Subject – Math(Standard Level) Topic - Algebra Year - Nov 2011 – Nov 2019 Paper -2

Question 1

(a) 10 terms A1 N1 [1 mark]

(b) evidence of binomial expansion (M1)
e.g.
$$a^9b^0 + \binom{9}{1}a^8b + \binom{9}{2}a^7b^2 + \dots, \binom{9}{r}(a)^{n-r}(b)^r$$
, Pascal's triangle

evidence of correct term

(A1)

e.g.
$$8^{th}$$
 term, $r = 7$, $\binom{9}{7}$, $(3x^2)^2 2^7$

correct expression of complete term (A1)

e.g.
$$\binom{9}{7} (3x^2)^2 (2)^7$$
, ${}_{2}^{9} C (3x^2)^2 (2)^7$, $36 \times 9 \times 128$

41472 x^4 (accept 41500 x^4)

A1 N2

[4 marks]

Total [5 marks]

(a) (i) correct approach (A1) $e.g. \ u_4 = (40)\frac{1}{2}^{(4-1)}, \text{ listing terms}$ $u_4 = 5$ A1

(ii) correct substitution into formula for infinite sum $e.g. S_{\infty} = \frac{40}{1 - 0.5}, S_{\infty} = \frac{40}{0.5}$ (A1)

 $S_{\infty} = 80$ A1 N2 [4 marks]

(b) (i) attempt to set up expression for u_8 (M1) e.g. -36 + (8-1)d

correct working A1

e.g. -8 = -36 + (8-1)d, $\frac{-8 - (-36)}{7}$ d = 4A1 N2

(ii) correct substitution into formula for sum (A1)

e.g. $S_n = \frac{n}{2} (2(-36) + (n-1)4)$

correct working

e.g. $S_n = \frac{n}{2}(4n-76), -36n+2n^2-2n$

 $S_n = 2n^2 - 38n AG N0$

(c) multiplying S_n (AP) by 2 or dividing S (infinite GP) by 2

e.g. $2S_n$, $\frac{S_\infty}{2}$, 40

evidence of substituting into $2S_n = S_{\infty}$ A1 e.g. $2n^2 - 38n = 40$, $4n^2 - 76n - 80$ (= 0)

attempt to solve **their** quadratic (equation)

e.g. intersection of graphs, formula

(M1)

n = 20 A2 N3 [5 marks]

Total [14 marks]

[5 marks]

*N*2

(a) (i)
$$d = 4$$
 A1 N1

(ii) evidence of valid approach (M1) e.g.
$$u_8 = 36 + 7(4)$$
, repeated addition of d from 36

$$u_8 = 64$$
 A1 N2 [3 marks]

(b) (i) correct substitution into sum formula
$$e.g. S_n = \frac{n}{2} \left\{ 2(36) + (n-1)(4) \right\}, \frac{n}{2} \left\{ 72 + 4n - 4 \right\}$$

evidence of simplifying

e.g.
$$\frac{n}{2}\{4n+68\}$$

$$S_n = 2n^2 + 34n AG N0$$

Total [6 marks]

Question 4

(a) Valid attempt to find term in
$$x^{20}$$

(M1)

e.g. $\binom{8}{1}(2^7)(b)$, $(2x^3)^7\left(\frac{b}{x}\right) = 3072$

correct equation

e.g.
$$\binom{8}{1}(2^7)(b) = 3072$$

$$b=3$$
A1 N2
[3 marks]

(b) evidence of choosing correct term
$$e.g. 7^{th}$$
 term, $r = 6$ (M1)

correct expression
$$e.g. {8 \choose 6} (2x^3)^2 \left(\frac{3}{x}\right)^6$$

$$k = 81648$$
 (accept 81600) A1 N2 [3 marks]

