Subject - Math (Standard Level)
 Topic - Statistics and Probability
 Year - Nov 2011 - Nov 2019
 Paper-1

Question 1

Note: In this question, method marks may be awarded for selecting without replacement, as noted in the examples.
(a) $\quad \mathrm{P}(R)=\frac{6}{8}\left(=\frac{3}{4}\right)$

AI
N1
[1 mark]
(b) attempt to find $\mathrm{P}($ Red $) \times \mathrm{P}($ Red $)$
e.g. $\mathrm{P}(R) \times \mathrm{P}(R), \frac{3}{4} \times \frac{3}{4}, \frac{6}{8} \times \frac{5}{7}$
$\mathrm{P}(2 R)=\frac{36}{64}\left(=\frac{9}{16}\right)$
A1
(c) METHOD 1
attempt to find $\mathrm{P}($ Red $) \times \mathrm{P}($ Blue $)$
(MI)
e.g. $\mathrm{P}(R) \times \mathrm{P}(B), \frac{6}{8} \times \frac{2}{8}, \frac{6}{8} \times \frac{2}{7}$
recognizing two ways to get one red, one blue
(M1)
e.g. $\mathrm{P}(R B)+\mathrm{P}(B R), 2\left(\frac{12}{64}\right), \frac{6}{8} \times \frac{2}{7}+\frac{2}{8} \times \frac{6}{7}$
$\mathrm{P}(1 R, 1 B)=\frac{24}{64}\left(=\frac{3}{8}\right)$
AI
N2
[3 marks]

METHOD 2

recognizing that $\mathrm{P}(1 R, 1 B)$ is $1-\mathrm{P}(2 B)-\mathrm{P}(2 R)$
(M1)
attempt to find $\mathrm{P}(2 R)$ and $\mathrm{P}(2 B)$
e.g. $\mathrm{P}(2 R)=\frac{3}{4} \times \frac{3}{4}, \frac{6}{8} \times \frac{5}{7} ; \mathrm{P}(2 B)=\frac{1}{4} \times \frac{1}{4}, \frac{2}{8} \times \frac{1}{7}$
$\mathrm{P}(1 R, 1 B)=\frac{24}{64}\left(=\frac{3}{8}\right)$

Question 2

correct substitution into $\mathrm{E}(X)=\sum p x \quad$ (seen anywhere)
e.g. $1 s+2 \times 0.3+3 q=1.7, s+3 q=1.1$
recognizing $\sum p=1$ (seen anywhere) (M1)
correct substitution into $\sum p=1$
e.g. $s+0.3+q=1$
attempt to solve simultaneous equations (M1)
correct working
e.g. $0.3+2 q=0.7,2 s=1$
$q=0.2$
A1
[6 marks]

Question 3

(a) evidence of valid approach
e.g. $92+52$, line on graph at $x=31$

$$
p=144
$$

(b) (i) evidence of valid approach (M1)
e.g. line on graph, 0.8×160, using complement $=29.5$

A1 N2
(ii) $\quad Q_{1}=23 ; Q_{3}=29$ $\mathrm{IQR}=6$ (accept any notation that suggests an interval)
(A1)(A1)

$$
A 1
$$

Question 4
(a) $t=0.3$
(b) (i) correct values A1 e.g. $0.3+0.6-0.7 ; 0.9-0.7$
$r=0.2 \quad A G$ N0
(ii) $\quad q=0.1, s=0.4$

A1A1
$N 2$
[3 marks]
(c) (i) 0.4

A1
N1
(ii) $\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{1}{4}$

A2
$N 2$

[3 marks]
 Total [7 marks]

Question 5
(a) evidence of median position e.g. 50 , line on sketch median is 56
(b) lower quartile $=40$, upper quartile $=70$
interquartile range $=30$
(M1)

A1 N2
[2 marks]
(A1)(A1)
A1 N3
[3 marks]
Total [5 marks]

Question 6
(a) attempt to substitute $\mathrm{P}(X>1)=0.5$
e.g. $r+0.2=0.5$
$r=0.3$

$$
\begin{array}{lr}
A 1 & N 2 \\
& {[2 \text { marks] }}
\end{array}
$$

(b) correct substitution into $\mathrm{E}(X)$ (seen anywhere)
e.g. $0 \times p+1 \times q+2 \times r+3 \times 0.2$
correct equation
e.g. $q+2 \times 0.3+3 \times 0.2=1.4, q+1.2=1.4$
$q=0.2$

$$
A 1
$$

evidence of choosing $\sum p_{i}=1$ M1
e.g. $p+0.2+0.3+0.2=1, p+q=0.5$
correct working
(A1)
$p+0.7=1,1-0.2-0.3-0.2, p+0.2=0.5$
$p=0.3$
A1

Note: Exception to the $\boldsymbol{F T}$ rule. Award $\boldsymbol{F T}$ marks on an incorrect value of q, even if q is an inappropriate value. Do not award the final \boldsymbol{A} mark for an inappropriate value of p.

