Subject - Math (Standard Level) Topic - Vector Year - Nov 2011 - Nov 2017 Paper- 1

Question 2

(a) (i) evidence of approach (M1)

$$e.g. \overrightarrow{PO} + \overrightarrow{OQ}, P - Q$$

$$\overrightarrow{PQ} = \begin{pmatrix} 2\\1\\-4 \end{pmatrix} \qquad \qquad AI \qquad \qquad N2$$

(ii) any correct equation in the form r = a + sb (accept any parameter for s)

where
$$\boldsymbol{a}$$
 is $\begin{pmatrix} 2\\4\\8 \end{pmatrix}$ or $\begin{pmatrix} 4\\5\\4 \end{pmatrix}$, and \boldsymbol{b} is a scalar multiple of $\begin{pmatrix} 2\\1\\-4 \end{pmatrix}$ A2 N2

e.g.
$$r = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$$
, $r = \begin{pmatrix} 4+2s \\ 5+1s \\ 4-4s \end{pmatrix}$, $r = 2i + 4j + 8k + s(2i + 1j - 4k)$

Note: Award A1 for the form a + sb, A1 for L = a + sb, A0 for r = b + sa.

[4 marks]

(b) (i) choosing correct direction vectors for
$$L_1$$
 and L_2 (A1)(A1)

$$e.g.$$
 $\begin{pmatrix} 2\\1\\-4 \end{pmatrix}, \begin{pmatrix} 3p\\2p\\4 \end{pmatrix}$

correct calculation of scalar product e.g.
$$2 \times 3p + 1 \times 2p + (-4) \times 4$$
, $8p - 16 = 0$

$$p=2$$
 A1 N3

(ii) any correct expression in the form r = a + tb (accept any parameter for t)

where
$$\boldsymbol{a}$$
 is $\begin{pmatrix} 10 \\ 6 \\ -40 \end{pmatrix}$, and \boldsymbol{b} is a scalar multiple of $\begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}$ $\boldsymbol{A2}$ $\boldsymbol{N2}$

e.g.
$$\mathbf{r} = \begin{pmatrix} 10 \\ 6 \\ -40 \end{pmatrix} + t \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}, \ \mathbf{r} = \begin{pmatrix} 10 + 6s \\ 6 + 4s \\ -40 + 4s \end{pmatrix}, \ \mathbf{r} = 10\mathbf{i} + 6\mathbf{j} - 40\mathbf{k} + s(6\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$$

Note: Award AI for the form a+tb, AI for L=a+tb (unless they have been penalised for L=a+sb in part (a)), A0 for r=b+ta.

[7 marks]

(c) appropriate approach

 $e.g. \begin{pmatrix} 2\\4\\8 \end{pmatrix} + s \begin{pmatrix} 2\\1\\-4 \end{pmatrix} = \begin{pmatrix} 10\\6\\-40 \end{pmatrix} + t \begin{pmatrix} 6\\4\\4 \end{pmatrix}$

any two correct equations with **different** parameters e.g. 2+2s=10+6t, 4+s=6+4t, 8-4s=-40+4t

A1A1

(M1)

attempt to solve simultaneous equations

(M1)

correct working

e.g. -6 = -2 - 2t, 4 = 2t, -4 + 5s = 46, 5s = 50

one correct parameter s = 10, t = 2

x = 22 (accept (22, 14, -32))

A1

(A1)

A1 N4

[7 marks]

Total [18 marks]

(i) evidence of correct approach (a) $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}, Q - P$

$$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

AG

N0

(ii) any correct equation in the form r = a + tb

*N*2 A2

where \vec{a} is either \overrightarrow{OP} or \overrightarrow{OQ} and \vec{b} is a scalar multiple of \overrightarrow{PQ}

e.g.
$$\mathbf{r} = \begin{pmatrix} -1 \\ 6 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \mathbf{r} = \begin{pmatrix} t \\ 4 - 2t \\ 1 + 2t \end{pmatrix}, \mathbf{r} = 4\mathbf{j} + \mathbf{k} + t(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$$

[3 marks]

choosing a correct direction vector for L_2 (b)

(A1)

e.g.
$$\begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$

finding scalar products and magnitudes scalar product = 1(3) - 2(0) + 2(-4) = -5

(A1)(A1)(A1)

magnitudes =
$$\sqrt{1^2 + (-2)^2 + 2^2}$$
 (= 3), $\sqrt{3^2 + 0^2 + (-4)^2}$ (= 5)

M1

substitution into formula
$$e.g. \cos \theta = \frac{-5}{\sqrt{9} \times \sqrt{25}}$$

$$\cos \theta = -\frac{1}{2}$$

$$\cos\theta = -\frac{1}{3}$$

A2

[7 marks]

N5

- (c) evidence of valid approach e.g. equating lines, $L_1 = L_2$ (M1)
 - **EITHER**
 - **one** correct equation in one variable e.g. 6-2t=2
 - OR
 - **two** correct equations in two variables

 e.g. 2t+4s=0, t-3s=5
 - **THEN**
 - attempt to solve (M1)
 - **one** correct parameter *A1* e.g. t=2, s=-1
 - correct substitution of either parameter (A1)
 - e.g. $\mathbf{r} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}, \mathbf{r} = \begin{pmatrix} -1 \\ 6 \\ -1 \end{pmatrix} + (2) \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
 - coordinates R(1, 2, 3)

 A1 N3
 [7 marks]
 - Total [17 marks]

(a) any correct equation in the form r = a + tb (accept any parameter for t)

where
$$\mathbf{a}$$
 is $\begin{pmatrix} 5 \\ -4 \\ 10 \end{pmatrix}$, and \mathbf{b} is a scalar multiple of $\begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$ A2 N2

e.g.
$$\mathbf{r} = \begin{pmatrix} 5 \\ -4 \\ 10 \end{pmatrix} + t \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}, \mathbf{r} = 5\mathbf{i} - 4\mathbf{j} + 10\mathbf{k} + t(-8\mathbf{i} + 4\mathbf{j} - 10\mathbf{k})$$

Note: Award A1 for the form a+tb, A1 for L=a+tb, A0 for r=b+ta.

