0.785 A1 N3 [4 marks] (b) identifying correct outcomes (seen anywhere) $e.g. P(X = 1) + P(X = 2)$, $1 \text{ or } 2 \text{ defective}$, $0.3389... + 0.2586...$ recognizing conditional probability (seen anywhere) $e.g. P(A|B)$, $P(X \le 2|X \ge 1)$, $P(\text{at most } 2|\text{ at least } 1)$ appropriate approach involving conditional probability $e.g. P(X = 1) + P(X = 2)$, $0.3389... + 0.2586...$ 1 or 2 $e.g. P(X = 1) + P(X = 2)$, $0.3389... + 0.2586...$ 1 or 2 $e.g. P(X \ge 1)$, 0.760847 probability is 0.761 A1 N2 [4 marks] Total [8 marks] Total [8 marks] 0.760847 probability is 0.761 A1 N2 [4 marks] $0.760866...$ 0.760847 probability is 0.761 A1 N3 [8 marks] $0.760866...$ 0.760847 probability is 0.761 A1 N3 [8 marks] $0.760866...$ 0.760847 probability is 0.761 A1 N3 [8 marks] $0.760866...$ 0.760847 probability is 0.761 A1 N3 N4 N4 N4 N4 N4 N5 N5 (M1) $0.760866...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$ $0.7608666...$

[8 marks]

valid approach e.g. Venn diagram with intersection, union formula, $P(S \cap F) = 0.75 + 0.40 - 1$	(M1)	
15 (accept 15 %)	AI	N2 [2 marks]
valid approach involving subtraction $e.g.$ Venn diagram, $75-15$	(M1)	
60 (accept 60 %)	A1	N2 [2 marks]
(i) valid approach e.g. tree diagram, multiplying probabilities, $P(S G) \times P(G)$	(M1)	
correct calculation e.g. 0.52×0.85	(A1)	
$P(G \cap S) = 0.442 \text{ (exact)}$	A1	N3
(ii) valid reasoning, with words, symbols or numbers (seen anywhere) e.g. $P(G) \times P(S) \neq P(G \cap S)$, $P(S \mid G) \neq P(S)$, not equal,	R1	
one correct value e.g. $P(G) \times P(S) = 0.39$, $P(S G) = 0.85$, $0.39 \neq 0.442$	AI	
G and S are not independent	AG	N0 [5 marks]
METHOD 1		
48 % are boys (seen anywhere) e.g. $P(B) = 0.48$	A1	
appropriate approach $e.g.$ P(girl and Spanish) + P(boy and Spanish) = P(Spanish)	(M1)	
correct approach to find P(boy and Spanish) e.g. $P(B \cap S) = P(S) - P(G \cap S)$, $P(B \cap S) = P(S B) \times P(B)$, 0.308	(A1)	
correct substitution e.g. $0.442 + 0.48x = 0.75$, $0.48x = 0.308$	(A1)	
correct manipulation e.g. $P(S B) = \frac{0.308}{0.48}$	(A1)	
$P(Spanish boy) = 0.641666, 0.641\overline{6}$		
P(Spanish boy) = 0.642 [0.641, 0.642]	AI	N3 [6 marks]
	e.g. Venn diagram with intersection, union formula, $P(S \cap F) = 0.75 + 0.40 - 1$ 15 (accept 15 %) valid approach involving subtraction e.g. Venn diagram, 75 – 15 60 (accept 60 %) (i) valid approach e.g. tree diagram, multiplying probabilities, $P(S G) \times P(G)$ correct calculation e.g. 0.52×0.85 $P(G \cap S) = 0.442$ (exact) (ii) valid reasoning, with words, symbols or numbers (seen anywhere) e.g. $P(G) \times P(S) \neq P(G \cap S)$, $P(S G) \neq P(S)$, not equal, one correct value e.g. $P(G) \times P(S) = 0.39$, $P(S G) = 0.85$, $0.39 \neq 0.442$ G and S are not independent METHOD 1 48 % are boys (seen anywhere) e.g. $P(B) = 0.48$ appropriate approach e.g. $P(G \cap S) = P(S \cap S) =$	e.g. Venn diagram with intersection, union formula, $P(S \cap F) = 0.75 + 0.40 - 1$ 15 (accept 15 %) A1 valid approach involving subtraction e.g. Venn diagram, 75 – 15 60 (accept 60 %) A1 (i) valid approach e.g. tree diagram, multiplying probabilities, $P(S \mid G) \times P(G)$ correct calculation e.g. 0.52×0.85 $P(G \cap S) = 0.442$ (exact) A1 (ii) valid reasoning, with words, symbols or numbers (seen anywhere) e.g. $P(G) \times P(S) \neq P(G \cap S)$, $P(S \mid G) \neq P(S)$, not equal, one correct value e.g. $P(G) \times P(S) \neq P(G \cap S)$, $P(S \mid G) \neq P(S)$, not equal, A2 G and S are not independent A3 METHOD 1 48 % are boys (seen anywhere) e.g. $P(B) = 0.48$ appropriate approach e.g. $P(G) \times P(S) = $

METHOD 2

p = 9

mean = 26.7

 $\sigma^2 = 121$

recognizing that variance is (sd)2

eg 11.021...², $\sigma = \sqrt{\text{var}}$, 11.158...²

(i)

(ii)

(b)

48 % are boys (seen anywhere) e.g. 0.48 used in tree diagram

appropriate approach
e.g. tree diagram

correctly labelled branches on tree diagram
e.g. first branches are boy/girl, second branches are Spanish/not Spanish

correct substitution
e.g.
$$0.442 + 0.48x = 0.75$$

correct manipulation
e.g. $0.48x = 0.308$, $P(S|B) = \frac{0.308}{0.48}$

P(Spanish | boy) = $0.641666...$, $0.641\overline{6}$

P(Spanish | boy) = $0.642 [0.641, 0.642]$

A1 N3
[6 marks]

Total [15 marks]

Question 9

(a) valid approach
e.g. $35 - 26$, $26 + p = 35$

AI

A1

A2

(M1)

A1

N2

N2

N2

[4 marks]

Total [6 marks]

[2 marks]

$$eg \quad P(X < Q_3) = 0.75, 0.25$$

$$eg \quad z = 0.67448..., z = -0.67448...$$

attempt to set up equation (must be with
$$z$$
 – values) (M1)

$$eg = 0.67 = \frac{Q_3 - 150}{10}, -0.67448 = \frac{x - 150}{10}$$

one correct quartile

$$eg Q_3 = 156.74..., Q_1 = 143.25...$$
 (A1)

eg other correct quartile,
$$Q_3 - \mu = 6.744...$$

eg
$$Q_3 - Q_1$$
, $2(Q_3 - \mu)$

$$IQR = 13.5$$
 A1 N4

[7 marks]

Question 11

$$eg z = \frac{22.9 - 20}{5}$$

$$z = 0.58 \tag{A1}$$

$$P(X \le 22.9) = 0.719$$
 A1 N3 [3 marks]

valid approach (must be with
$$z$$
 – values) (M1)

eg using inverse normal,
$$0.1257 = \frac{k-20}{5}$$

$$k = 20.6$$
 A1

Total [6 marks]

[3 marks]