Question 7
(a) (i)

$$
\frac{4}{6}, \frac{3}{6} \text { and } \frac{3}{6}\left(\frac{2}{3}, \frac{1}{2} \text { and } \frac{1}{2}\right)
$$

A1A1A1
(ii) multiplying along the correct branches (may be seen on diagram)
e.g. $\frac{3}{7} \times \frac{2}{6}$

$$
\frac{6}{42}\left(=\frac{1}{7}\right)
$$

N2
(b) $\quad \mathrm{P}($ bag A$)=\frac{2}{6}\left(=\frac{1}{3}\right), \mathrm{P}($ bag B$)=\frac{4}{6}\left(=\frac{2}{3}\right)$ (seen anywhere)
appropriate approach
(M1)
e.g. $\mathrm{P}(W W \cap A)+\mathrm{P}(W W \cap B)$

2W

correct calculation
e.g. $\frac{1}{3} \times \frac{1}{7}+\frac{2}{3} \times \frac{2}{7}, \frac{2}{42}+\frac{8}{42}$
$\mathrm{P}(2 W)=\frac{60}{252}\left(=\frac{5}{21}\right)$
(c) recognizing conditional probability
e.g. $\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}, \mathrm{P}(A \mid W W)=\frac{\mathrm{P}(W W \cap A)}{\mathrm{P}(W W)}$
correct numerator
e.g. $\mathrm{P}(A \cap W W)=\frac{6}{42} \times \frac{2}{6}, \frac{1}{21}$
correct denominator
e.g. $\frac{60}{252}, \frac{5}{21}$
probability $\frac{84}{420}\left(=\frac{1}{5}\right)$ A1

[4 marks]

Question 8

(a) evidence of summing to 1
e.g. $\quad \sum p=1,0.3+k+2 k+0.1=1$
correct working
e.g. $\quad 0.4+3 k, 3 k=0.6$
$k=0.2$
A1 N2 [3 marks]
(b) correct substitution into $\mathrm{E}(X)$ formula
e.g. $\quad 0(0.3)+2(k)+5(2 k)+9(0.1), 12 k+0.9$
correct working

(M1)

e.g. $\quad 0(0.3)+2(0.2)+5(0.4)+9(0.1), 0.4+2.0+0.9$
$\mathrm{E}(X)=3.3$

A1
[3 marks]
Total [6 marks]

Question 9
(a) (i) median weekly wage $=400$ (dollars)
(ii) lower quartile $=330$, upper quartile $=470$
$\mathrm{IQR}=140$ (dollars) (accept any notation suggesting interval 330 to 470) A1
Note: Exception to the $\boldsymbol{F T}$ rule. Award $\boldsymbol{A 1 (F T)}$ for an incorrect IQR
only if both quartiles are explicitly noted.
[4 marks]
(b) (i) 330 (dollars)

A1 N1
(ii) 400 (dollars)

A1
N1
(iii) 700 (dollars)

A1 N1 [3 marks]
(c) valid approach
(M1)
e.g. hours $=\frac{\text { wages }}{\text { rate }}$
correct substitution
e.g. $\frac{400}{20}$
median hours per week $=20$
A1 N2 [3 marks]
(d) attempt to find wages for 25 hours per week
e.g. \quad wages $=$ hours \times rate
correct substitution
(A1)
e.g. 25×20
finding wages $=500$
65 people $($ earn $\leq 500)$
(A1)
15 people (work more than 25 hours)

Question 10
(a) (i) attempt to find $\mathrm{P}($ red $) \times \mathrm{P}($ red $)$
eg $\frac{3}{8} \times \frac{2}{7}, \frac{3}{8} \times \frac{3}{8}, \frac{3}{8} \times \frac{2}{8}$
$P($ none green $)=\frac{6}{56}\left(=\frac{3}{28}\right)$
N2
(ii) attempt to find $\mathrm{P}($ red $) \times \mathrm{P}$ (green)

$$
\text { eg } \frac{5}{8} \times \frac{3}{7}, \frac{3}{8} \times \frac{5}{8}, \frac{15}{56}
$$

recognizing two ways to get one red, one green

$$
\text { eg } \quad 2 \mathrm{P}(R) \times \mathrm{P}(G), \frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}, \frac{3}{8} \times \frac{5}{8} \times 2
$$

$\mathrm{P}($ exactly one green $)=\frac{30}{56} \quad\left(=\frac{15}{28}\right)$
$A 1 \quad N 2$
[5 marks]
(b) $\mathrm{P}($ both green $)=\frac{20}{56}$ (seen anywhere)
correct substitution into formula for $\mathrm{E}(X)$
(A1)
eg $0 \times \frac{6}{56}+1 \times \frac{30}{56}+2 \times \frac{20}{56}, \frac{30}{64}+\frac{50}{64}$
expected number of green marbles is $\frac{70}{56}\left(=\frac{5}{4}\right) \quad$ A1
$N 2$
(c) (i) $\quad \mathrm{P}(\mathrm{jar} \mathrm{B})=\frac{4}{6} \quad\left(=\frac{2}{3}\right)$
(ii) $\quad \mathrm{P}($ red \mid jar B$)=\frac{6}{8} \quad\left(=\frac{3}{4}\right)$