[2 marks]

Total [8 marks]

(b) recognizing that
$$y = 0$$
 or $z = 0$ at x-intercept (seen anywhere) (R1)

attempt to set up equation for x-intercept (must suggest
$$x \neq 0$$
) (M1)

e.g.
$$L = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$
, $5 + 4t = x$, $r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

one correct equation in one variable (A1) e.g.
$$-4-2t=0$$
, $10+5t=0$

finding
$$t = -2$$

correct working
e.g.
$$x = 5 + (-2)(4)$$

$$x = -3$$
 (accept $(-3, 0, 0)$)

A1 N3
[6 marks]

(a) correct approach

$$e.g. \quad \overrightarrow{AO} + \overrightarrow{OB}, \begin{pmatrix} 6 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$$

$$\vec{AB} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \qquad AG \qquad N\theta$$

[1 mark]

(b) recognizing
$$\overrightarrow{AD}$$
 is perpendicular to \overrightarrow{AB} (may be seen in sketch) (R1) e.g. adjacent sides of rectangle are perpendicular

$$e.g.$$
 $\overrightarrow{AD} \cdot \overrightarrow{AB} = 0$

correct substitution (A1)
e.g.
$$(1\times4)+(-2\times p)+(2\times1)$$
, $4-2p+2=0$

equation which clearly leads to
$$p=3$$
 A1

e.g.
$$6-2p=0$$
, $2p=6$

(c) correct approach (seen anywhere including sketch)

$$\overrightarrow{e.g.}$$
 $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$, $\overrightarrow{OD} + \overrightarrow{DC}$

(A1)

e.g.
$$\overrightarrow{BC} = \overrightarrow{AD}$$
, $\overrightarrow{DC} = \overrightarrow{AB}$, $\begin{pmatrix} 6 \\ 0 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 9 \\ 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

coordinates of point C are
$$(10, 3, 4)$$
 $\left(\operatorname{accept} \begin{pmatrix} 10 \\ 3 \\ 4 \end{pmatrix} \right)$ A2 N4

Note: Award *A1* for two correct values.

[4 marks]

e.g.
$$\sqrt{(1)^2 + (-2)^2 + 2^2}$$
, 3; $\sqrt{16 + 9 + 1}$, $\sqrt{26}$

multiplying magnitudes

e.g.
$$\sqrt{26} \times \sqrt{9}$$

area =
$$\sqrt{234} \left(= 3\sqrt{26} \right) \left(\text{accept } 3 \times \sqrt{26} \right)$$

[5 marks]

N3

Total [14 marks]

Question 5

(a) (i)
$$2a = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$$

correct expression for 2a + b

$$eg \begin{pmatrix} 5 \\ -2 \end{pmatrix}, (5,-2), 5i-2j$$

$$eg = \sqrt{5^2 + 2^2}, \sqrt{5^2 + -2^2}$$

$$\left|2\boldsymbol{a}+\boldsymbol{b}\right|=\sqrt{29}$$

valid approach
$$eg \quad c = -(2a + b), \ 5 + x = 0, -2 + y = 0$$

$$c = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$

[2 marks]

Total [6 marks]

(a) (i) valid approach (M1)
$$eg \begin{pmatrix} 7 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, A-B, \overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

$$\vec{AB} = \begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix} \qquad \qquad N2$$

(ii) any correct equation in the form r = a + tb (accept any parameter for t)

where
$$\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 and \mathbf{b} is a scalar multiple of \overrightarrow{AB} $A2$ $N2$

eg
$$r = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix}, (x, y, z) = (1, -2, 3) + t(3, -1, 2), r = \begin{pmatrix} 1+6t \\ -2-2t \\ 3+4t \end{pmatrix}$$

Note: Award A1 for a + tb, A1 for $L_1 = a + tb$, A0 for r = b + ta.

[4 marks]

correct calculation of scalar product
$$eg = 6(3)-2(-3)+4p$$
, $18+6+4p$ (A1)

correct working
$$A1$$

$$p = -6$$
 AG N0 [3 marks]

(c) setting lines equal
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$eg L_1 = L_2, \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 15 \end{pmatrix} + s \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$$

any two correct equations with **different** parameters

$$eg \quad 1+6t=-1+3s$$
, $-2-2t=2-3s$, $3+4t=15-6s$

one correct parameter A1
$$eg \quad t = \frac{1}{2}, \ s = \frac{5}{3}$$

attempt to substitute parameter into vector equation
$$eg \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix}, 1 + \frac{1}{2} \times 6$$
(M1)

$$x = 4$$
 (accept $(4, -3, 5)$, ignore incorrect values for y and z) A1 N3

Total [14 marks]

[7 marks]

(M1)

Question 7

$$\overrightarrow{QP} = \overrightarrow{QO} + \overrightarrow{OP}, P - Q$$

$$\overrightarrow{QP} = p - q$$

$$A1 \qquad N2$$

$$[2 \text{ marks}]$$

eg
$$\overrightarrow{QT} = \frac{1}{2}(\boldsymbol{p} - \boldsymbol{q}), \overrightarrow{PT} = \frac{1}{2}(\boldsymbol{q} - \boldsymbol{p})$$

$$\overrightarrow{OT} = \overrightarrow{OP} + \overrightarrow{PT}, \overrightarrow{OQ} + \overrightarrow{QT}, \overrightarrow{OP} + \frac{1}{2}\overrightarrow{PQ}$$

$$\overrightarrow{OT} = \frac{1}{2}(\mathbf{p} + \mathbf{q}) \left(\operatorname{accept} \frac{\mathbf{p} + \mathbf{q}}{2} \right)$$
A1 N2

[3 marks]

[Total 5 marks]

eg
$$\begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$
, AO+OB, $\boldsymbol{b} - \boldsymbol{a}$

$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

A1

A1

[1 mark]

N1

$$eg \qquad d = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

(ii) any correct equation in the form r = a + tb (accept any parameter for t)

where
$$a$$
 is $\begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$, and b is a scalar multiple of $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ $A2$ $N2$

$$eg \qquad \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2-s \\ 1 \\ 4+s \end{pmatrix}$$

Note: Award A1 for a+tb, A1 for $L_1 = a+tb$, A0 for r = b+ta.