N3

(a) METHOD 1

(i) appropriate approach (M1)
$$eg = \frac{6}{10} \times \frac{6}{10}, \frac{6}{10} \times \frac{5}{9}, \frac{6}{10} \times \frac{5}{10}$$

$$P(X=0) = \frac{9}{25} = 0.36$$
 A1 N2

(ii) multiplying one pair of gold and silver probabilities (M1)
$$eg = \frac{6}{10} \times \frac{4}{10}, \frac{6}{10} \times \frac{4}{9}, 0.24$$

adding the product of both pairs of gold and silver probabilities (M1)

$$eg = \frac{6}{10} \times \frac{4}{10} \times 2, \frac{6}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{6}{9}$$

$$P(X=1) = \frac{12}{25} = 0.48$$
 A1 N3

(iii)
$$P(X = 2) = 0.16$$
 (seen anywhere) (A1)

correct substitution into formula for
$$E(X)$$
 (A1)
eg $0 \times 0.36 + 1 \times 0.48 + 2 \times 0.16$, $0.48 + 0.32$

$$E(X) = \frac{4}{5} = 0.8$$
 A1 N3

METHOD 2

(i) evidence of recognizing binomial (may be seen in part (ii))

$$eg X \sim B(2,0.6), {2 \choose 0} (0.4)^2 (0.6)^0$$

(M1)

correct probability for use in binomial (A1) eg
$$p = 0.4$$
, $X \sim B(2, 0.4)$, ${}^{2}C_{0}(0.4)^{0}(0.6)^{2}$

$$P(X=0) = \frac{9}{25} = 0.36$$
 A1 N3

(ii) correct set up (A1)

$$eg C_1(0.4)^1(0.6)^1$$

$$P(X=1) = \frac{12}{25} = 0.48$$
 A1 N2

(iii) attempt to substitute into
$$np$$
 (M1) $eg 2 \times 0.6$

correct substitution into
$$np$$
 (A1) $eg = 2 \times 0.4$

$$E(X) = \frac{4}{5} = 0.8$$
 A1 N3
[8 marks]

Let Y be the number of gold balls drawn from the bag in parts (b), (c), and (d).

(b) evidence of recognizing binomial (seen anywhere) (M1)
$$eg_{14} C_5 (0.4)^5 (0.6)^9$$
, B(14, 0.4)

$$P(Y = 5) = 0.207$$
 A1 N2 [2 marks]

(c) recognize need to find
$$P(Y \le 5)$$
 (M1)

$$P(Y \le 5) = 0.486$$
 A1 N2 [2 marks]

eg
$$P(A|B)$$
, $P(Y=5|Y\le5)$, $\frac{P(Y=5)}{P(Y\le5)}$, $\frac{0.207}{0.486}$

$$P(Y = 5 | Y \le 5) = 0.42522518$$
 (A1)

$$P(Y = 5 | Y \le 5) = 0.43$$
 (to 2 dp) A1 N2

[3 marks]

Total [15 marks]

(a) correct approach eg
$$0.5 = 0.2 + P(B)$$
, $P(A \cap B) = 0$

$$P(B) = 0.3$$
 A1 N2 [2 marks]

(b) Correct expression for
$$P(A \cap B)$$
 (seen anywhere)

eg
$$P(A \cap B) = 0.2P(B), 0.2x$$

attempt to substitute into correct formula for
$$P(A \cup B)$$
 (M1)

eg
$$P(A \cup B) = 0.2 + P(B) - P(A \cap B)$$
, $P(A \cup B) = 0.2 + x - 0.2x$

eg
$$0.5 = 0.2 + P(B) - 0.2P(B)$$
, $0.8x = 0.3$

$$P(B) = \frac{3}{8} (= 0.375, \text{ exact})$$
 A1 N3

Total [6 marks]

[4 marks]

Total [7 marks]

Question 14

$$eg \qquad z = \frac{21.8 - 20}{1.25}, \ 1.44$$

$$P(T < 21.8) = 0.925$$

[2 marks]

(b) attempt to subtract probabilities (M1) eg
$$P(T < 21.8) - P(T < k) = 0.3$$
, $0.925-0.3$

$$P(T < k) = 0.625$$

EITHER

finding the z-value for
$$0.625$$
 (A1)

eg
$$z = 0.3186$$
 (from tables), $z = 0.3188$

eg
$$0.3186 = \frac{k-20}{1.25}$$
, $-0.524 \times 1.25 = k-20$

$$k = 20.4$$
 A1 N3

OR

$$k = 20.4$$
 A3 N3 [5 marks]

•	(a)	appropriate approach $eg P(R \cap B) + P(R' \cap B)$, tree diagram,	(M1)	
		one correct multiplication eg 0.2×0.5, 0.24	(A1)	
		correct working $eg = 0.2 \times 0.5 + 0.8 \times 0.3, 0.1 + 0.24$	(A1)	
		P(bus) = 0.34 (exact)	AI	N3
	(b)	recognizing conditional probability $eg P(A B) = \frac{P(A \cap B)}{P(B)}$	(R1)	[4 marks]
		correct working	AI	
		eg $\frac{0.2 \times 0.5}{0.34}$ P $(R B) = \frac{5}{17}$, 0.294	AI	N2
	(c)	recognizing binomial probability	(R1)	[3 marks]
		eg $X \sim B(n, p), {5 \choose 3} (0.34)^3, (0.34)^3 (1-0.34)^2$ P(X=3) = 0.171	A1	N2 [2 marks]
)		PHOD 1 ence of using complement (seen anywhere) $1-P(\text{none}), 1-0.95$	(M1)	
	valid eg	approach $1-P(\text{none}) > 0.95$, $P(\text{none}) < 0.05$, $1-P(\text{none}) = 0.95$	(M1)	
	corre eg	ect inequality (accept equation) $1-(0.66)^n > 0.95$, $(0.66)^n = 0.05$	A1	
	n > 7	7.209 (accept $n = 7.209$)	(A1)	
	n = 8	3	<i>A1</i>	N3
		THOD 2 approach using guess and check/trial and error finding $P(X \ge 1)$ for various values of n	(M1)	
	seein	ig the "cross over" values for the probabilities $n = 7$, $P(X \ge 1) = 0.9454$, $n = 8$, $P(X \ge 1) = 0.9639$	AIAI	
	recog	gnising $0.9639 > 0.95$	(R1)	
	n = 8		A1	N3 [5 marks]
			Total	[14 marks]

(ii) correct substitution

(a)	(i)	a = 0.486 (exact)	AI	N1
		b = -12.41 (exact), -12.4	AI	N1

(A1)

(b) (i)
$$r = 0.997276$$

 $r = 0.997$ A1 NI

(ii) strong, positive (must have both correct)

A2 N2
[3 marks]
Total [7 marks]

attempt to find a percentage (M1)
$$eg = \frac{65}{80}, \frac{65}{80} \times 100$$

(b) (i)
$$p = 10$$
 A2 N2

(ii) subtracting to find
$$q$$
 (M1) $eg 75-45-10$

$$q = 20$$
 A1 N2 [4 marks]

$$\overline{x}$$
 = 52.5 (exact), σ = 22.5 (exact) A1A1 N3
[3 marks]

eg
$$X \sim B(n, p)$$
, r $\times 0.782 \times 0.218$

valid approach
$$eg P(X \le 3)$$
 (M1)

Total [16 marks]

(a) (i) a = 0.0823604, b = 0.306186

$$a = 0.0824$$
, $b = 0.306$

AIAI

A1

N2

(ii) correct explanation with reference to number of litres required for 1 km

N1

eg a represents the (average) amount of fuel (litres) required to drive 1 km, (average) litres per kilometre, (average) rate of change in fuel used for each km travelled

[3 marks]

(b) valid approach eg y = 0.0824(110) + 0.306, sketch

(M1)

9.36583

9.37 (litres)

A1 N2 [2 marks]

Total [5 marks]

Question 19

(a) correct substitution

 $eg = 0.3 \times 0.6$

 $P(A \cap B) = 0.18$

(A1)

A1 N2 [2 marks]

(b) correct substitution

eg $P(A \cup B) = 0.3 + 0.6 - 0.18$

 $P(A \cup B) = 0.72$

(A1)

A1

[2 marks]

N2

(c) (i)

AI NI

(ii) appropriate approach

eg 0.3-0.18, $P(A) \times P(B')$

 $P(A \cap B') = 0.12$ (may be seen in Venn diagram)

(M1)

A1 N2 [3 marks]