A1
(d) recognizing conditional probability
(M1)
eg $\mathrm{P}(A \mid R), \frac{\mathrm{P}(\mathrm{jar} \mathrm{A} \text { and red })}{\mathrm{P}(\text { red })}$, tree diagram
attempt to multiply along either branch (may be seen on diagram)
eg $\quad \mathrm{P}(\mathrm{jar} \mathrm{A}$ and red$)=\frac{1}{3} \times \frac{3}{8} \quad\left(=\frac{1}{8}\right)$
attempt to multiply along other branch
eg $\quad \mathrm{P}(\mathrm{jar} \mathrm{B}$ and red $)=\frac{2}{3} \times \frac{6}{8} \quad\left(=\frac{1}{2}\right)$
adding the probabilities of two mutually exclusive paths
eg $\quad \mathrm{P}(\mathrm{red})=\frac{1}{3} \times \frac{3}{8}+\frac{2}{3} \times \frac{6}{8} \quad\left(=\frac{5}{8}\right)$
correct substitution
eg $\quad \mathrm{P}($ jar $\mathrm{A} \mid$ red $)=\frac{\frac{1}{3} \times \frac{3}{8}}{\frac{1}{3} \times \frac{3}{8}+\frac{2}{3} \times \frac{6}{8}}, \frac{\frac{1}{8}}{\frac{5}{8}}$
A1

A1 N3
[6 marks]

Question 11

(a) attempt to find p
(M1)
eg $\quad 120-70,50+20+x=120$

$$
p=50
$$

$$
A 1 \quad N 2
$$

attempt to find q
(M1)
eg $\quad 180-20,200-20-20$

$$
q=160
$$

$$
\begin{array}{lr}
A 1 & N 2 \\
& {[4 \text { marks] }}
\end{array}
$$

(b) (i) $\frac{70}{200}\left(=\frac{7}{20}\right)$

$$
A 1 \quad N 1
$$

(ii) valid approach
(M1)
eg $\quad 20+20,200-160$
$\frac{40}{200}\left(=\frac{1}{5}\right)$

$$
A 1 \quad N 2
$$

[3 marks]
(c) (i) attempt to find number of girls
eg $\quad 0.4, \frac{40}{100} \times 200$
80 are not selected
(ii) 120 are selected
$x=20$
(M1)

| A1 | $N 2$ |
| ---: | ---: | ---: |
| (A1) | |
| A1 | N2 |
| | [4 marks] |
| A1 | $N 1$ |

(d) (i) 30 given second chance (A1)
attempt to find their selected total (may be seen in \% calculation) (M1) eg $120+20(=140), 120+$ their answer from (d)(i)
70 (\%)

A1	N3 [4 marks]

Total [15 marks]

Question 12

(a) attempt to find number who took less than 45 minutes
(M1)
eg line on graph (vertical at approx 45 , or horizontal at approx 70)
70 students (accept 69) A1 N2 [2 marks]
(b) 55 students completed task in less than 35 minutes
subtracting their values
(M1)
eg 70-55
15 students
(c) correct approach
eg line from y-axis on 50

$$
k=33
$$

A1 N2

[2 marks]

$$
\begin{array}{llr}
A 1 & N 2 \\
& {[3 \text { marks] }}
\end{array}
$$

[Total 7 marks]

Question 13

recognize need for intersection of Y and F (R1)
eg $\quad \mathrm{P}(Y \cap F), 0.3 \times 0.4$
valid approach to find $\mathrm{P}(Y \cap F)$
(M1)
eg $\quad \mathrm{P}(Y)+\mathrm{P}(F)-\mathrm{P}(Y \cup F)$, Venn diagram
correct working (may be seen in Venn diagram)
(A1)
eg 0.4+0.3-0.6

$$
\mathrm{P}(Y \cap F)=0.1
$$

$$
A 1
$$

recognize need for complement of $Y \cap F$ (M1)
eg $\quad 1-\mathrm{P}(Y \cap F), 1-0.1$
$\mathrm{P}\left((Y \cap F)^{\prime}\right)=0.9$
\square

A1
N3 [6 marks]

Question 14

(a)

Second Game

A1A1A1
N3

Note: Award A1 for each correct bold probability.
(b) multiplying along the branches (may be seen on diagram)
eg $\quad \frac{4}{5} \times \frac{1}{6}$
$\frac{4}{30}\left(\frac{2}{15}\right)$
(c) METHOD 1
multiplying along the branches (may be seen on diagram)
(M1)
eg $\frac{4}{5} \times \frac{5}{6}, \frac{4}{5} \times \frac{1}{6}, \frac{1}{5} \times \frac{2}{3}$
adding their probabilities of three mutually exclusive paths
eg $\frac{4}{5} \times \frac{5}{6}+\frac{4}{5} \times \frac{1}{6}+\frac{1}{5} \times \frac{2}{3}, \frac{4}{5}+\frac{1}{5} \times \frac{2}{3}$
correct simplification
eg $\frac{20}{30}+\frac{4}{30}+\frac{2}{15}, \frac{2}{3}+\frac{2}{15}+\frac{2}{15}$
$\frac{28}{30}\left(=\frac{14}{15}\right)$
N3

METHOD 2

recognizing "Bill wins at least one" is complement of "Andrea wins 2"
eg finding P (Andrea wins 2)
$\mathrm{P}($ Andrea wins both $)=\frac{1}{5} \times \frac{1}{3}$
evidence of complement
(M1)
eg $\quad 1-p, 1-\frac{1}{15}$
$\frac{14}{15}$
A1 N3
[4 marks]
(d) $\mathrm{P}(B$ wins both $)=\frac{4}{5} \times \frac{5}{6}\left(=\frac{2}{3}\right)$ A1
evidence of recognizing conditional probability (R1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}$ (Bill wins both \mid Bill wins at least one), tree diagram
correct substitution
(A2)
$e g \frac{\frac{4}{5} \times \frac{5}{6}}{\frac{14}{15}}$
$\frac{20}{28}\left(=\frac{5}{7}\right)$