Total [6 marks]

e.g.
$$200\left(\frac{1-r^4}{1-r}\right)$$
, $200 + 200r + 200r^2 + 200r^3$

attempt to set up an equation involving a sum and 324.8

e.g.
$$200\left(\frac{1-r^4}{1-r}\right) = 324.8$$
, $200 + 200r + 200r^2 + 200r^3 = 324.8$

$$r = 0.4$$
 (exact) A2 N3

[4 marks]

(b) correct substitution into formula

$$e.g.$$
 $u_{10} = 200 \times 0.4^9$

$$u_{10} = 0.0524288$$
 (exact), 0.0524

A1*N1* [2 marks]

M1

Total [6 marks]

Question 6

$$d = 1.7$$

A1[2 marks]

e.g.
$$5+27(1.7)$$

28th term is 50.9 (exact)

A1 N2
[2 marks]

correct substitution into sum formula

e.g.
$$S_{28} = \frac{28}{2} (2(5) + 27(1.7)), \frac{28}{2} (5 + 50.9)$$

e.g.
$$S_{28} = \frac{28}{2} (2(5) + 27(1.7)), \frac{28}{2} (5 + 50.9)$$

$$S_{28} = 782.6 \text{ (exact) } [782, 783]$$
 A1 N2 [2 marks] Total [6 marks]

attempt to expand binomial (M1) $(2x)^6 p^0 + {6 \choose 1} (2x)^5 (p)^1 + \dots , {n \choose r} (2x)^r (p)^{n-r}$ one correct calculation for term in x^4 in the expansion for power 6 (A1)15, $16x^4$ e.g. correct expression for term in x^4 (A1) $\binom{6}{2}(2x)^4(p)^2$, $15.2^4 p^2$ **Notes:** Accept sloppy notation e.g. omission of brackets around 2x. Accept absence of x in middle factor. correct term (A1) $240p^2x^4$ (accept absence of x^4) setting up equation with their coefficient equal to 60 **M1** $\binom{6}{2}(2)^4(p)^2 = 60, 240p^2x^4 = 60x^4, p^2 = \frac{60}{240}$ $p = \pm \frac{1}{2}(p = \pm 0.5)$ A1A1N3 [7 marks] Question 8 d = 3(a) A1*N1* [1 mark] correct substitution into term formula (b) (A1) $eg \quad u_{100} = 5 + 3(99), 5 + 3(100 - 1)$ $u_{100} = 302$ A1N2correct substitution into sum formula (A1) $eg S_{100} = \frac{100}{2} (2(5) + 99(3)), S_{100} = \frac{100}{2} (5 + 302)$ $S_{100} = 15350$ A1N2[4 marks] (c) correct substitution into term formula (A1)1502 = 5 + 3(n-1), 1502 = 3n + 2N2 A1n = 500[2 marks]

Total [7 marks]

(a)
$$p = 5$$
, $q = 7$, $r = 7$ (accept $r = 5$) A1A1A1 N3
[3 marks]

(b) correct working (A1)
$$eg = \begin{pmatrix} 12 \\ 7 \end{pmatrix} \times (3x)^5 \times (-2)^7, 792, 243, -2^7, 24634368$$

coefficient of term in
$$x^5$$
 is -24634368 A1 N2

Note: Do not award the final A1 for an answer that contains x.

[2 marks]

Total [5 marks]

Question 10

$$eg$$
 62.755 = $u_1 \left(\frac{1 - r^3}{1 - r} \right)$, $u_1 + u_1 r + u_1 r^2 = 62.755$

$$eg \qquad \frac{u_1}{1-r} = 440$$

attempt to eliminate one variable *(M1)*
$$eg$$
 substituting $u_1 = 440(1-r)$

eg
$$62.755 = 440(1-r)\left(\frac{1-r^3}{1-r}\right)$$
, $440(1-r)(1+r+r^2) = 62.755$

evidence of attempting to solve the equation in a single variable (M1)
$$eg$$
 sketch, setting equation equal to zero, $62.755 = 440 \left(1 - r^3\right)$

$$r = 0.95 = \frac{19}{20}$$
 A1 N4 [6 marks]

evidence of binomial expansion (M1)

eg selecting correct term,
$$\left(\frac{x}{a}\right)^6 \left(\frac{a^2}{x}\right)^0 + {6 \choose 1} \left(\frac{x}{a}\right)^5 \left(\frac{a^2}{x}\right)^1 + \dots$$

evidence of identifying constant term in expansion for power 6 (A1) eg = r = 3, 4^{th} term

evidence of correct term (may be seen in equation)