[3 marks]

c) valid approach
$$eg r_1 = r_2, \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ -4 \end{pmatrix} + s \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
(M1)

one correct equation in one parameter

$$eg = 2 - t = 4, 1 = 7 - s, 1 - t = 4$$

attempt to solve (M1)
$$eg = 2-4 = t, s = 7-1, t = 1-4$$

one correct parameter *A1*
$$eg \quad t = -2, s = 6, t = -3,$$

attempt to substitute **their** parameter into vector equation
$$eg \begin{pmatrix} 4 \\ 7 \\ -4 \end{pmatrix} + 6 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

P(4,1,2) (accept position vector) A1 N2 [6 marks] (d) (i) correct direction vector for
$$L_2$$
 A1 N1

$$eg \qquad \left(\begin{array}{c} 0 \\ -1 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 2 \\ -2 \end{array}\right)$$

(ii) correct scalar product and magnitudes for their direction vectors (A1)(A1)(A1)

scalar product =
$$0 \times -1 + -1 \times 0 + 1 \times 1 = 1$$
)

magnitudes =
$$\sqrt{0^2 + (-1)^2 + 1^2}$$
, $\sqrt{-1^2 + 0^2 + 1^2}$ $(\sqrt{2}, \sqrt{2})$

attempt to substitute **their** values into formula M1

$$eg \qquad \frac{0+0+1}{\left(\sqrt{0^2+(-1)^2+1^2}\right)\times\left(\sqrt{-1^2+0^2+1^2}\right)}, \frac{1}{\sqrt{2}\times\sqrt{2}}$$

correct value for cosine, $\frac{1}{2}$

angle is
$$\frac{\pi}{3}$$
 (= 60°) A1 N1

[7 marks] Total [17 marks]

- (a) attempt to find gradient (M1) eg reference to change in x is 3 and/or y is 2, $\frac{3}{2}$
 - gradient = $\frac{2}{3}$ A1 N2 [2 marks]

(b) attempt to substitute coordinates and/or gradient into Cartesian equation for a line (M1)

eg y-4=m(x-9), $y=\frac{2}{3}x+b$, 9=a(4)+c

correct substitution (A1)

 $eg 4 = \frac{2}{3}(9) + c, y - 4 = \frac{2}{3}(x - 9)$

 $y = \frac{2}{3}x - 2$ (accept $a = \frac{2}{3}$, b = -2)

[3 marks]

(c) **any** correct equation in the form r = a + tb (any parameter for t), where a indicates position $eg \begin{pmatrix} 9 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$, and b is a scalar multiple of

 $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$

 $eg \quad \mathbf{r} = \begin{pmatrix} 9 \\ 4 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3t+9 \\ 2t+4 \end{pmatrix}, \mathbf{r} = 0i-2j+s(3i+2j)$ A2 N2

Note: Award A1 for a+tb, A1 for L=a+tb, A0 for r=b+ta.

[2 marks]

Total [7 marks]

(a) valid approach (M1)

eg magnitude of direction vector

eg
$$\sqrt{(-4)^2 + 2^2 + 4^2}$$
, $\sqrt{-4^2 + 2^2 + 4^2}$

(b) substituting 2 for t (A1)

eg
$$0+2(4)$$
, $r = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -3 \\ 10 \\ 8 \end{pmatrix}$, $y = 10$

(c) METHOD 1

choosing correct direction vectors
$$\begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ -6 \\ 7 \end{pmatrix}$ (A1)(A1)

evidence of scalar product

eg a • b

M1

correct substitution into scalar product
$$eg (-4 \times 4) + (2 \times -6) + (4 \times 7)$$
 (A1)

evidence of correct calculation of the scalar product as 0 eg -16-12+28=0

directions are perpendicular

AG N0

METHOD 2

choosing correct direction vectors
$$\begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ -6 \\ 7 \end{pmatrix}$ (A1)(A1)

attempt to find angle between vectors M1

correct substitution into numerator A1

$$eg \qquad \cos\theta = \frac{-16 - 12 + 28}{|a||b|}, \ \cos\theta = 0$$

$$\theta = 90^{\circ}$$

directions are perpendicular

AG N0
[5 marks]