Question 15

(a) correct working
eg $\quad 1-\frac{1}{6}$

$$
p=\frac{5}{6}
$$

$$
A 1
$$

(b) multiplying along correct branches
eg $\quad \frac{1}{2} \times \frac{1}{6}$
$\mathrm{P}(C \cap L)=\frac{1}{12}$
A1 \quad N2
[2 marks]
(c) multiplying along the other branch
(M1)
eg $\frac{1}{2} \times \frac{1}{3}$
adding probabilities of their 2 mutually exclusive paths
(M1)
eg $\frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{1}{3}$
correct working
eg $\frac{1}{12}+\frac{1}{6}$
$\mathrm{P}(L)=\frac{3}{12}\left(=\frac{1}{4}\right)$
(d) recognizing conditional probability (seen anywhere)
eg $\mathrm{P}(C \mid L)$
correct substitution of their values into formula
eg $\frac{\frac{1}{\frac{12}{3}}}{\frac{3}{12}}$
$\mathrm{P}(C \mid L)=\frac{1}{3}$
(e) valid approach
eg $\quad X \sim \mathrm{~B}\left(3, \frac{1}{4}\right),\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{2},\binom{3}{1}$, three ways it could happen
correct substitution
(A1)
$e g \quad\binom{3}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}, \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}$
correct working
eg $\quad 3\left(\frac{1}{4}\right)\left(\frac{9}{16}\right), \frac{9}{64}+\frac{9}{64}+\frac{9}{64}$
$\frac{27}{64}$

Question 16
(a) evidence of summing probabilities to 1
(M1)
$e g \quad \frac{5}{20}+\frac{4}{20}+\frac{1}{20}+p=1, \sum=1$
correct working
eg $\quad p=1-\frac{10}{20}$
$p=\frac{10}{20}\left(=\frac{1}{2}\right)$

$$
A 1
$$

[3 marks]
(b) correct substitution into $\mathrm{E}(X)$
(A1)
$e g \quad \frac{4}{20}(q)+\frac{1}{20}(10)+\frac{10}{20}(-3)$
valid reasoning for fair game (seen anywhere, including equation)
(M1)
eg $\quad \mathrm{E}(X)=0$, points lost $=$ points gained
correct working
(A1)
eg $\quad 4 q+10-30=0, \frac{4}{20} q+\frac{10}{20}=\frac{30}{20}$
$q=5$

A1	N 2
	[4 marks]

Total [7 marks]

Question 17

(a) summing probabilities to 1
(M1)
eg $\quad \sum=1,3+4+2+x=10$
correct working
(A1)
$\frac{3}{10}+\frac{4}{10}+\frac{2}{10}+p=1, p=1-\frac{9}{10}$
$p=\frac{1}{10}$
A1
N3 [3 marks]
(b) correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 0\left(\frac{3}{10}\right)+\ldots+3(p)$
correct working
eg $\quad \frac{4}{10}+\frac{4}{10}+\frac{3}{10}$
$\mathrm{E}(X)=\frac{11}{10}(1.1)$
(A1)

A1
[3 marks]

Question 18
(a) recognizing Ann rolls green
eg $\mathrm{P}(\mathrm{G})$
$\frac{3}{8}$
A1
(b) (i) $p=\frac{4}{8}, q=\frac{5}{8}$ or $q=\frac{4}{8}, p=\frac{5}{8}$
(ii) recognizes Ann and Bob lose 9 times
(M1)
eg $\overparen{A_{L} B_{L}} \overparen{A_{L} B_{L}} \ldots \overparen{A_{L} B_{L}} 9$ times, $\underbrace{\left(\frac{5}{8} \times \frac{4}{8}\right) \times \ldots \times\left(\frac{5}{8} \times \frac{4}{8}\right)}_{9 \text { times }}$
$k=9$ (seen anywhere)
A1
N2
correct working
(A1)
eg $\left(\frac{5}{8} \times \frac{4}{8}\right)^{9} \times \frac{3}{8},\left(\frac{5}{8} \times \frac{4}{8}\right) \times \ldots \times\left(\frac{5}{8} \times \frac{4}{8}\right) \times \frac{3}{8}$ $r=\frac{20}{64}\left(=\frac{5}{16}\right)$

A1
(c) recognize the probability is an infinite sum
eg Ann wins on her 1st roll or 2nd roll or 3rd roll..., S_{∞}
recognizing GP
$u_{1}=\frac{3}{8} \quad$ (seen anywhere)
$r=\frac{20}{64}$ (seen anywhere)
correct substitution into infinite sum of GP
eg $\frac{\frac{3}{8}}{1-\frac{5}{16}}, \frac{3}{8}\left(\frac{1}{1-\left(\frac{5}{8} \times \frac{4}{8}\right)}\right), \frac{1}{1-\frac{5}{16}}$
correct working
eg $\frac{\frac{3}{8}}{\frac{11}{16}}, \frac{3}{8} \times \frac{16}{11}$
$P($ Ann wins $)=\frac{48}{88} \quad\left(=\frac{6}{11}\right)$