Total [7 marks]

(a) (i) valid approach
$$eg \ P(G) = P(H > 60), z = 0.875, \ P(H > 60) = 1 - 0.809, \ N(53, 8^2)$$
0.190786
P(G) = 0.191

A1 N2

(ii) finding $P(H > 70) = 0.01679$ (seen anywhere)

(A1) recognizing conditional probability $eg \ P(A \mid B), \ P(H > 70 \mid H > 60)$

correct working
$$eg \ \frac{0.01679}{0.191}$$
0.0880209
P(X > 70 | G) = 0.0880

A1 N3 | f6 marks|

(b) attempt to square their P(G) $eg \ 0.191^2$
0.0363996
P(both G) = 0.0364

A1 N2 | [2 marks]

(c) (i) correct substitution into formula for E(X) $eg \ 100(0.191)$
E(G) = 19.1 [19.0, 19.1]

A1 N2

(ii) recognizing binomial probability (may be seen in part (c)(i)) $eg \ X - B(n, p)$
valid approach (seen anywhere) $eg \ P(X \ge 25) = 1 - P(X \le 24), 1 - P(X < a)$
correct working
 $eg \ P(X \ge 25) = 0.0869$

A1 N2 | [6 marks]

(a) evidence of set up eg correct value for r (or for a or b, seen in (b))

0.996010 $r = 0.996 \ [0.996, 0.997]$ A1

(b) a = 3.15037, b = -15.4393a = 3.15 [3.15, 3.16], b = -15.4 [-15.5, -15.4] A1A1 N2 [2 marks]

(c) substituting 26 into **their** equation eg y = 3.15(26) - 15.4 (M1)

66.4704 66.5 [66.4, 66.5]

AI

N2

N2

[2 marks]

Total [6 marks]

(a) recognizing that the median is at half the total frequency
$$\frac{2000}{2}$$
 $\frac{2000}{2}$ $m = 2500$ (dollars) $\frac{2000}{2}$ $m = 2500$ (dollars) $\frac{1}{2}$ $\frac{1}{2}$

(b) (i)

(a) (i)
$$P(X > 760) = 0.5$$
 (exact), [0.499, 0.500]

N1 AI

(ii) evidence of valid approach

(M1)

recognising symmetry, $\frac{0.7887}{2}$, 1 - P(W < 815), $\frac{21.13}{2} + 78.87\%$

correct working

(A1)

0.5 + 0.39435, 1 - 0.10565,

N2 A1[4 marks]

0.89435 (exact), 0.894 [0.894, 0.895]

1.24999 z = 1.25 [1.24, 1.25]

AI

N1

evidence of appropriate approach

(M1)

$$eg \qquad \sigma = \frac{x - \mu}{1.25}, \frac{815 - 760}{\sigma}$$

correct substitution

(A1)

$$eg = 1.25 = \frac{815 - 760}{\sigma}, \frac{815 - 760}{1.24999}$$

44.0003 $\sigma = 44.0 [44.0, 44.1] (g)$

AI

N2 [4 marks]

correct working

 $760 - 1.5 \times 44$

(A1)

693.999

694 [693, 694] (g)

AI

N2[2 marks]

(d) 0.0668056

P(X < 694) = 0.0668 [0.0668, 0.0669]

A2

[2 marks]

N2

(e) recognizing conditional probability (seen anywhere)
$$eg \quad P(A|B), \frac{0.025}{0.0668}$$
 appropriate approach involving conditional probability
$$eg \quad P(S|T) = \frac{P(S \text{ and } T)}{P(T)},$$
 correct working
$$eg \quad P \text{ (salmon and tiddler)} = 0.25 \times 0.1, \frac{0.25 \times 0.1}{0.0668}$$
 (A1)
$$0.374220$$

$$0.374 [0.374, 0.375]$$
 A1 N2
$$[4 \text{ marks}]$$
 Total [16 marks]

Question 24

(a) (i) evidence of valid approach eg 1 correct value for r , (or for a or b , seen in (ii))
$$0.946591 \\ r = 0.947$$
 A1 N2

(ii) $a = 0.500957, b = 0.803544$
$$a = 0.501, b = 0.804$$
 A1A1 N2
$$[4 \text{ marks}]$$
(b) substituting $x = 3.7$ into their equation eg 0.501(3.7) + 0.804

2.65708 (2 hours 39.4252 minutes)
$$y = 2.7 \text{ (hours)(must be correct 1 dp, accept 2 hours 39.4 minutes)}$$
 (A1) N3
$$[3 \text{ marks}]$$

Total [7marks]

(a) 0.0477903 probability = 0.0478A2 N₂ [2 marks] P(volume < 250) = 0.02(b) (M1)z = -2.05374(may be seen in equation) A1 attempt to set up equation with z (M1) $\frac{\mu - 260}{\sigma} = z$, $260 - 2.05(\sigma) = 250$ 4.86914 $\sigma = 4.87$ (ml) A1 N₃ [4 marks] 0.968062 (c) (i) A2 N₂ P(250 < Vol < 271) = 0.968recognizing conditional probability (seen anywhere, including in correct (ii) working) R1 $P(A|B), \frac{P(A \cap B)}{P(B)}, P(A \cap B) = P(A|B)P(B)$ correct value or expression for P(not underfilled) (A1) 0.98, 1-0.02, 1-P(X < 250)probability = A1 0.987818 probability = 0.988 A1 N₂

[6 marks]

(d) METHOD 1

evidence of recognizing binomial distribution (seen anywhere) eg
$$X$$
 B(50, 0.968), binomial cdf, $p=0.968$, $r=47$
 $P(X \le 47) = 0.214106$ (A1)

evidence of using complement eg $1-P(X \le 47)$
 0.785894 probability = 0.786 A1 N3

METHOD 2

evidence of recognizing binomial distribution (seen anywhere) eg X B(50, 0.968), binomial cdf, $p=0.968$, $r=47$
 $P(\text{not pass}) = 1-P(\text{pass}) = 0.0319378$ (A1)

evidence of attempt to find P (2 or fewer fail) (M1)

eg 0 , 1 , or 2 not pass, $B(50, 2)$
 0.785894 probability = 0.786 A1 N3

METHOD 3

evidence of recognizing binomial distribution (seen anywhere) eg X B(50, 0.968), binomial cdf, $p=0.968$, $r=47$

evidence of summing probabilities (M1)

Total [16 marks]

(a) (i) evidence of set up
$$eg$$
 correct value for a , b or r $a=4.8$, $b=1.2$ A1A1 N3

(ii) $r=0.988064$ $r=0.988$ A1 N1 [4 $marks$]

(b) correct substitution into their regression equation $eg=4.8 \times 7 + 1.2$ 34.8 (millions of dollars) (accept 35 and 34.800000) A1 N2 [2 $marks$]

Total [6 $marks$]

Question 27

(a) valid approach $eg=\frac{L-\mu}{\sigma}$, using a value for σ , using 68% and 95% correct working $P(-1 < Z < 2)$, correct probabilities $(0.6826...+0.1359...)$ (A1) $P(50-\sigma < L < 50 + 2\sigma) = 0.818594$ $P(50-\sigma < L < 50 + 2\sigma) = 0.819$ A1 N2 [3 $marks$]

(b) $z=1.95996$ correct equation $eg=\frac{53.92-50}{\sigma}=1.95996$, $\sigma=2.00004$ $\sigma=2.00$ AG N0 [2 $marks$]

(c) valid set up M1

 $eg=P(L>t)=0.75$, right tail, $max=0.75$ $max=0.7$

(d) (i) correct approach eg from
$$t$$
 to 50.1 , $P(48.7 < X < 50.1)$, 0.269942

recognize conditional probability (seen anywhere, including in correct working) eg $P(A|B)$

correct substitution eg $\frac{P(48.7 < X < 50.1)}{P(X > 48.7)}, \frac{0.269942}{0.75}$
 0.359923
 0.360