(d) METHOD 1

one correct equation for Ryan's airplane (A1)

$$eg 5-4t=-23, 6+2t=20, 0+4t=28$$

$$t=7$$
 A1

one correct equation for Jack's airplane (A1)

$$eg$$
 $-39 + 4s = -23, 44 - 6s = 20, 0 + 7s = 28$

$$s=4$$

METHOD 2

$$eg \qquad \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix} + t \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -39 \\ 44 \\ 0 \end{pmatrix} + s \begin{pmatrix} 4 \\ -6 \\ 7 \end{pmatrix}, \text{ one correct equation}$$

$$eg 5-4t=-39+4s$$
, $6+2t=44-6s$, $4t=7s$

$$t=7$$
 A1

$$s=4$$
 A1

Total [15 marks]

$$eg \qquad \cos\theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB} | |\overrightarrow{AC}|}$$

$$\cos C\hat{A}B = \frac{-5\sqrt{3}}{10} \left(= -\frac{\sqrt{3}}{2} \right)$$

valid attempt to find
$$\sin \hat{CAB}$$
 (M1)

eg triangle, Pythagorean identity,
$$\hat{CAB} = \frac{5\pi}{6}$$
, 150°

ME

$$\sin \hat{CAB} = \frac{1}{2} \tag{A1}$$

$$eg = \frac{1}{2} \times 10 \times \frac{1}{2}, \frac{1}{2} \times 10 \times \sin \frac{\pi}{6}$$

$$\operatorname{area} = \frac{10}{4} \left(= \frac{5}{2} \right)$$
A1 N3
[6 marks]

(a) attempt to substitute
$$x=1$$
 (M1)

$$eg \qquad \boldsymbol{r} = \begin{pmatrix} 1 \\ \frac{2}{1} \end{pmatrix} + t \begin{pmatrix} 1^2 \\ -2 \end{pmatrix}, \ L_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

correct equation (vector or Cartesian, but do not accept " $L_1 =$ ")

eg
$$r = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
, $y = -2x + 4$ (must be an equation) A1 N2

[2 marks]

$$eg \qquad \binom{0}{y} = \binom{a}{\frac{2}{a}} + t \binom{a^2}{-2}$$

$$eg 0 = a + ta^2$$

$$t = \frac{-1}{a}$$
A1

substituting **their** parameter to find
$$y$$
 (M1)

$$eg$$
 $y = \frac{2}{a} - 2\left(\frac{-1}{a}\right), \begin{pmatrix} a \\ \frac{2}{a} \end{pmatrix} - \frac{1}{a}\begin{pmatrix} a^2 \\ -2 \end{pmatrix}$

$$eg y = \frac{2}{a} + \frac{2}{a}, \begin{pmatrix} a \\ \frac{2}{a} \end{pmatrix} - \begin{pmatrix} a \\ \frac{2}{a} \end{pmatrix}$$

finding correct expression for
$$y$$
 A1

$$eg y = \frac{4}{a}, \begin{pmatrix} 0 \\ \frac{4}{a} \end{pmatrix}$$

$$P\left(0,\frac{4}{a}\right)$$
 AG NO

[6 marks]

distance formula, Pythagorean Theorem, $\overrightarrow{PQ} = \begin{pmatrix} 2a \\ -\frac{4}{a} \end{pmatrix}$

correct simplification

$$eg \qquad (2a)^2 + \left(\frac{4}{a}\right)^2$$

$$d = 4a^2 + \frac{16}{a^2}$$
 AG N0 [2 marks]

recognizing need to find derivative

$$eg$$
 d' , $d'(a)$

correct derivative A2

$$eg = 8a - \frac{32}{a^3}, 8x - \frac{32}{x^3}$$

(M1)

setting **their** derivative equal to 0
$$eg 8a - \frac{32}{a^3} = 0$$

correct working
$$eg 8a = \frac{32}{a^3}, 8a^4 - 32 = 0$$

working towards solution

$$eg a^4 = 4, a^2 = 2, a = \pm \sqrt{2}$$

$$a = \sqrt[4]{4} \left(a = \sqrt{2} \right) \left(\text{do not accept } \pm \sqrt{2} \right)$$

NE.

(A1)

M1

A1

(M1)

[7 marks]

Total [17 marks]

(e) **METHOD 1** (area = $0.5 \times \text{height} \times \text{base}$)

$$|\overrightarrow{OC}| = \sqrt{0 + 2^2 + (-1)^2} \quad (= \sqrt{5})$$
 (seen anywhere)

valid approach (M1)

$$\mbox{eg} ~~ \frac{1}{2} \times \left| \vec{AB} \right| \times \left| \vec{OC} \right|, ~ \left| \vec{OC} \right| ~ \mbox{is height of triangle}$$

correct substitution A1

eg
$$\frac{1}{2} \times \sqrt{6} \times \sqrt{0 + (2)^2 + (-1)^2}$$
, $\frac{1}{2} \times \sqrt{6} \times \sqrt{5}$

area is $\frac{\sqrt{30}}{2}$ A1 N2

METHOD 2 (difference of two areas)

one correct magnitude (seen anywhere)

eg
$$|\vec{OC}| = \sqrt{2^2 + (-1)^2} = (-\sqrt{5}), |\vec{AC}| = \sqrt{4 + 4 + 16} = (-\sqrt{24}), |\vec{BC}| = \sqrt{6}$$

valid approach (M1)

eg
$$\triangle OAC - \triangle OBC$$

correct substitution A1

eg
$$\frac{1}{2} \times \sqrt{24} \times \sqrt{5} - \frac{1}{2} \times \sqrt{5} \times \sqrt{6}$$

area is $\frac{\sqrt{30}}{2}$

METHOD 3 (area = $\frac{1}{2}ab\sin C$ for ΔOAB)

one correct magnitude of \overrightarrow{OA} or \overrightarrow{OB} (seen anywhere)

eg
$$|\vec{OA}| = \sqrt{(-2)^2 + 4^2 + 3^2} = \sqrt{1 + 9 + 1} = \sqrt{1 + 9 + 1} = \sqrt{11}$$

valid attempt to find $\cos \theta$ or $\sin \theta$ (M1)

eg
$$\cos C = \frac{-1 - 3 - 2}{\sqrt{6} \times \sqrt{11}} \left(= \frac{-6}{\sqrt{66}} \right), \ 29 = 6 + 11 - 2\sqrt{6}\sqrt{11}\cos\theta, \ \frac{\sin\theta}{\sqrt{5}} = \frac{\sin 90}{\sqrt{29}}$$

correct substitution into $\frac{1}{2}ab\sin C$

eg
$$\frac{1}{2} \times \sqrt{6} \times \sqrt{11} \times \sqrt{1 - \frac{36}{66}}$$
, $0.5 \times \sqrt{6} \times \sqrt{29} \times \frac{\sqrt{5}}{\sqrt{29}}$

area is $\frac{\sqrt{30}}{2}$ A1 N2

[4 marks] Total [16 marks]