Question 19
(a) $\frac{3}{8}$

A1 [1 mark]
(b)

$$
\text { First Marble } \quad \text { Second Marble }
$$

A1A1A1 [3 marks] (M1)

A1
[2 marks]
Total [6 marks]
(a) evidence of approach (may be seen on graph)
eg $80,(3,80)$
Note: Award $M O$ for an incorrect approach such as $\frac{0+6}{2}$, which leads to the correct answer, even if $(3,80)$ is indicated on graph.

$$
\text { median }=3
$$

(b) (i) $p=30$
(ii) attempt to set up an expression to find q
(M1)
eg cumulative frequency for 4.5 indicated on graph
correct expression to find q
eg $160-20-50-30,140-50-p, 140-80$

$$
q=60
$$

[4 marks]
Total [6 marks]
Question 21
recognizing fair game (seen anywhere)
(M1)
eg $\mathrm{E}(X)=10, \mathrm{E}(X)=0$, money spent = money gained
correct substitution
eg $\quad 0(0.6)+k(0.4), 0.4(k-10)+0.6(-10)$
correct equation
eg $\quad 0(0.6)+k(0.4)=10,0.4(k-10)+0.6(-10)=0, k(0.4)=10$
correct work towards solving equation
(A1)
eg $k=\frac{10}{0.4}, \frac{100}{4}$
$k=25$
A1 N3
[7 marks]

Question 22
(a) 60

A1 [1 mark]
(b) (i) valid approach
eg $\quad \max -\min =$ range,$c=40+47$

$$
c=87
$$

A1 N2
(ii) valid approach
eg $\quad Q 3-Q 1=I Q R, 74-22$

$$
d=52
$$

N2
[4 marks]
Total [5 marks]

Question 23
(a) (i) $q=0.1$

A1
N1
(ii) appropriate approach
(M1)
eg $\mathrm{P}(A)-q, 0.4-0.1$

$$
p=0.3
$$

A1 N2
[3 marks]
(b) valid approach
(M1)
eg $\quad \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B), \mathrm{P}(A \cap B)+\mathrm{P}\left(B \cap A^{\prime}\right)$
correct values
(A1)
eg $\quad 0.8=0.4+\mathrm{P}(B)-0.1,0.1+0.4$
$\mathrm{P}(B)=0.5$
A1
N2
[3 marks]
Total [6 marks]

Question 24
(a) valid approach
(M1)
eg between 10 th and 11 th, $\frac{8+8}{2}$
median $=38$
A1 N2 [2 marks]
(b) (i) $a=20$
(ii) valid approach
eg $Q_{3}-Q_{1}, Q_{1}+14, b-30=14$

$$
b=44
$$

(c) valid approach

$$
A 1 \quad N 1
$$

(M1)

A1 N2 [3 marks]
(M1)
(A1)
eg $800-745,20 \times 2.75$
55 (more cans)
A1 N2 [3 marks]
(d) (i) most cans in Sam's class $=50$

5 (\$)
(ii) correct value of 64 or 16
valid approach
eg $\frac{64}{80}, 80 \%, 80-64, \frac{16}{80}$
20%
A1 N2 [5 marks]
(e) (i) 41.4 (exact)
(ii) 18.5
A1 N1

A1 N1 [2 marks]

Total [15 marks]

Question 25
(a) correct approach
eg $\frac{60}{10}$

$$
\text { mean }=6
$$

A1 N2 [2 marks]
(b) (i) new mean $=24$

A1
N1
(ii) valid approach
(M1)
eg variance $\times(4)^{2}, 3 \times 16$, new standard deviation $=4 \sqrt{3}$ new variance $=48$

A1 N2 [3 marks]

Total [5 marks]

Question 26
(a) (i) $p=3$
(ii) valid approach
eg $(12+10+3)-21,22-18$
$q=4$ A
(iii) $r=8, s=6$

A1A1
(M1)

A1 N2 N2 [5 marks]
(b) \quad (i) $\frac{12}{21}\left(=\frac{4}{7}\right)$

A2
N2
(ii) valid approach
eg $8+6, r+s$
$\frac{14}{21}\left(=\frac{2}{3}\right)$
(M1)

A1
N2
[4 marks]
(c) (i)

Note: Award A1 for each correct bold answer.
(ii) $\frac{11}{20}$

A1
[4 marks]
Total [13 marks]

Question 27
(a) valid interpretation (may be seen on a Venn diagram)
eg $\quad \mathrm{P}(A \cap B)+\mathrm{P}\left(A^{\prime} \cap B\right), 0.2+0.6$

$$
\mathrm{P}(B)=0.8
$$

(b) valid attempt to find $\mathrm{P}(A)$
eg $\quad \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B), 0.8 \times A=0.2$
correct working for $\mathrm{P}(A)$
eg $\quad 0.25, \frac{0.2}{0.8}$
correct working for $\mathrm{P}(A \cup B)$
eg $\quad 0.25+0.8-0.2,0.6+0.2+0.05$

$$
\mathrm{P}(A \cup B)=0.85
$$

A1 N3 [4 marks]

[Total 6 marks]

Question 28
(a) (i) t

$$
\text { (ii) } 105
$$

A1
N1

A1 N1 [2 marks]
(b) -0.992
(c) valid approach
(M1)
eg $\frac{\mathrm{d} d}{\mathrm{~d} t}=-2.24 ; 2 \times 2.24,2 \times-2.24, d(2)=-2 \times 2.24+105$,
finding $d\left(t_{2}\right)-d\left(t_{1}\right)$ where $t_{2}=t_{1}+2$
4.48 (degrees)

A1

Notes: Award no marks for answers that directly use the table to find the decrease in temperature for 2 minutes eg $\frac{105-98.4}{2}=3.3$.