A1 N3

(ii) $P(X \ge 2)$

attempt to find $P(X \ge 2)$

eg $1 - P(X = 0) - P(X = 1)$, $P(X = 2) + P(X = 3) + \dots$

recognize binomial distribution eg $X - B(n, p)$
 0.923741
 0.924

A1 N2

[8 marks]

Total [16 marks]

Question 28

(a) evidence of using $\sum p_i = 1$

correct substitution eg $0.15 + k + 0.1 + 2k = 1$, $3k + 0.25 = 1$
 $k = 0.25$

A1 N2

[3 marks]

(b) correct substitution eg $0 \times 0.15 + 1 \times 0.25 + 2 \times 0.1 + 3 \times 0.5$
 $E(X) = 1.95$

A1 N2

[2 marks]

Total [5 marks]

(a)
$$P(C \cap D) = 2k \times 3k^2$$
 (A1)

$$P(C \cap D) = 6k^3$$
 A1 N2 [2 marks]

eg
$$2k \times 3k^2 = 0.162$$
, $6k^3 = 0.162$
 $k = 0.3$

A1 N2 [2 marks]

(c) METHOD 1

finding their
$$P(C' \cap D)$$
 (seen anywhere) (A1)

eg
$$P(C'|D) = \frac{P(C' \cap D)}{0.27}, \frac{(1-2k)(3k^2)}{3k^2}$$

$$P(C'|D) = 0.4$$
 A1 N2

METHOD 2

recognizing
$$P(C'|D) = P(C')$$

finding their
$$P(C') = 1 - P(C)$$
 (only if first line seen) (A1)

eg
$$1-2k$$
, $1-0.6$

$$P(C' \mid D) = 0.4$$
 A1 N2 [3 marks] Total [7 marks]

(a)	evidence of setup eg correct value for a or b	(M1)	
	13.3823, 137.482 <i>a</i> = 13.4, <i>b</i> = 137	A1A1	N3 [3 marks]
(b)	correct substitution into their regression equation eg $13.3823 \times 7 + 137.482$	(A1)	
	correct calculation 231.158	(A1)	
	231 (coyotes) (must be an integer)	A1	N2 [3 marks]
(c)	recognizing $t = 0$ eg $f(0)$	(M1)	
	correct substitution into the model		
	$eg = \frac{2000}{1+99e^{-k(0)}}, \frac{2000}{100}$	(A1)	
	20 (foxes)	A1	N2 [3 marks]
(d)	recognizing $(5, 64)$ satisfies the equation $eg f(5) = 64$	(M1)	
	correct substitution into the model eg $64 = \frac{2000}{1 + 99e^{-k(5)}}$, $64(1 + 99e^{-5k}) = 2000$	(A1)	
	0.237124 $k = -\frac{1}{5} \ln \left(\frac{11}{36} \right) \text{ (exact), 0.237}$ walid approach	A1	N2
(e)	valid approach $c=f$, sketch of graphs	(M1)	[3 marks]
	correct working $eg = \frac{2000}{1+99e^{-0.237124t}} = 13.382t + 137.482$, sketch of graphs, table of values	(A1)	
×	t = 12.0403 2007	(A1) A1	N2
Not	te: Exception to the FT rule. Award $A1FT$ on their value of t .		10.2
			[4 marks]
		Total	[16 marks]

(a)	finding standardized value for $4 \mathrm{kg}$ (seen anywhere) eg $z = -1.64485$	(A1)	
	attempt to standardize $eg \qquad \sigma = \frac{x - \mu}{z}, \frac{4 - 10}{\sigma}$	(M1)	
	correct substitution $eg \qquad -1.64 = \frac{4-10}{\sigma}, \ \frac{4-10}{-1.64}$	(A1)	
	$\sigma = 3.64774$ $\sigma = 3.65$	A1	N2 [4 marks]
(b)	valid approach eg $1-p$, 0.62, $\frac{w-10}{3.65} = 0.305$	(M1)	
	w = 11.1143 w = 11.1	A1	N2 [2 marks]
(c)	attempt to restrict melon population eg 95% are delivered, P(medium delivered), 57 + 38	(M1)	
	correct probability for medium watermelons $ = g \frac{0.57}{0.95} $	(A1)	
	$\frac{57}{95}$, 0.6, 60%	A1	N3 [3 marks]
(d)	proportion of large watermelons (seen anywhere) eg $P(\text{large}) = 0.4, 40\%$	(A1)	
	correct approach to find total sales (seen anywhere) $eg = 150 = sales - 300$, total sales = \$450	(A1)	
	correct expression eg $1.75(0.6x) + 3(0.4x)$, $1.75(0.6) + 3(0.4)$	(A1)	
	evidence of correct working eg $1.75(0.6x) + 3(0.4x) = 450$, $2.25x = 450$	(A1)	
	200 watermelons in the delivery	A1	N2
			[5 marks]
au			[14 marks]

Note: Award A1 for vertical line clearly to right of mean,
A1 for shading to left of their vertical line.

[2 marks]

N₂

(b) $P(X \le 25) = 0.894350$

 $P(X \le 25) = 0.89$ (must be 2 d.p.)

(A1)

A1A1

A1 N2 [2 marks]

(c) c = 22.0976c = 22.1

A2 N2 [2 marks]

Total [6 marks]

(a) strong, negative (both required)

A2 N2 [2 marks]

(b) METHOD 1

(M1)

eg
$$e^{\ln M} = e^{-0.12t + 4.67}$$

(A1)

correct use of exponent laws for
$$e^{-0.12t+4.67}$$
 eg $e^{-0.12t} \times e^{4.67}$

(A1)

comparing coefficients/terms eq
$$b^t = e^{-0.12t}$$

$$b = e^{-0.12}$$
 (exact), 0.887

N3

A1

METHOD 2

valid approach

(M1)

eg
$$\ln(a \times b^t) = -0.12t + 4.67$$

correct use of log laws for $\ln(ab^t)$

(A1)

eg
$$\ln a + t \ln b$$

comparing coefficients

(A1)

eg
$$-0.12 = \ln b$$

$$b = e^{-0.12}$$
 (exact), 0.887

A1

N3 [4 marks]

Total [6 marks]

(a)	evid eg	ence of summing to 1 0.55 + 0.3 + 0.1 + k = 1	(M1)	
	<i>k</i> =	0.05 (exact)	A1	N2 [2 marks]
(b)	(i)	0.55	A1	N1
	(ii)	recognizing binomial probability eg $X: B(n, p), {5 \choose 4}, (0.55)^4 (1-0.55), {n \choose r} p^r q^{n-r}$	(M1)	
		P(X = 4) = 0.205889 P(X = 4) = 0.206	A1	N2 [3 marks]
(c)	corre	ect substitution into formula for $E(X)$ $0.2 + (2 \times 0.08) + (3 \times 0.02)$	(A1)	
	E(B	(r) = 0.42 (exact)	A1	N2 [2 marks]
(d)	(i)	valid attempt to find one possible way of having 2 breakdowns eg $2A$, $2B$, $1A$ and $1B$, tree diagram	(M1)	
		one correct calculation for 1 way (seen anywhere) eg 0.1×0.7 , 0.55×0.08 , 0.3×0.2	(A1)	
		recognizing there are 3 ways of having 2 breakdowns eg A twice or B twice or one breakdown each	(M1)	
		correct working eg $(0.1 \times 0.7) + (0.55 \times 0.08) + (0.3 \times 0.2)$	(A1)	
		P(2 breakdowns) = 0.174 (exact)	A1	N3
	(ii)	recognizing conditional probability eg $P(A B)$, $P(2A 2$ breakdowns)	(M1)	
		correct working eg $\frac{0.1 \times 0.7}{0.174}$	(A1)	
		P(A=2 two breakdowns) = 0.402298		
		P(A = 2 two breakdowns) = 0.402	A1	N2 [8 marks]
				[15 marks]