A2

$$eg \qquad 20\frac{a^6}{a^3}, \, \binom{6}{3} \left(\frac{x}{a}\right)^3 \left(\frac{a^2}{x}\right)^3$$

attempt to set up **their** equation (M1)

eg
$$\binom{6}{3} \left(\frac{x}{a}\right)^3 \left(\frac{a^2}{x}\right)^3 = 1280, \ a^3 = 1280$$

correct equation in one variable a (A1)

$$eg 20a^3 = 1280, a^3 = 64$$

Question 12

(b) evidence of binomial expansion (M1)
$$eg = \binom{n}{r} a^{n-r} b^r$$
, attempt to expand

eg 8th term,
$$r = 7$$
, $\begin{pmatrix} 10 \\ 7 \end{pmatrix}$, $(x)^3 (3)^7$

correct working
$$eg \quad \begin{pmatrix} 10 \\ 7 \end{pmatrix} (x)^3 (3)^7, \begin{pmatrix} 10 \\ 3 \end{pmatrix} (x)^3 (3)^7,$$
(A1)

$$(7)$$
 (3) (3) (3) (3) (3) (4) (4) (3) (4)

Total [5 marks]

valid approach
$$eg \qquad \left(\begin{array}{c} 8 \\ r \end{array}\right) \left(3x^2\right)^{8-r} \left(\frac{k}{x}\right)^r,$$

$$\left(3x^2\right)^8 + \left(\begin{array}{c} 8 \\ 1 \end{array}\right) \left(3x^2\right)^7 \left(\frac{k}{x}\right) + \left(\begin{array}{c} 8 \\ 2 \end{array}\right) \left(3x^2\right)^6 \left(\frac{k}{x}\right)^2 + \dots, \text{ Pascal's triangle to 9}^{\text{th} line}$$
attempt to find value of r which gives term in x^0

$$eg \qquad \text{exponent in binomial must give } x^{-2}, \ x^2 \left(x^2\right)^{8-r} \left(\frac{k}{x}\right)^r = x^0$$

$$\text{correct working} \qquad (A1)$$

eg
$$2(8-r)-r=-2$$
, $18-3r=0$, $2r+(-8+r)=-2$

evidence of correct term
$$eg \quad \begin{pmatrix} 8 \\ 2 \end{pmatrix}, \begin{pmatrix} 8 \\ 6 \end{pmatrix} (3x^2)^2 \left(\frac{k}{x}\right)^6, \ r = 6, \ r = 2$$
(A1)

equating **their** term and 16128 to solve for
$$k$$

$$eg x^2 \left(\begin{array}{c} 8 \\ 6 \end{array}\right) (3x^2)^2 \left(\frac{k}{x}\right)^6 = 16128, \ k^6 = \frac{16128}{28(9)}$$

$$k = \pm 2$$
 A1A1 N2

Note: If no working shown, award N0 for k = 2.