Question 29
(a) evidence of summing to 1
eg $\quad \sum p=1$
correct equation
A1
eg $\cos \theta+2 \cos 2 \theta=1$
correct equation in $\cos \theta$ A1
eg $\quad \cos \theta+2\left(2 \cos ^{2} \theta-1\right)=1,4 \cos ^{2} \theta+\cos \theta-3=0$
evidence of valid approach to solve quadratic
(M1)
eg factorizing equation set equal to $0, \frac{-1 \pm \sqrt{1-4 \times 4 \times(-3)}}{8}$
correct working, clearly leading to required answer
eg $(4 \cos \theta-3)(\cos \theta+1), \frac{-1 \pm 7}{8}$
correct reason for rejecting $\cos \theta \neq-1$ R1
eg $\cos \theta$ is a probability (value must lie between 0 and 1), $\cos \theta>0$
Note: Award $R 0$ for $\cos \theta \neq-1$ without a reason.
$\cos \theta=\frac{3}{4}$
AG
NO
[6 marks]
(b) valid approach
eg sketch of right triangle with sides 3 and $4, \sin ^{2} x+\cos ^{2} x=1$
correct working
eg missing side $=\sqrt{7}, \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}}$
$\tan \theta=\frac{\sqrt{7}}{3}$

A1
N2
[3 marks]
(c) attempt to substitute either limits or the function into formula involving f^{2}
eg $\quad \pi \int_{\theta}^{\frac{\pi}{4}} f^{2}, \int\left(\frac{1}{\cos x}\right)^{2}$
correct substitution of both limits and function
eg $\pi \int_{\theta}^{\frac{\pi}{4}}\left(\frac{1}{\cos x}\right)^{2} \mathrm{~d} x$
correct integration
eg $\tan x$
substituting their limits into their integrated function and subtracting
eg $\tan \frac{\pi}{4}-\tan \theta$
Note: Award $M 0$ if they substitute into original or differentiated function.

$$
\tan \frac{\pi}{4}=1
$$

eg $1-\tan \theta$
$V=\pi-\frac{\pi \sqrt{7}}{3}$

A1 N3
[6 marks]
[Total: 15 marks]

Question 30
(a) $\mathrm{P}(X>107)=0.24\left(=\frac{6}{25}, 24 \%\right)$

A1 N1 [1 mark]
(b) valid approach
eg $\quad \mathrm{P}(X>100)=0.5, \mathrm{P}(X>100)-\mathrm{P}(X>107)$
correct working
eg $\quad 0.5-0.24,0.76-0.5$
$\mathrm{P}(100<X<107)=0.26\left(=\frac{13}{50}, 26 \%\right)$
A1
N2
[3 marks]
(c) valid approach
(M1)
eg $\quad 2 \times 0.26,1-2(0.24), \mathrm{P}(93<X<100)=\mathrm{P}(100<X<107)$
$\mathrm{P}(93<X<107)=0.52\left(=\frac{13}{25}, 52 \%\right)$

A1
N2
[2 marks]
[Total 6 marks]

Question 31

Question 32
(a) correct probabilities

A1A1A1
Note: Award A1 for each correct bold answer.
[3 marks]
(b) multiplying along branches
eg $\frac{5}{8} \times \frac{3}{7}, \frac{3}{8} \times \frac{5}{7}, \frac{15}{56}$
adding probabilities of correct mutually exclusive paths
eg $\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}, \frac{15}{56}+\frac{15}{56}$
$\frac{30}{56}\left(=\frac{15}{28}\right)$

Question 33
(a)

Note: Award $\boldsymbol{A 1}$ for each bold fraction.
[3 marks]
(b) multiplying along correct branches

(A1)

eg $\frac{3}{4} \times \frac{1}{8}$
$P($ leaves before 07:00 \cap late $)=\frac{3}{32}$
A1
[2 marks]
(M1)
eg $\frac{1}{4} \times \frac{5}{8}$
adding probabilities of two mutually exclusive late paths
eg $\left(\frac{3}{4} \times \frac{1}{8}\right)+\left(\frac{1}{4} \times \frac{5}{8}\right), \frac{3}{32}+\frac{5}{32}$
$\mathrm{P}(L)=\frac{8}{32}\left(=\frac{1}{4}\right)$
A1
N2
[3 marks]
(d) recognizing conditional probability (seen anywhere)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}$ (before $7 \mid$ late $)$
correct substitution of their values into formula
eg $\frac{\frac{3}{32}}{\frac{1}{4}}$
$\mathrm{P}($ left before $07: 00 \mid$ late $)=\frac{3}{8}$
A1
(e) valid approach
eg $\quad 1-\mathrm{P}$ (not late twice), P (late once $)+\mathrm{P}$ (late twice)
correct working
eg $1-\left(\frac{3}{4} \times \frac{3}{4}\right), 2 \times \frac{1}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{4}$
$\frac{7}{16}$