(a)
$$0.0668072$$

 $P(S < 50) = 0.0668$ (accept $P(S \le 49) = 0.0548$)

A2 N2 [2 marks]

(M1)

Eg
$$P(S < 50) \times P(R < x)$$

A1

eg
$$P(S < 50) \times P(R < x) = 1\%$$
, $0.0668072 \times p = 0.01$, $P(R < x) = \frac{0.01}{0.0668}$

finding the value of P(R < x)

(A1)

eg
$$\frac{0.01}{0.0668}$$
, 0.149684

$$x = 9.41$$
 (accept $x = 9.74$ from 0.0548)

A1

Total [6 marks]

N3

(a)	(i) valid approach eg correct value for r (or for a or b seen in (ii))	(M1)	
	-0.994347 $r = -0.994$	A1	N2
	(ii) -1.58095 , 33480.3 $a = -1.58$, $b = 33500$	A1A1	N2 [4 marks]
(b)	correct substitution into their regression equation $eg -1.58095(11000) + 33480.3$	(A1)	
	16 089.85 (16 120 from 3sf)	(A1)	
	price = 16100 (dollars) (must be rounded to the nearest $100 dollars)$	A1	N3 [3 marks]
(c)	METHOD 1		
	valid approach $P \times (\text{rate})^t$	(M1)	
	rate = 0.95 (may be seen in their expression)	(A1)	
	correct expression eg 16100×0.95^6	(A1)	
	11 834.97 11 800 (dollars)	A1	N2
	METHOD 2 attempt to find all six terms eg $((16100 \times 0.95) \times 0.95)) \times 0.95$, table of values	(M1)	
	5 correct values (accept values that round correctly to the nearest dollar) $15295,14530,13804,13114,12458$	A2	
	11 835 11 800 (dollars)	A1	N2 [4 marks]

(d) METHOD 1

correct equation

(A1)

eg
$$16100 \times 0.95^x = 10000$$

valid attempt to solve

(M1)

9.28453

(A1)

year 2019

A1

N₂

METHOD 2

valid approach using table of values

(M1)

both crossover values (accept values that round correctly to the nearest dollar)

A2

eg P = 10147 (1 Jan 2019), P = 9639.7 (1 Jan 2020)

year 2019

A1 N2

[4 marks]

Total [15 marks]

2.48863

$$w = 2.49 \text{ (kg)}$$

A2 N3 [3 marks]

(b) correct value or expression (seen anywhere)

eg
$$0.053 - P(X \le 2.15), 0.039465$$

(M1)

(A1)

(M1)

eyidence of conditional probability
$$\frac{P(2.15 \le X \le w)}{P(X \le w)}, \frac{0.039465}{0.053}$$

0.744631

A1 N2 [3 marks]

[Total 6 marks]

Question 38

(a)
$$P(\text{red}) = \frac{5}{15 + n}$$

A1 N1

[1 mark]

(b) recognizing binomial distribution

eg
$$X \sim B(n, p)$$

(M1)

correct value for the complement of $\mbox{\it their}\, p \ \ (\mbox{\it seen anywhere})$

A1

eg
$$1 - \frac{5}{15+m}, \frac{10+m}{15+m}$$

correct substitution into Var(X) = np(1-p)

(A1)

eg
$$4\left(\frac{5}{15+m}\right)\left(\frac{10+m}{15+m}\right), \frac{20(10+m)}{(15+m)^2} < 0.6$$

$$m > 12.2075$$
 (A1)

$$m=13$$
 A1 N3 [5 marks]

[Total 6 marks]

(a)	atten	npt to substitute into formula for mean	(M1)	
	eg	$\frac{\sum x}{10}, \frac{252}{n}, \frac{252}{10}$		
	meai	n = 25.2 (hours)	A1	N2 [2 marks]
(b)	(i)	mean = 30.2 (hours)	A1	N1
	(ii)	$\sigma = 5$ (hours)	A1	N1 [2 marks]
(c)	(i)	valid approach eg 95%, 5% of 27	(M1)	
		correct working eg 0.95×27 , $27 - (5\% \text{ of } 27)$	(A1)	
		median = 25.65 (exact), 25.7 (hours)	A1	N2
	(ii)	METHOD 1		
		variance = (standard deviation) ² (seen anywhere)	(A1)	
		valid attempt to find new standard deviation $eg \qquad \sigma_{\rm new} = 0.95 \times 5 \ , \ 4.75$	(M1)	
		variance = 22.5625 (exact), 22.6	A1	N2
		METHOD 2		
		variance = (standard deviation) ² (seen anywhere)	(A1)	
		valid attempt to find new variance eg 0.95^2 , $0.9025 \times \sigma^2$	(M1)	
		new variance = 22.5625 (exact), 22.6	A1	N2 [6 marks]
(d)	(i)	both correct frequencies eg 80, 150	(A1)	
		subtracting their frequencies in either order $eg = 150-80$, $80-150$	(M1)	
		70 (students)	A1	N2
	(ii)	evidence of a valid approach eg 10% of 200, 90%	(M1)	
		correct working eg 0.90×200 , $200 - 20$, 180 students	(A1)	
		<i>k</i> = 35	A1	N3 [6 marks]
			[Total	16 marks]

(a)	(i)	mode = 10	A1	N1
	(ii)	valid approach $eg = x_{\text{max}} - x_{\text{min,}}$ interval 2 to 11	(M1)	
		range = 9	A1	N2 [3 marks]
(b)	(i)	7.14666 mean = 7.15	A2	N2
	(ii)	recognizing that variance is $(sd)^2$ eg $var = \sigma^2$, 2.90605^2 , 2.92562^2	(M1)	
		$\sigma^2 = 8.44515$		
		$\sigma^2 = 8.45$	A1	N2 [4 marks]
			Tota	[7 marks]
Quest	tion 4	-1		
(a)	evid eg	ence of binomial distribution (may be seen in part (b)) $np, 150 \times 0.08$	(M1)	
	k = 1		A1	N2 [2 marks]
(b)	(i)	$P(X=12) = {150 \choose 12} (0.08)^{12} (0.92)^{138}$	(A1)	
		0.119231 probability = 0.119	A1	N2
	(ii)	recognition that $X \le 11$	(M1)	
		0.456800		
		P(X < 12) = 0.457	A1	N2 [4 marks]
			Tota	l [6 marks]

(a) valid approach
$$eg \ P(X < \mu) = 0.5, \ 0.5 - 0.3$$

$$P(X < 9) = 0.2 \ (exact)$$

$$P(X < 9) = 0.841621 \ (may be seen in equation)$$

$$Valid attempt to set up an equation with their z and the end of the end$$

Total [15 marks]

(a)	(i)	evidence of set up		
		eg correct value for a or b		
		0.667315, 22.2117		
		a = 0.667, $b = 22.2$		

A1A1

(M1)

N3

(ii)
$$0.922958$$

 $r = 0.923$

A1 N1 [4 marks]

(b) valid approach 0.667(15) + 22.2, N(15) (M1)

32.2214 32 (visitors) (must be an integer) (A1)A1 N2 [3 marks]

(a) (i) correct substitution into
$$E(X)$$
 formula
eg $0(p)+1(0.5)+2(0.3)+3(q)=1.2$

$$q = \frac{1}{30}$$
, 0.0333

eg
$$p + 0.5 + 0.3 + q = 1$$

$$p = \frac{1}{6}, 0.167$$
 A1 N2 [4 marks]