Total [7 marks]

valid approach to find the required term

eg
$$\binom{8}{r} \left(\frac{x^3}{2}\right)^{8-r} \left(\frac{p}{x}\right)^r, \left(\frac{x^3}{2}\right)^8 \left(\frac{p}{x}\right)^0 + \binom{8}{1} \left(\frac{x^3}{2}\right)^7 \left(\frac{p}{x}\right)^1 + \dots$$
, Pascal's triangle to required value

identifying constant term (may be indicated in expansion)

eg
$$7^{\text{th}}$$
 term, $r = 6$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{8}{6}\right)$, $\left(\frac{x^3}{2}\right)^2 \left(\frac{p}{x}\right)^6$

correct calculation (may be seen in expansion)

$$eg \qquad \binom{8}{6} \left(\frac{x^3}{2}\right)^2 \left(\frac{p}{x}\right)^6, \ \frac{8 \times 7}{2} \times \frac{p^6}{2^2}$$

setting up equation with their constant term equal to 5103

eg
$$\binom{8}{6} \left(\frac{x^3}{2}\right)^2 \left(\frac{p}{x}\right)^6 = 5103, \ p^6 = \frac{5103}{7}$$

$$p = \pm 3$$

A1A1 N3 [6 marks]

(a) (i) valid approach
$$eg r = \frac{u_2}{u_1}, \frac{4}{4.2}$$
 $r = 1.05$ (exact) A1 N2

(ii) attempt to substitute into formula, with **their** r $eg 4 \times 1.05^a, 4 \times 1.05 \times 1.0$

(a) 9 terms A1 N1 [1 mark]

(b) valid approach to find the required term (M1) $eg \quad \binom{8}{r} (2x)^{8-r} (3)^r, \quad (2x)^8 (3)^0 + (2x)^7 (3)^1 + \dots, \text{ Pascal's triangle to}$

identifying correct term (may be indicated in expansion) (A1)

eg 6th term, r = 5, $\binom{8}{5}$, $(2x)^3 (3)^5$

correct working (may be seen in expansion) (A1)

eg $\binom{8}{5}(2x)^3(3)^5$, $56 \times 2^3 \times 3^5$

 $108864x^3$ (accept $109000x^3$) A1 N3

[4 marks]

tes: Do not award any marks if there is clear evidence of adding instead of multiplying. Do not award final $\it A1$ for a final answer of 108864, even if $108864x^3$ is seen previously. If no working shown award $\it N2$ for 108864.

Total [5 marks]

 $k = \pm 1.5$ (exact)

A1A1

N3

[5 marks]

METHOD 1

recognize that the distance walked each minute is a geometric sequence (M1) eg = r = 0.9, valid use of 0.9

recognize that total distance walked is the sum of a geometric sequence (M1)

(A1)

(A1)

(M1)

eg
$$S_n$$
, $a\left(\frac{1-r^n}{1-r}\right)$

correct substitution into the sum of a geometric sequence

eg
$$80\left(\frac{1-0.9^n}{1-0.9}\right)$$

any correct equation with sum of a geometric sequence

eg
$$80\left(\frac{0.9^n-1}{0.9-1}\right) = 660, 1-0.9^n = \frac{66}{80}$$

attempt to solve their equation involving the sum of a GP eg graph, algebraic approach

$$n = 16.54290788$$

since n > 15 R1 he will be late AG N0

Continue....

METHOD 2

recognize that the distance walked each minute is a geometric sequence $eg = r = 0.9$, valid use of 0.9	(M1)	
	(M1)	
eg S_n , $a\left(\frac{1-r^n}{1-r}\right)$		
correct substitution into the sum of a geometric sequence $80(1-0.9^n)$	(A1)	
eg $80\left(\frac{1-0.9^n}{1-0.9}\right)$ attempt to substitute $n=15$ into sum of a geometric sequence	(M1)	
eg S_{15}	()	
correct substitution	(A1)	
eg $80\left(\frac{0.9^{15}-1}{0.9-1}\right)$		
$S_{15} = 635.287$	A1	
since $S < 660$	R1	
he will not be there on time	AG	N0
Note: Do not award the <i>R</i> mark without the preceding <i>A</i> mark.		
METHOD 3 recognize that the distance walked each minute is a geometric sequence $eg = r = 0.9$, valid use of 0.9	(M1)	
recognize that total distance walked is the sum of a geometric sequence $eg = S_n$, $a\left(\frac{1-r^n}{1-r}\right)$	(M1)	
listing at least 5 correct terms of the GP	(M1)	
15 correct terms	A1	
80, 72, 64.8, 58.32, 52.488, 47.2392, 42.5152, 38.2637, 34.4373, 30.9936, 27.8942, 25.1048, 22.59436, 20.3349, 18.3014	•	
attempt to find the sum of the terms	(M1)	
eg S_{15} , $80 + 72 + 64.8 + 58.32 + 52.488 + + 18.301433$		
$S_{15} = 635.287$	A1	
since $S < 660$ he will not be there on time	R1 AG	NO
Note: Do not award the <i>R</i> mark without the preceding <i>A</i> mark.	40	740
Hoto. So not award the A mark without the proceeding A mark.		[7 marks]