(c) METHOD 1

substituting their
$$x$$
 to find y -value $f(-1)$, $-4(-1+3)(-1-1)$

eg
$$-4(2)(-2)$$

largest value is 16 **A1 N2**

METHOD 2

eg
$$-4(x^2+2x+1)+12+4, -4(x^2+2x+1)+12-1$$

eg
$$-4(x+1)^2+16$$

METHOD 3

eg
$$f'(x)=0, -8x-8=0$$

substituting
$$x = -1$$
 into $f(x)$ (A1)

eg
$$-4(-1)^2-8(-1)+12$$

[3 marks]

Total [15 marks]

(d) METHOD 1

eg
$$(-1, 16)$$

$$h = -1$$
, $k = 16$ (accept $-4(x+1)^2 + 16$)

METHOD 2

eg
$$-4(x^2+2x+1)+12+4, -4(x^2+2x+1)+12-1$$

$$h = -1$$
, $k = 16$ (accept $-4(x+1)^2 + 16$) A1A1 N3 [3 marks]

(a) correct approach

eg
$$\vec{CB} = \vec{CA} + \vec{AB}$$
, $\vec{AB} - \vec{AC}$, $\vec{AC} + \vec{CB} = \vec{AB}$

$$\vec{CB} = -q + p$$

A1

[2 marks]

N2

(b) correct approach

$$\overrightarrow{CD} = \overrightarrow{BA}$$

$$\vec{\mathrm{CD}} = -\boldsymbol{p}$$

(A1)

(A1)

N2 [2 marks]

(c) correct approach

$$\label{eq:deg} \textbf{eg} \qquad \vec{DB} = \vec{DC} + \vec{CB} \;,\; \vec{DA} + \vec{AB}$$

correct working

$$\overrightarrow{\mathrm{DB}} = p - (q - p), \ p + p - q$$

ZYME.

$$\overrightarrow{DB} = 2p - q$$

(A1)

A1

(A1)

[3 marks]

[Total 7 marks]

(a) (i) correct approach eg OB – OA,
$$\begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix} - \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}$$

$$\vec{AB} = \begin{pmatrix} -2\\8\\2 \end{pmatrix}$$
 AG NO

(ii) any correct equation in the form r = a + tb (accept any parameter for t)

where
$$\mathbf{a}$$
 is $\begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix}$, and \mathbf{b} is a scalar multiple of $\begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}$

eg
$$r = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}, r = \begin{pmatrix} -2 - 2s \\ 5 + 8s \\ 3 + 2s \end{pmatrix}, r = -2i + 5j + 3k + t(-2i + 8j + 2k)$$

Note: Award **A1** for the form a + tb, **A1** for the form L = a + tb, **A0** for the form r = b + ta.

[3 marks]

eg equating lines,
$$L_1 = L_2$$
 one correct equation in one variable

eg
$$-2t=-1$$
, $-2-2t=-1$
valid attempt to solve (M1)

eg
$$2t = 1, -2t = 1$$

one correct parameter
eg
$$t = \frac{1}{2}$$
, $t = -\frac{1}{2}$, $s = -6$

eg
$$r = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}, r = \begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}, r = \begin{pmatrix} -1 \\ 7 \\ -4 \end{pmatrix} - 6 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

the coordinates of C are
$$(-1,1,2)$$
, or position vector of C is $\begin{pmatrix} -1\\1\\2 \end{pmatrix}$

Note: If candidate uses the same parameter in both vector equations and working shown, award **M1A1M1A0A0**.

[5 marks]

(c) valid approach (M1) eg attempt to find
$$\overrightarrow{CA}$$
, $\cos A\widehat{CD} = \overrightarrow{\overrightarrow{CA} \cdot \overrightarrow{CD}}$, $A\widehat{CD}$ formed by \overrightarrow{CA} and \overrightarrow{CD}

eg attempt to find
$$\overrightarrow{CA}$$
, $\cos A\widehat{CD} = \frac{\overrightarrow{CA} \cdot \overrightarrow{CD}}{\left| \overrightarrow{CA} \right| \left| \overrightarrow{CD} \right|}$, $A\widehat{CD}$ formed by \overrightarrow{CA} and \overrightarrow{CD}

$$\vec{CA} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix}$$
 (A1)

finding
$$\left| \stackrel{\rightarrow}{\mathrm{CA}} \right|$$
 (may be seen in cosine formula)

eg
$$\sqrt{1^2 + (-4)^2 + (-1)^2}$$
, $\sqrt{18}$

$$eg \qquad \frac{-9}{\sqrt{18}\sqrt{18}}$$

finding
$$\cos A\hat{C}D = -\frac{1}{2}$$
 (A1)

$$\hat{ACD} = \frac{2\pi}{3}$$
 (120°)

Notes: Award A1 if additional answers are given.