(b) (i)
$$P(3 \text{ blue}) = \frac{1}{30}, 0.0333$$

(ii) valid reasoning
$$eg P(3 ext{ white}) = P(0 ext{ blue})$$

$$P(3 \text{ white}) = \frac{1}{6}$$

eg P(3 white) =
$$\frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8}$$
, $\frac{{}_{w}C_{3}}{{}_{10}C_{3}}$

correct equation A1

eg
$$\frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8} = \frac{1}{6}, \frac{wC_3}{{}_{10}C_3} = 0.167$$

eg B(n, p),
$$\binom{n}{r} p^r q^{n-r}$$
, $(0.167)^2 (0.833)^7$, $\binom{9}{2}$

[2 marks]

(d) recognizing one prize in first seven attempts (M1)
$$eq \qquad {7 \choose 1} \cdot {1 \choose 2}^{1} {5 \choose 5}^{6}$$

eg
$$\binom{7}{1}$$
, $\left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^6$

eg
$$\binom{7}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^6$$
, 0.390714

$$eg \qquad \binom{7}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^6 \times \frac{1}{6}$$

A1 N₂ [4 marks]

[Total 15 marks]

Question 45

correct equation (A1)

eg
$$0.475 + 2k^2 + \frac{k}{10} + 6k^2 = 1$$
, $8k^2 + 0.1k - 0.525 = 0$

$$k = 0.25$$
 A2 N3 [4 marks]

(b)
$$P(X=2) = 0.025$$
 A1 N1 [1 mark]

(c) valid approach for finding
$$P(X > 0)$$
 (M1)

eg
$$1-0.475$$
, $2(0.25^2)+0.025+6(0.25^2)$, $1-P(X=0)$, $2k^2+\frac{k}{10}+6k^2$

correct substitution into formula for conditional probability (A1)

eg
$$\frac{0.025}{1-0.475}$$
, $\frac{0.025}{0.525}$

0.0476190

$$P(X=2 | X>0) = \frac{1}{21}$$
 (exact), 0.0476

[3 marks]

Total [8 marks]

finding the z-value for
$$0.17$$
 (A1)

eg
$$z = -0.95416$$

setting up equation to find
$$\sigma$$
, (M1)

eg
$$z = \frac{168 - 180}{\sigma}, -0.954 = \frac{-12}{\sigma}$$

$$\sigma = 12.5765$$
 (A1)

EITHER (Properties of the Normal curve)

eg
$$P(X < 192) = 0.83, P(X > 192) = 0.17$$

$$P(X < 192 - h) = 0.83 - 0.8, P(X < 192 - h) = 1 - 0.8 - 0.17,$$

 $P(X > 192 - h) = 0.8 + 0.17$

correct equation in h

eg
$$\frac{(192-h)-180}{12.576} = -1.88079, 192-h=156.346$$
 (A1)

$$h = 35.7$$
 A1 N3

OR (Trial and error using different values of h)

two correct probabilities whose 2 sf will round up **and** down, respectively, to 0.8 eg P(192-35.6 < X < 192) = 0.799706, P(157 < X < 192) = 0.796284,

$$P(192-36 < X < 192) = 0.801824$$

$$h = 35.7$$

[7 marks]

(a)	evidence of setup eg correct value for a or b	(M1)	
	a = 6.96103, $b = -454.805$		
	a = 6.96, b = -455 (accept $6.96x - 455$)	A1A1	N3 [3 marks]
(b)	substituting $N = 270$ into their equation eg $6.96(270) - 455$	(M1)	
	1424.67		
	P = 1420 (g)	A1	N2 [2 marks]
(c)	40 (hives)	A1	N1
			[1 mark]
(d)	(i) valid approach eg 128+40	(M1)	
	168 hives have a production less than \emph{k}	(A1)	
	k = 1640	A1	N3
	(ii) valid approach eg 200-168	(M1)	
	32 (hives)	A1	N2 [5 marks]
(e)	recognize binomial distribution (seen anywhere)	(M1)	
	eg $X \sim B(n, p), \binom{n}{r} p^r (1-p)^{n-r}$		
	correct values	(A1)	
	eg $n = 40$ (check FT) and $p = 0.75$ and $r = 30$, $\binom{40}{30} 0.75^{30} (1 - 0.75)^{10}$		
	0.144364		
	0.144	A1	N2 [3 marks]
		Total	[14 marks]

(a) (i) evidence of using
$$\sum p_i = 1$$
 eg $k + 0.98 + 0.01 = 1$
 $k = 0.01$

A1 N2

(ii) recognizing that 93 and 119 are symmetrical about μ eg μ is midpoint of 93 and 119

correct working to find μ

$$\frac{119 + 93}{2}$$

$$\mu = 106$$

AG N0
$$[4 \text{ marks}]$$
(b) finding standardized value for 93 or 119
eg $z = -2.32634$, $z = 2.32634$
correct substitution using their z value
eg
$$\frac{93 - 106}{\sigma} = -2.32634$$
,
$$\frac{119 - 106}{2.32634} = \sigma$$

$$\sigma = 5.58815$$
0.024508
$$P(X < 95) = 0.0245$$

(A1)
$$eg _{n}C_{\sigma} \times p^{a} \times q^{n-a}, n = 10 \text{ and } p = 0.0245, B(n, p)$$
valid approach
eg $P(X \le 1)$, $P(X = 0) + P(X = 1)$
0.976285
0.976

A1 N2
[3 marks]

(d)	(i)	recognizing new binomial probability eg $B(50, 0.976)$	(M1)	
		correct substitution eg $E(X) = 50(0.976285)$	(A1)	
		48.81425 48.8	A1	N2
	(ii)	valid approach $ eg \qquad P(X{\ge}48), \ 1{-}P(X{\le}47) $	(M1)	
		0.884688 0.885	A1	N2
				[5 marks]
			[Total	: 17 marks]
Ques	tion 4	9		
(a)	(i)	valid approach eg correct value for a or b (or for r seen in (ii))	(M1)	
		a = 1.91966 $b = 7.97717a = 1.92$, $b = 7.98$	A1A1	N3
	(ii)	0.984674 $r = 0.985$	A1	N1 [4 marks]
(b)	corre eg	ct substitution into their equation 1.92×1.95+7.98	(A1)	
	11.72 11.7		A1	N2 [2 marks]
			[Total	: 6 marks]
Ques	tion 5	0		
(a)	corre eg	ect approach indicating subtraction $0.79-0.095$, appropriate shading in diagram	(A1)	
	P(28	39 < w < 310) = 0.695 (exact), 69.5%	A1 [2	N2 ! marks]

(b) METHOD 1

(i) valid approach eg
$$1-p$$
, 21

-0.806421

$$z = -0.806$$
 A1

(ii) attempt to standardize

eg
$$\sigma = \frac{289 - 297}{z}$$
, $\frac{289 - 297}{\sigma}$

correct substitution with their z (do not accept a probability) A1

eg
$$-0.806 = \frac{289 - 297}{\sigma}$$
, $\frac{289 - 297}{-0.806}$

9.92037

$$\sigma = 9.92$$
 A1 N2

METHOD 2

(i) & (ii)

correct expression for z (seen anywhere) (A1)

eg
$$\frac{289-\mu}{\sigma}$$

valid approach (M1)

eg 1-p, 21

-0.806421

$$z = -0.806$$
 (seen anywhere)

valid attempt to set up an equation with their z (do not accept a probability) (M1)

eg
$$-0.806 = \frac{289 - 297}{\sigma}, \frac{289 - 297}{-0.806}$$

9.92037

$$\sigma = 9.92$$
 A1 N2

[5 marks]

N₂

N₂

(M1)

continued...