A1
[3 marks]
[Total: 14 marks]

Question 34
(a) correct approach
eg $\quad \frac{800}{n}=20$

40
A1 N2 [2 marks]
(b) (i) 200
(ii) METHOD 1
recognizing variance $=\sigma^{2}$
(M1)
eg $3^{2}=9$
correct working to find new variance
eg $\sigma^{2} \times 10^{2}, 9 \times 100$
900
METHOD 2
new standard deviation is 30
(A1)
recognizing variance $=\sigma^{2}$
eg $3^{2}=9,30^{2}$
900
A1 N3
[4 marks]
[Total: 6 marks]
Question 35
(a) recognizing Q_{1} or Q_{3} (seen anywhere)
(M1)
eg 4,11, indicated on diagram
$\mathrm{IQR}=7$
(b) recognizing the need to find 1.5 IQR
(M1)
eg $\quad 1.5 \times \mathrm{IQR}, 1.5 \times 7$
valid approach to find k
(M1)
eg $10.5+11,1.5 \times \mathrm{IQR}+Q_{3}$
21.5
(A1)
$k=22$
A1 N3
Note: If no working shown, award $\mathbf{N} \mathbf{2}$ for an answer of 21.5 .
[4 marks]
Total [6 marks]

Question 36
(a) (i) $\frac{2}{n}$

A1
N1
(ii) correct probability for one of the draws

A1
eg $\quad \mathrm{P}($ not blue first $)=\frac{n-2}{n}$, blue second $=\frac{2}{n-1}$
valid approach
eg recognizing loss on first in order to win on second, $\mathrm{P}\left(B^{\prime}\right.$ then $\left.B\right), \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(B \mid B^{\prime}\right)$, tree diagram
correct expression in terms of n
A1 N3
eg $\quad \frac{n-2}{n} \times \frac{2}{n-1}, \frac{2 n-4}{n^{2}-n}, \frac{2(n-2)}{n(n-1)}$
[4 marks]
(b) (i) correct working
eg $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$
$\frac{12}{60}\left(=\frac{1}{5}\right)$
(ii) correct working
eg $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2}$
$\frac{6}{60}\left(=\frac{1}{10}\right)$
(c) correct probabilities (seen anywhere)
(A1)(A1)
eg $\quad \mathrm{P}(1)=\frac{2}{5}, \mathrm{P}(2)=\frac{6}{20}$ (may be seen on tree diagram)
valid approach to find $\mathrm{E}(M)$ or expected winnings using their probabilities (M1)
eg $\mathrm{P}(1) \times(0)+\mathrm{P}(2) \times(20)+\mathrm{P}(3) \times(8 k)+\mathrm{P}(4) \times(12 k)$,
$P(1) \times(-20)+P(2) \times(0)+P(3) \times(8 k-20)+P(4) \times(12 k-20)$
correct working to find $\mathrm{E}(M)$ or expected winnings
(A1)
eg $\frac{2}{5}(0)+\frac{3}{10}(20)+\frac{1}{5}(8 k)+\frac{1}{10}(12 k)$,
$\frac{2}{5}(-20)+\frac{3}{10}(0)+\frac{1}{5}(8 k-20)+\frac{1}{10}(12 k-20)$
correct equation for fair game A1
eg $\frac{3}{10}(20)+\frac{1}{5}(8 k)+\frac{1}{10}(12 k)=20, \frac{2}{5}(-20)+\frac{1}{5}(8 k-20)+\frac{1}{10}(12 k-20)=0$
correct working to combine terms in k
(A1)
eg $\quad-8+\frac{14}{5} k-4-2=0,6+\frac{14}{5} k=20, \frac{14}{5} k=14$
$k=5 \quad$ A1

Note: Do not award the final $\boldsymbol{A 1}$ if the candidate's FT probabilities do not sum to 1 .

Question 37
(a) valid approach
eg $16+8, a-8$

24 (hours)
(M1)

A1 N2 [2 marks]
(b) valid approach
(M1)
eg $20-15, Q_{3}-Q_{1}, 15-20$
$I Q R=5$
A1 N2 [2 marks]
(c) correct working
(A1)
eg $\frac{180}{10}, \frac{180}{n}, \frac{\sum x}{10}$
mean $=18$ (hours)
(d) (i) attempt to find total hours for group B
eg $\quad \bar{x} \times n$
group B total hours $=420$ (seen anywhere)
A1
(ii) attempt to find sum for combined group (may be seen in working)
(M1) eg $\quad 180+420,600$
correct working
eg $\frac{180+420}{30}, \frac{600}{30}$ mean $=20$ (hours)

A1
(e) (i) valid approach to find the new mean
eg $\frac{1}{2} \mu, \frac{1}{2} \times 21$
mean $=\frac{21}{2}(=10.5)$ (hours)
A1
(A1)
(ii) variance $=\sigma^{2}$ (seen anywhere)

$$
\text { eg } \sigma^{2}=9,3^{2}=9,\left(\frac{3}{2}\right)^{2}, 3^{2}
$$

valid attempt to find new standard deviation or variance
eg $\frac{1}{4} \times 3^{2}, \frac{1}{2} \times 3, \frac{3}{2}$
variance $=\frac{9}{4}(=2.25)$ (hours)