[7 marks]

Total [15 marks]

Question 17

correct scalar product
$$(A1)$$
 eg $m+n$

eq
$$u \cdot v = 0$$
, $-3(0) + 1(m) + 1(n) = 0$, $m = -n$

eg
$$\sqrt{0^2 + m^2 + n^2} = 1$$
, $m^2 + n^2 = 1$

valid attempt to solve their equations (must be in one variable)
 eg
$$(-n)^2 + n^2 = 1$$
, $\sqrt{1-n^2} + n = 0$, $m^2 + (-m)^2 = 1$, $m - \sqrt{1-m^2} = 0$

eg
$$2n^2=1$$
, $2m^2=1$, $\sqrt{2}=\frac{1}{n}$, $m=\pm\frac{1}{\sqrt{2}}$

eg
$$m = \frac{1}{\sqrt{2}}$$
 and $n = -\frac{1}{\sqrt{2}}$, $m = -\frac{1}{\sqrt{2}}$ and $n = \frac{1}{\sqrt{2}}$, $m = (0.5)^{\frac{1}{2}}$ and $n = -(0.5)^{\frac{1}{2}}$, $m = -\sqrt{\frac{1}{2}}$ and $n = \sqrt{\frac{1}{2}}$

Note: Award **A0** for $m = \pm \frac{1}{\sqrt{2}}$, $n = \pm \frac{1}{\sqrt{2}}$, or any other answer that does not clearly indicate the correct pairs.

[7 marks]

(M1)

eg
$$\overrightarrow{PQ}, \overrightarrow{QP}$$

(A1)

eg
$$6i + j - 3k$$

any correct equation in the form r = a + tb (any parameter for t)

A2

N3

where
$$a$$
 is $i+2j-k$ or $7i+3j-4k$, and b is a scalar multiple of $6i+j-3k$

eg
$$r = 7i + 3j - 4k + t(6i + j - 3k)$$
, $r = \begin{pmatrix} 1 + 6s \\ 2 + 1s \\ -1 - 3s \end{pmatrix}$, $r = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -6s \\ -1 \\ 3 \end{pmatrix}$

Notes: Award **A1** for the form a + tb, **A1** for the form L = a + tb, **A0** for the form r = b + ta.

[4 marks]

(b) correct expression for scalar product
$$eg = 6 \times 2 + 1 \times 0 + (-3) \times n$$
, $-3n + 12$

setting scalar product equal to zero (seen anywhere)

(M1)

eg
$$u \cdot v = 0$$
, $-3n + 12 = 0$

n = 4

A1 N2 [3 marks]

[Total 7 marks]

valid approach to find \overrightarrow{AB} (a) (i)

eg
$$\overrightarrow{OB} - \overrightarrow{OA}, \begin{pmatrix} 4 - (-1) \\ 1 - 0 \\ 3 - 4 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$$

valid approach to find $\stackrel{
ightarrow}{{
m AB}}$

eg
$$\sqrt{(5)^2 + (1)^2 + (-1)^2}$$

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \sqrt{27}$$

[4 marks]

correct approach

$$\overrightarrow{OC} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$

C has coordinates (-2, 1, 3)

- AG
 - N0 [1 mark]

 $\hat{ADB} = \pi - \theta$, $\hat{D} = 180 - \theta$ (c) (i)

- **A1**
 - N1

any correct expression for the area involving $\, heta$ (ii)

- **A1** N1
- area = $\frac{1}{2} \times AD \times BD \times \sin(180 \theta)$, $\frac{1}{2} ab \sin \theta$, $\frac{1}{2} |\overrightarrow{DA}| |\overrightarrow{DB}| \sin(\pi \theta)$

[2 marks]

(d) METHOD 1 (using sine formula for area)

correct expression for the area of triangle ACD (seen anywhere) (A1)

eg
$$\frac{1}{2}$$
AD×DC×sin θ

correct equation involving areas A1

$$eg \qquad \frac{\frac{1}{2}AD \times BD \times \sin(\pi - \theta)}{\frac{1}{2}AD \times DC \times \sin\theta} = 3$$

recognizing that $\sin(\pi - \theta) = \sin \theta$ (seen anywhere) (A1)

$$\frac{\mathrm{BD}}{\mathrm{DC}} = 3$$
 (seen anywhere) (A1)

correct approach using ratio

eg
$$3\overrightarrow{DC} + \overrightarrow{DC} = \overrightarrow{BC}$$
, $\overrightarrow{BC} = 4\overrightarrow{DC}$

correct ratio
$$\frac{BD}{BC} = \frac{3}{4}$$

METHOD 2 (Geometric approach)

recognising ΔABD and ΔACD have same height (A1)

eg use of
$$h$$
 for both triangles, $\frac{\frac{1}{2}BD \times h}{\frac{1}{2}CD \times h} = 3$

correct approach A2

eg BD =
$$3x$$
 and DC = x , $\frac{BD}{DC}$ = 3

correct working A2

eg BC =
$$4x$$
, BD + DC = $4DC$, $\frac{BD}{BC} = \frac{3x}{4x}$, $\frac{BD}{BC} = \frac{3DC}{4DC}$

$$\frac{\mathrm{BD}}{\mathrm{BC}} = \frac{3}{4}$$
AG N0
[5 marks]

(e) correct working (seen anywhere)

eg
$$\overrightarrow{BD} = \frac{3}{4}\overrightarrow{BC}$$
, $\overrightarrow{OD} = \overrightarrow{OB} + \frac{3}{4} \begin{pmatrix} -6\\0\\0 \end{pmatrix}$, $\overrightarrow{CD} = \frac{1}{4}\overrightarrow{CB}$

valid approach (seen anywhere)

eg
$$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}$$
, $\overrightarrow{BC} = \begin{pmatrix} -6\\0\\0 \end{pmatrix}$

correct working to find x-coordinate

eg
$$\begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix}$$
, $x = 4 + \frac{3}{4} (-6)$, $-2 + \frac{1}{4} (6)$

D is $\left(-\frac{1}{2},1,3\right)$

(A1)

(M1)

(A1)

A1 N3

[4 marks]

[Total 16 marks]

eg
$$A-B$$
, $-\begin{pmatrix} 0\\1\\8 \end{pmatrix} + \begin{pmatrix} 3\\5\\2 \end{pmatrix}$

$$\vec{AB} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}$$
 A1 N2

(ii) any correct equation in the form
$$r = a + tb$$
 (any parameter for t) A2 N2 where a is $\begin{pmatrix} 0 \\ 1 \\ 8 \end{pmatrix}$ or $\begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$, and b is a scalar multiple of $\begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}$

eg
$$r = \begin{pmatrix} 0 \\ 1 \\ 8 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}, r = \begin{pmatrix} 3+3t \\ 5+4t \\ 2-6t \end{pmatrix}, r = \mathbf{j} + 8\mathbf{k} + t(3\mathbf{i} + 4\mathbf{j} - 6\mathbf{k})$$

Note: Award **A1** for the form a + tb, **A1** for the form L = a + tb, **A0** for the form r = b + ta.