valid approach eg $P(W < w) = 0.35, -0.385320$ (accept 0.385320), diagram	(M1) showing	
values in a standard normal distribution	22.2	
correct score at the 35th percentile eg 293.177	(A1)	
294 (g)	A1	N2
Note: If working shown, award (M1)(A1)A0 for 293. If no working shown, award N1 for 293.177, N1 for 293		
Exception to the <i>FT</i> rule: If the score is incorrect, and award <i>A1FT</i> for correctly finding their minimum weight		
	[3	marks]
evidence of recognizing binomial (seen anywhere) eg $X \sim B(36, p)$, ${}_{n}C_{a} \times p^{a} \times q^{n-a}$	(M1)	
correct probability (seen anywhere) eg 0.65	(A1)	
EITHER		
finding $P(X \le 18)$ from GDC eg 0.045720	(A1)	
evidence of using complement $ \mathbf{e} \mathbf{g} \qquad 1 - \mathrm{P}(X \leq 18) $	(M1)	
0.954279		
P(X > 18) = 0.954	A1	N2
OR		
recognizing $P(X > 18) = P(X \ge 19)$	(M1)	
summing terms from 19 to 36 eg $P(X=19) + P(X=20) + + P(X=36)$	(A1)	
0.954279		
P(X > 18) = 0.954	A1 [5	N2 marks]
correct calculation	(A1)	
0.954^2 , $\binom{2}{2}$ 0.954^2 $(1-0.954)^0$		
0.910650		
0.911	A1 [2	N2 ! marks]
	Total [17	marks]

(a)	-0.394791, 13		
	A(-0.395, 13)	A1A1	N2 [2 marks]
(b)	(i) 13	A1	N1
	(ii) 2π , 6.28	A1	N1 [2 marks]
(c)	valid approach eg recognizing that amplitude is p or shift is r	(M1)	
	$f(x) = 13\cos(x + 0.395)$ (accept $p = 13$, $r = 0.395$)	A1A1	N3
	Note: Accept any value of r of the form $0.395 + 2\pi k$, $k \in \mathbb{Z}$		
			[3 marks]
(d)	recognizing need for $d'(t)$ eg $-12\sin(t) - 5\cos(t)$	(M1)	
	correct approach (accept any variable for t) eg $-13\sin(t+0.395)$, sketch of d' , $(1.18,-13)$, $t=4.32$	(A1)	
	maximum speed = $13 \text{ (cm s}^{-1})$	A1	N2 [3 marks]
(e)	recognizing that acceleration is needed eg $a(t)$, $d''(t)$	(M1)	
	correct equation (accept any variable for t) eg $a(t) = -2$, $\left \frac{d}{dt} (d'(t)) \right = 2$, $-12\cos(t) + 5\sin(t) = -2$	(A1)	
	valid attempt to solve their equation	(M1)	
	eg sketch, 1.33 1.02154		
	1.02	A2	N3 [5 marks]
		Total	[15 marks]

valid approach (a)

eg Venn diagram,
$$P(A) - P(A \cap B)$$
, 0.62 – 0.18 **(M1)**

$$P(A \cap B') = 0.44$$

A1

[2 marks]

N₂

valid approach to find either P(B') or P(B)(b)

(seen anywhere), $1 - P(A \cap B') - P((A \cup B)')$

correct calculation for P(B') or P(B)

eg
$$0.44 + 0.19$$
, $0.81 - 0.62 + 0.18$

correct substitution into
$$\frac{P(A \cap B')}{P(B')}$$

(A1)

(A1)

(M1)

eg
$$\frac{0.44}{0.19 + 0.44}$$
, $\frac{0.44}{1 - 0.37}$

0.698412

$$P(A|B') = \frac{44}{63}$$
 (exact), 0.698

A1

N₃

[4 marks]

Total [6 marks]

Question 53

(a) evidence of summing to 1
eg
$$0.28 + k + 0.15 + 0.3 = 1$$
, $0.73 + k = 1$

(M1)

$$k = 0.27$$

A1 N2 [2 marks]

(b) correct substitution into formula for
$$E(X)$$

$$1 \times 0.28 + 2 \times k + 3 \times 0.15 + 4 \times 0.3$$

(A1)

$$E(X) = 2.47$$
 (exact)

A1

[2 marks]

N₂

np, 80×0.15

(M1)

12

N₂ A1 [2 marks]

Total [6 marks]

(a) 0.010724 0.0107

A2 N2 [2 marks]

(b) correct *z*-value 0.263714...

(A1)

evidence of appropriate approach

(M1)

eg
$$\frac{0.65-0.592}{\sigma}$$
, $0.264 = \frac{x-\mu}{\sigma}$

correct substitution

(A1)

eg
$$0.263714 = \frac{0.65 - 0.592}{\sigma}, \ \sigma = \frac{0.65 - 0.592}{0.264}$$

0.219934

 $\sigma = 0.220$

A1

N3

[4 marks]

(c) correct work for P(group X and t > 0.65) or P(group Y and t > 0.65) (may be seen anywhere)

eg $P(\text{group } X) \times P(t > 0.65 | X), P(X \cap t > 0.65) = 0.0107 \times 0.38 (= 0.004075), P(Y \cap t > 0.65) = 0.396 \times 0.62$

recognizing conditional probability (seen anywhere)

(M1)

eg
$$P(X | t > 0.65), P(A | B) = \frac{P(A \cap B)}{P(B)}$$

valid approach to find P(t > 0.65)

(M1)

P(X and t > 0.65) + P(Y and t > 0.65)

correct work for P(t > 0.65)

(A1)

eg
$$0.0107 \times 0.38 + 0.396 \times 0.62, 0.249595$$

correct substitution into conditional probability formula

A1

eg
$$\frac{0.0107 \times 0.38}{0.0107 \times 0.38 + 0.396 \times 0.62}$$
, $\frac{0.004075}{0.249595}$

0.016327

$$P(X | t > 0.65) = 0.0163270$$

A1

N3 [6 marks] (d) recognizing binomial probability (M1)

eg
$$X \sim B(n, p), \binom{n}{r} p^r q^{n-r}, (0.016327)^2 (0.983672)^8, \binom{10}{2}$$

valid approach (M1)

eg $P(X \ge 2) = 1 - P(X \le 1)$, 1 - P(X < a), summing terms from 2 to 10 (accept binomcdf(10, 0.0163, 2, 10))

0.010994

$$P(X \ge 2) = 0.0110$$

A1 N2 [3 marks]

Total [15 marks]

Question 55

(a) (i) evidence of set up (M1)

eg correct value for a or b or r (seen in (ii)) or $r^2 (= 0.973)$

9.91044, -31.3194a = 9.91, b = -31.3, y = 9.91x - 31.3

A1A1 N3

(ii) 0.986417 r = 0.986 A1 N1 [4 marks]

(b) substituting x = 21.5 into their equation (M1)

eg 9.91(21.5) - 31.3

181.755 182 (cm)

A1 N2 [2 marks]

Total [6 marks]

(a)		approach	(M1)	
	$(A \cap$	$(M')+(A\cap M), \frac{17}{35}, 11+6$		
	numb	per of students taking art class=17	A1	N2 [2 marks]
(b)	(i)	valid approach $13+5$, $35-17$, 18 , $1-P(A)$	(M1)	
		0.514285		
		$P(A') = \frac{18}{35}$ (exact), 0.514	A1	N2
	(ii)	valid approach 11+13, 35-6-5, 24	(M1)	
		0.685714		
		$P(A \text{ or } M \text{ but not both}) = \frac{24}{35} \text{ (exact), } 0.686$	A1	N2
				[4 marks]
			Total	[6 marks]
Quest	tion 5	57		
(a)	MET	THOD 1		
	multi eg	iplication of $P(A)$ and $P(D)$ 0.70×0.85 , 0.595	(A1)	
	corre eg	ect reasoning for their probabilities $0.595 \neq 0.65$, $0.70 \times 0.85 \neq P(A \cap D)$	R1	
	A an	$0.595 \neq 0.65$, $0.70 \times 0.85 \neq P(A \cap D)$ d D are not independent	AG	NO
	MET	HOD 2		
	calcu	ulation of $P(D A)$	(A1)	
	eg	$\frac{13}{14}$, 0.928		
	corre	ect reasoning for their probabilities	R1	
	eg	$0.928 \neq 0.85$, $\frac{0.65}{0.7} \neq P(D)$		
	A an	d D are not independent	AG	N0 [2 marks]