Question 38
(a) evidence of using $\sum p=1$
correct working
eg $\frac{3}{13}+\frac{1}{13}+\frac{4}{13}+k=1,1-\frac{8}{13}$
$k=\frac{5}{13}$
(A1)

A1
(b) valid approach to find $\mathrm{E}(X)$

(M1)

eg $1 \times \frac{1}{13}+2 \times \frac{4}{13}+3 \times k, 0 \times \frac{3}{13}+1 \times \frac{1}{13}+2 \times \frac{4}{13}+3 \times \frac{5}{13}$
correct working
(A1)
eg $\frac{1}{13}+\frac{8}{13}+\frac{15}{13}$
$\mathrm{E}(X)=\frac{24}{13}$
A1
N2
[3 marks]
Total [6 marks]

Question 39
(a) recognizing area under curve $=1$
eg $\quad a+x+b=1,100-a-b, 1-a+b$
$\mathrm{P}(-1.6<z<2.4)=1-a-b(=1-(a+b))$
A1 N2
[2 marks]
(b) $\mathrm{P}(z>-1.6)=1-a$ (seen anywhere)
(A1)
recognizing conditional probability
(M1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(B \mid A)$
correct working
eg $\frac{\mathrm{P}(z<2.4 \cap z>-1.6)}{\mathrm{P}(z>-1.6)}, \frac{\mathrm{P}(-1.6<z<2.4)}{\mathrm{P}(z>-1.6)}$
$\mathrm{P}(z<2.4 \mid z>-1.6)=\frac{1-a-b}{1-a}$
A1

Note: Do not award the final $\boldsymbol{A 1}$ if correct answer is seen followed by incorrect simplification.
[4 marks]
(c) $z=-1.6$ (may be seen in part (d))

A1
N1
Note: Depending on the candidate's interpretation of the question, they may give $\frac{1-m}{s}$ as the answer to part (c). Such answers should be awarded the first (M1) in part (d), even when part (d) is left blank. If the candidate goes on to show $z=-1.6$ as part of their working in part (d), the A1 in part (c) may be awarded.
(d) attempt to standardize x (do not accept $\frac{x-\mu}{\sigma}$)
eg $\quad \frac{1-m}{s}\left(\right.$ may be seen in part (c)), $\frac{m-2}{s}, \frac{x-m}{\sigma}$
correct equation with each z-value
(A1)(A1)
eg $\quad-1.6=\frac{1-m}{s}, 2.4=\frac{2-m}{s}, m+2.4 s=2$
valid approach (to set up equation in one variable)
eg $\quad 2.4=\frac{2-(1.6 s+1)}{s}, \frac{1-m}{-1.6}=\frac{2-m}{2.4}$
correct working
eg $\quad 1.6 s+1=2-2.4 s, 4 s=1, m=\frac{7}{5}$
$s=\frac{1}{4}$

A1 N2
[6 marks]

Total [13 marks]
Question 40
(a) valid approach
eg $\quad 0.3-0.1, p+0.1=0.3$
$p=0.2$
A1 N2 [2 marks]
(b) valid approach
(M1)
eg $\quad 1-(0.3+0.4), 1-0.4-0.1-p$
$q=0.3$
A1 N2
[2 marks]
(c) valid approach
(M1)
eg $\quad 0.7+0.5-0.3, p+q+0.4,1-0.1, \mathrm{P}\left(A^{\prime} \cup B\right)=\mathrm{P}\left(A^{\prime}\right)+\mathrm{P}(B)-\mathrm{P}\left(A^{\prime} \cap B\right)$,

$\mathrm{P}\left(A^{\prime} \cup B\right)=0.9$
A1 N2
[2 marks]
Total [6 marks]

Question 41

(a) METHOD 1
recognizing that b is midway between the means of 14 and 22.
(M1)
$e g \xrightarrow[24]{2}$
$b=18 \quad$ A1
A1 N2

METHOD 2

valid attempt to compare distributions
eg $\frac{b-14}{a}=-\frac{b-22}{a}, b-14=22-b$
$b=18 \quad \square \quad$ A1
A1 N2 [2 marks]
(b) valid attempt to compare distributions (seen anywhere)
eg $\quad Y$ is a horizontal translation of X of 8 units to the right,
$\mathrm{P}(16<Y<28)=\mathrm{P}(8<X<20), \mathrm{P}(Y>22+6)=\mathrm{P}(X>14+6)$
valid approach using symmetry
eg $\quad 1-2 \mathrm{P}(X>20), 1-2 \mathrm{P}(Y<16), 2 \times \mathrm{P}(14<x<20), \mathrm{P}(X<8)=\mathrm{P}(X>20)$
correct working
(A1)
eg $\quad 1-2(0.112), 2 \times(0.5-0.112), 2 \times 0.388,0.888-0.112$
$\mathrm{P}(16<Y<28)=0.776$
A1 N3
[4 marks]

Question 42
(a) $q=5 \quad \begin{array}{cc}\left.\text { A1 } \begin{array}{c}\text { N1 } \\ {[1 \text { mark] }}\end{array}\right]\end{array}$
(b) valid approach
eg $(18+10+5)-30,28-25,18+10-n=25$
$n=3$
(c) valid approach for finding m or p (may be seen in part (b))
eg $\quad 18-3,3+p=10$
$m=15, p=7 \quad$ A1A1 N3
[3 marks]
[Total 6 marks]