[4 marks]

(M1)

A1

A1

(M1)

eg
$$a \cdot b = 0$$

choosing correct direction vectors (may be seen in scalar product)

eg
$$\begin{pmatrix} 3\\4\\-6 \end{pmatrix}$$
 and $\begin{pmatrix} p\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 3\\4\\-6 \end{pmatrix}$ $\bullet \begin{pmatrix} p\\0\\1 \end{pmatrix} = 0$

correct working/equation

eg
$$3p - 6 = 0$$

$$p=2$$
 AG NO

[3 marks]

$$eg L_1 = \begin{pmatrix} 9 \\ 13 \\ z \end{pmatrix}, L_1 = L_2$$

eg
$$3t = 9$$
, $1+2s = 9$, $5+4t = 13$, $3t = 1+2s$

eg
$$t=3$$
, $s=4$, $t=2$

valid approach to substitute their
$$t$$
 or s value $eg 8+3(-6), -14+4(1)$

$$z = -10$$
 A1 N3 [5 marks]

(d) (i)
$$|\vec{d}| = \sqrt{2^2 + 1} \ (= \sqrt{5})$$
 (A1)

$$\frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix} \qquad \begin{pmatrix} \frac{2}{\sqrt{5}}\\0\\\frac{1}{\sqrt{5}}\\\frac{1}{\sqrt{5}} \end{pmatrix} \qquad \qquad \textbf{A1} \qquad \qquad \textbf{N2}$$

(ii) METHOD 1 (using unit vector)

$$\begin{array}{cc}
 & \begin{pmatrix} 9 \\ 13 \\ -10 \end{pmatrix} \pm \sqrt{5} \, \hat{d}
\end{array}$$

correct working

eg
$$\begin{pmatrix} 9 \\ 13 \\ -10 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 13 \\ -10 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

METHOD 2 (distance between points)

attempt to use distance between (1+2s, 13, -14+s) and (9, 13, -10) (M1)

eg
$$(2s-8)^2+0^2+(s-4)^2=5$$

solving
$$5s^2 - 40s + 75 = 0$$
 leading to $s = 5$ or $s = 3$ (A1)

one correct point A1 N2 eg
$$(11, 13, -9), (7, 13, -11)$$
 [5 marks]

Total [17 marks]

(M1)

(A1)

evidence of scalar product (a) $a \cdot b$, 4(k+3)+2k

M1

recognizing scalar product must be zero $a \cdot b = 0$, 4k + 12 + 2k = 0

(M1)

correct working (must involve combining terms)

(A1)

6k+12, 6k=-12

A1 [4 marks]

N2

attempt to substitute **their** value of k (seen anywhere)

YYME

(M1)

eg
$$\boldsymbol{b} = \begin{pmatrix} -2+3 \\ -2 \end{pmatrix}$$
, $2\boldsymbol{b} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$

correct working

k = -2

(A1)

eg
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} 4+2k+6 \\ 2+2k \end{pmatrix}$$

A1 N2

[3 marks]

[Total 7 marks]

(a) recognizing t = 0 at A A is (4, -1, 3)

(M1) A1 N2 [2 marks]

(b) (i) METHOD 1

valid approach

(M1)

eg
$$\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
, $(6, 3, -1)$

correct approach to find $\stackrel{\rightarrow}{AB}$

(A1)

eg AO+OB, B-A,
$$\begin{pmatrix} 6 \\ 3 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$

$$\vec{AB} = \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$

A1 N2

METHOD 2

recognizing \overrightarrow{AB} is two times the direction vector

(M1)

correct working

(A1)

$$\overrightarrow{AB} = 2 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix}$$

A1

N2

(ii) correct substitution

(A1)

eg
$$|\overrightarrow{AB}| = \sqrt{2^2 + 4^2 + 4^2}$$
, $\sqrt{4 + 16 + 16}$, $\sqrt{36}$

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = 0$$

A1

[5 marks]

N2

METHOD 1 (vector approach)

valid approach involving \overrightarrow{AB} and \overrightarrow{AC} (M1)

eg
$$\vec{AB} \cdot \vec{AC}$$
, $\vec{BA} \cdot \vec{AC}$

finding scalar product and $|\overrightarrow{AC}|$ (A1)(A1)

scalar product 2(3)+4(0)-4(4) (= -10)

$$|\overrightarrow{AC}| = \sqrt{3^2 + 0^2 + 4^2}$$
 (= 5)

substitution of their scalar product and magnitudes into cosine formula (M1)

eg
$$\cos \hat{BAC} = \frac{6+0-16}{6\sqrt{3^2+4^2}}$$

$$\cos \hat{BAC} = -\frac{10}{30} \left(= -\frac{1}{3} \right)$$
 A1 N2

METHOD 2 (triangle approach)

valid approach involving cosine rule (M1)

eg
$$\cos BAC = \frac{AB^2 + AC^2 - BC^2}{2 \times AB \times AC}$$

finding lengths AC and BC (A1)(A1)

$$AC=5$$
, $BC=9$

substitution of their lengths into cosine formula (M1)

eg
$$\cos BAC = \frac{5^2 + 6^2 - 9^2}{2 \times 5 \times 6}$$

(d) **Note:** Award relevant marks for working seen to find BC in part (c) (if cosine rule used in part (c)).