(a) (i) valid approach (M1)

eg correct value for a or b (or for correct r or $r^2 = 0.955631$ seen in (ii))

0.141120, 11.1424a = 0.141, b = 11.1

A1A1

N3

N₁

(ii) 0.977563 r = 0.978

A1

[4 marks]

(b) correct substitution into their regression equation

eg 0.141(95)+11.1

24.5488

24.5

(A1)

A1 N2 [2 marks]

Total [6 marks]

Question 59

(a) (i) valid approach to find P (one red)

(M1)

eg
$${}_{n}C_{a} \times p^{a} \times q^{n-a}$$
, B (n, p) , $3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}$, $\binom{3}{1}$

listing all possible cases for exactly one red (may be indicated on tree diagram)

$$P(1 \text{ red}) = 0.444 \left(= \frac{4}{9} \right) [0.444, 0.445]$$

A1

(ii) valid approach

(M1)

eg
$$P(X=2)+P(X=3), 1-P(X \le 1), \text{ binomcdf}\left(3, \frac{1}{3}, 2, 3\right)$$

correct working

(A1)

eg
$$\frac{2}{9} + \frac{1}{27}$$
, 0.222 + 0.037, $1 - \left(\frac{2}{3}\right)^3 - \frac{4}{9}$

0.259259

P (at least two red) =
$$0.259 \left(= \frac{7}{27} \right)$$

A1

N3

[5 marks]

N₂

- (M1) recognition that winning \$10 means rolling exactly one green (M1)
 - recognition that winning \$10 also means rolling at most 1 red

 eq "cannot have 2 or more reds"

 (M1)
 - correct approach eg $P(1G \cap 0R) + P(1G \cap 1R)$, $P(1G) P(1G \cap 2R)$,
 - eg $P(1G \cap 0R) + P(1G \cap 1R)$, $P(1G) P(1G \cap 2R)$, "one green and two yellows or one of each colour"

Note: Because this is a "show that" question, do not award this **A1** for purely numerical expressions.

one correct probability for their approach (A1)

eg
$$3\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^2$$
, $\frac{6}{27}$, $3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2$, $\frac{1}{9}$, $\frac{2}{9}$

- correct working leading to $\frac{1}{3}$
- eg $\frac{3}{27} + \frac{6}{27}, \frac{12}{27} \frac{3}{27}, \frac{1}{9} + \frac{2}{9}$
- probability $=\frac{1}{3}$ AG N0 [5 marks]
- (c) (i) $x = \frac{7}{27}$, 0.259 (check **FT** from (a)(ii)) **A1** N1
 - (ii) evidence of summing probabilities to 1 (M1) eg $\Sigma = 1, x + y + \frac{1}{3} + \frac{2}{9} + \frac{1}{27} = 1, 1 \frac{7}{27} \frac{9}{27} \frac{6}{27} \frac{1}{27}$
 - 0.148147 (0.148407 if working with their x value to 3 sf) $y = \frac{4}{27}$ (exact), 0.148 A1 N2
- (d) correct substitution into the formula for expected value eg $-w \cdot \frac{7}{27} + 10 \cdot \frac{9}{27} + 20 \cdot \frac{6}{27} + 30 \cdot \frac{1}{27}$
 - correct critical value (accept inequality)

 eg $w = 34.2857 \left(= \frac{240}{7} \right), w > 34.2857$
 - \$40 A1 N2 [3 marks]

Total [16 marks]

(a) valid approach eg correct value for
$$a$$
 or b (ignore incorrect labels) $a=6.92986, b=8.80769$ $a=6.92986, b=8.81$ (accept $y=6.93x+8.81$)

(b) valid approach eg $750=x+y$, edge + interior = 750 correct working eg $750-x=6.9298x+8.807$, 93.4684

93 (pieces) (accept 94)

(M1)

[3 marks]

Total [6 marks]

Question 61

(a) evidence of finding $\frac{\sum x}{n}$ (M1)

eg $\frac{0.3+0.4+3+...+10}{10}$, $\frac{48.2}{10}$
 $\overline{x}=4.82$ (exact)

A1 N2

[2 marks]

(b) $p=4.25$ (exact)

A1 N1

[1 mark]

(c) valid approach eg Q_3-Q_1 $3-8$, 3 to 8 IQR = 5 A1 N2

[2 marks]

Total [5 marks]

(b) valid approach eg P(X < 275) - P(X < m) = 0.830 correct working eg P(X < m) = 0.0113447 (A1) eg 225.820 226 (minutes)

N2

[2 marks]

[3 marks]

(c) (i) evidence of recognizing binomial distribution (seen anywhere) eg ${}_{n}C_{a} \times p^{a} \times q^{n-a}$, B(n, p) evidence of summing probabilities from 7 to 12 eg P(X=7)+P(X=8)+...+P(X=12), $1-P(X\leq 6)$ 0.991248 0.991

(ii) finding
$$P(X = 10)$$
 (seen anywhere)

A1

eg
$$\binom{12}{10} \times 0.83^{10} \times 0.17^2 \ (=0.295952)$$

recognizing conditional probability

(M1)

eg
$$P(A|B), P(X=10|X \ge 7), \frac{P(X=10 \cap X \ge 7)}{P(X \ge 7)}$$

correct working

(A1)

A1

eg
$$\frac{0.295952}{0.991248}$$

0.298565

0.299

N1

Note: Exception to the FT rule: if the candidate uses an incorrect value for the probability that a flight is on time in (i) and working shown, award full FT in (ii) as appropriate.

[7 marks]

eg
$$\binom{20}{19} p^{19} (1-p) + p^{20} = 0.788$$

valid attempt to solve

graph eg

0.956961

0.957

(M1)

A1 N1 [3 marks]

Total [15 marks]

(a)	correct approach eg $0.2+0.5+b+a=1$, $0.7+a+b=1$	A1	
	b = 0.3 - a	AG	N0 [1 mark]
(b)	correct substitution into $E(X)$	(A1)	
	eg $0.2+4\times0.5+a\times b+(a+b-0.5)\times a$, $0.2+2+a\times b-0.2a$		
	valid attempt to express $\mathrm{E}(X)$ in one variable	M1	
	eg $0.2+4\times0.5+a\times(0.3-a)+(-0.2)\times a$, $2.2+0.1a-a^2$,		
	$0.2 + 4 \times 0.5 + (0.3 - b) \times b + (-0.2) \times (0.3 - b), 2.14 + 0.5b - b^2$		
	correct value of greatest $E(X)$	(A1)	
	2.2025 (exact)		
	valid attempt to find least value	(M1)	
	eg graph with minimum indicated, $E(0)$ and $E(0.3)$, $(0, 2.2)$ and $(0.3, 2.14)$ if $E(X)$ in terms of a		
	(0, 2.14) and $(0.3, 2.14)$ if $E(X)$ in terms of b		
	(0, 2.14) and (0.5, 2.2) ii E(2) iii teime era		
	correct value of least $E(X)$	(A1)	
	eg 2.14 (exact)		
	difference = 0.0625 (exact)	A1	N2
			[6 marks]
		Total	[7 marks]
Ques	evidence of set up		
(a)	evidence of set up	(M1)	
	eg correct value for a or b (accept $r = 0.966856$)		
	4.30161, 163.330		110
	a = 4.30, $b = 163$ (accept $y = 4.30x + 163$)	A1A1	N3 [3 marks]
			[S IIIai KS]
(b)	valid approach	(M1)	
	eg $4.30(154) + 163$		
	825.778 (825.2 from 3 sf values)	(A1)	
	number of messages = 826 (must be an integer)	A1	N3
			[3 marks]
		Total	[6 marks]