(a) valid approach
$$u_1 \quad 4 \quad 1 \quad 0 \quad 0 \quad 0$$

eg
$$\frac{u_1}{u_2}$$
, $\frac{4}{1.6}$, $1.6 = r(0.64)$
 $r = 2.5 \left(= \frac{5}{2} \right)$

A1 N2

[2 marks] correct substitution into S_6 (A1)

(b) correct substitution into
$$S_6$$
 eg
$$\frac{0.64(2.5^6-1)}{2.5-1}$$

$$2.5-1$$
 $S_6 = 103.74$ (exact), 104

(c) METHOD 1 (analytic)

n = 14

n = 14

eg
$$\frac{0.64(2.5^n - 1)}{2.5 - 1} > 75000, \frac{0.64(2.5^n - 1)}{2.5 - 1} = 75000$$

eg
$$n > 13.1803$$
, $n = 13.2$

METHOD 2 (table of values)

$$eg S_{13} = 63577.8, S_{14} = 158945$$

(a) valid approach to find the required term (M1)

eg $\binom{9}{r}(x)^{9-r}(2)^r$, $x^9 + 9x^8(2) + \binom{9}{2}x^7(2)^2 + ...$, Pascal's triangle to the 9th row

identifying correct term (may be indicated in expansion) (A1)

eg 4th term, r = 6, $\binom{9}{3}$, $(x)^6 (2)^3$

correct calculation (may be seen in expansion) (A1)

eg $\binom{9}{3}(x)^6(2)^3$, 84×2^3

 $672x^6$ A1 N3

[4 marks]

(b) valid approach (M1)

eg recognizing x^7 is found when multiplying $5x \times 672x^6$

33 $60x^7$ A1 N2 [2 marks]

Total [6 marks]

Question 22

correct equation to find r (A1)

 $u_1 r^3 = 8u_1, \ r^3 = 8$

r = 2 (seen anywhere) (A1)

correct equation to find u_1

eg $u_1(2^{10}-1) = 2557.5, u_1 = \frac{2557.5}{r^{10}-1}(r-1)$

 $u_1 = 2.5$ (A1)

 $u_{10} = 2.5(2)^9$ (M1)

1280 A1 N4

[6 marks]

(a) valid approach
$$eg = 1.5 - 0.3, 1.5 - 2.7, 2.7 = 0.3 + 2d$$
 $d = 1.2$

(b) correct substitution into term formula $eg = 0.3 + 1.2(30 - 1), u_{30} = 0.3 + 29(1.2)$

(c) correct substitution into sum formula $eg = S_{30} = \frac{30}{2}(0.3 + 35.1), \frac{30}{2}(2(0.3) + 29(1.2))$

(a) $S_{30} = 531$

(b) valid approach $eg = \left(\frac{10}{r}\right)(x^2)^{10-r}\left(\frac{2}{x}\right)^r, a^{10}b^9 + \left(\frac{10}{1}\right)a^9b^1 + \left(\frac{10}{2}\right)a^8b^2 + \dots$

Pascal's triangle to 11^{th} row valid attempt to find value of r which gives term in x^3