METHOD 1 (using cosine rule)

$$eg c^2 = a^2 + b^2 - 2ab\cos C$$

eg BC² =
$$(6)^2 + (5)^2 - 2(6)(5)\left(-\frac{1}{3}\right)$$
, $36 + 25 + 20$

METHOD 2 (finding magnitude of \overrightarrow{BC})

eg attempt to find
$$\overrightarrow{OB}$$
 or \overrightarrow{OC} , $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 3 \\ -1 \end{pmatrix}$ or $\overrightarrow{OC} = \begin{pmatrix} 7 \\ -1 \\ 7 \end{pmatrix}$, $\overrightarrow{BA} + \overrightarrow{AC}$

eg
$$\vec{BC} = \begin{pmatrix} 1 \\ -4 \\ 8 \end{pmatrix}, \vec{CB} = \begin{pmatrix} -1 \\ 4 \\ -8 \end{pmatrix}, \sqrt{1^2 + 4^2 + 8^2} = \sqrt{81}$$

METHOD 3 (finding coordinates and using distance formula)

eg attempt to find coordinates of B or C,
$$B(6, 3, -1)$$
 or $C(7, -1, 7)$

eg BC =
$$\sqrt{(6-7)^2 + (3-(-1))^2 + (-1-7)^2}$$
, $\sqrt{1^2 + 4^2 + 8^2} = \sqrt{81}$

[4 marks]

[Total 16 marks]

$$eg \quad \begin{pmatrix} -1\\3\\3 \end{pmatrix} - \begin{pmatrix} -3\\4\\2 \end{pmatrix}, \begin{pmatrix} 3\\-4\\-2 \end{pmatrix} + \begin{pmatrix} -1\\3\\3 \end{pmatrix}$$

$$\vec{AB} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 AG NO

(ii) any correct equation in the form r = a + tb (any parameter for t)

where
$$a$$
 is $\begin{pmatrix} -3\\4\\2 \end{pmatrix}$ or $\begin{pmatrix} -1\\3\\3 \end{pmatrix}$ and b is a scalar multiple of $\begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ A2 N2

eg
$$r = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
, $(x, y, z) = (-1, 3, 3) + s(-2, 1, -1)$, $r = \begin{pmatrix} -3 + 2t \\ 4 - t \\ 2 + t \end{pmatrix}$

Note: Award **A1** for the form a+tb, **A1** for the form L=a+tb, **A0** for the form r=b+ta.

[3 marks]

(b) METHOD 1 - finding value of parameter

eg
$$\begin{pmatrix} -3\\4\\2 \end{pmatrix} + t \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} 3\\1\\p \end{pmatrix}, (-1,3,3) + s(-2,1,-1) = (3,1,p)$$

one correct equation (not involving
$$p$$
) (A1)

eg
$$-3+2t=3$$
, $-1-2s=3$, $4-t=1$, $3+s=1$

eg
$$t = 3$$
, $s = -2$

eg
$$\begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ p \end{pmatrix}, 3 - (-2)$$

$$p=5$$
 $\left(\operatorname{accept} \begin{pmatrix} 3\\1\\5 \end{pmatrix}\right)$ A1 N2

METHOD 2 - eliminating parameter

valid approach (M1)

eg
$$\begin{pmatrix} -3\\4\\2 \end{pmatrix} + t \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} 3\\1\\p \end{pmatrix}, (-1,3,3) + s(-2,1,-1) = (3,1,p)$$

one correct equation (not involving p) (A1)

eg
$$-3+2t=3$$
, $-1-2s=3$, $4-t=1$, $3+s=1$

correct equation (with p) A1

eg
$$2+t=p$$
, $3-s=p$

correct working to solve for p (A1)

eg
$$7 = 2p - 3$$
, $6 = 1 + p$

$$p = 5 \quad \left(\operatorname{accept} \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} \right)$$
 A1 N2

(c) valid approach to find \overrightarrow{DC} or \overrightarrow{CD}

$$\begin{array}{ccc} \text{eg} & \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} - \begin{pmatrix} q^2 \\ 0 \\ q \end{pmatrix}, \begin{pmatrix} q^2 \\ 0 \\ q \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}, \begin{pmatrix} q^2 \\ 0 \\ q \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ p \end{pmatrix} \end{array}$$

correct vector for \overrightarrow{DC} or \overrightarrow{CD} (may be seen in scalar product)

$$eg \quad \begin{pmatrix} 3-q^2 \\ 1 \\ 5-q \end{pmatrix}, \begin{pmatrix} q^2-3 \\ -1 \\ q-5 \end{pmatrix}, \begin{pmatrix} 3-q^2 \\ 1 \\ p-q \end{pmatrix}$$

recognizing scalar product of \overrightarrow{DC} or \overrightarrow{CD} with direction vector of L is zero (seen anywhere) (M1)

eg
$$\begin{pmatrix} 3-q^2 \\ 1 \\ p-q \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0$$
, $\overrightarrow{DC} \cdot \overrightarrow{AC} = 0$, $\begin{pmatrix} 3-q^2 \\ 1 \\ 5-q \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0$

correct scalar product in terms of only q

eg
$$6-2q^2-1+5-q$$
, $2q^2+q-10=0$, $2(3-q^2)-1+5-q$

correct working to solve quadratic (A1)

eg
$$(2q+5)(q-2)$$
, $\frac{-1\pm\sqrt{1-4(2)(-10)}}{2(2)}$

[7 marks] Total [15 marks]

[5 marks]