(M1) $eg = \left(x^2\right)^{10-r}\left(\frac{1}{x^r}\right) = x^8, x^{2r}\left(\frac{2}{x}\right)^{10-r} = x^8$

identifying required term (may be indicated in expansion) $eg = r = 6$, 5th term, 7th term correct working (may be seen in expansion) $eg = \left(\frac{10}{6}\right)(x^2)^8\left(\frac{2}{x}\right)^4$, 210×16

3360

A1 N3

[5 marks]

Total [6 marks]

attempt to find r eg $\frac{576}{768}$, $\frac{768}{576}$, 0.75	(M1)	
768 576		
correct expression for u_n	(A1)	
$eg 768(0.75)^{n-1}$		
EITHER (solving inequality) valid approach (accept equation) $eg u_n < 7$	(M1)	
valid approach to find <i>n</i>	M1	
eg $768(0.75)^{n-1} = 7$, $n-1 > \log_{0.75} \left(\frac{7}{768}\right)$, sketch		
correct value $eg = n = 17.3301$	(A1)	
n = 18 (must be an integer)	A1	N2
OR (table of values)		
valid approach $eg u_n < 7$,one correct crossover value	(M1)	
both crossover values, $u_{17} = 7.69735$ and $u_{18} = 5.77301$	A2	
n = 18 (must be an integer)	A1	N2
OR (sketch of functions)		
valid approach eg sketch of appropriate functions	M1	
valid approach eg finding intersections or roots (depending on function sketched)	(M1)	
correct value		
eg $n = 17.3301$	(A1)	
n = 18 (must be an integer)	A1	N2 [6 marks]
		Lo markoj

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r) (M1) $\binom{11}{r}(2)^{11-r}ax^r$, $\binom{11}{3}(2)^8(ax)^3$, $2^{11} + \binom{11}{1}(2)^{10}(ax)^1 + \binom{11}{2}(2)^9(ax)^2 + \dots$ recognizing need to find term in x^2 in binomial expansion (A1) r = 2, $(ax)^2$ correct term or coefficient in binomial expansion (may be seen in equation) (A1) $\binom{11}{2}(ax)^2(2)^9$, 55(a^2x^2)(512), 28160 a^2 setting up equation in x^5 with **their** coefficient/term (do not accept other powers of x) (M1) $ax^{3} \binom{11}{2} (ax)^{2} (2)^{9} = 11880x^{5}$ correct equation (A1) $28160a^3 = 11880$ $a = \frac{3}{4}$ A1 N3 [6 marks] Question 27 valid approach to find maxima (M1)one correct value of x_k , sketch of fany two correct consecutive values of x_{i} (A1)(A1) $x_1 = 1, x_2 = 5$ a = 4A1 **N3** [4 marks] (b) recognizing the sequence $x_1, x_2, x_3, ..., x_n$ is arithmetic (M1)d = 4correct expression for sum (A1)eg $\frac{n}{2}(2(1)+4(n-1))$ valid attempt to solve for n (M1)graph, $2n^2 - n - 861 = 0$ n = 21A1 N₂ [4 marks]

Total [8 marks]

~			
(a)	valid approach eg one correct value	(M1)	
	-0.453620, $6.14210a = -0.454$, $b = 6.14$	A1A1	N3 [3 marks]
(b)	correct substitution eg $-0.454 \ln 3.57 + 6.14$	(A1)	
	correct working eg $\ln y = 5.56484$	(A1)	
	261.083 (260.409 from 3 sf)		
	y = 261, ($y = 260$ from 3sf)	A1	N3
	Note: If no working shown, award N1 for 5.56484 . If no working shown, award N2 for $\ln y = 5.56484$.		
			[3 marks]
(c)	METHOD 1 valid approach for expressing $\ln y$ in terms of $\ln x$	(M1)	
	eg $\ln y = \ln (kx^n)$, $\ln(kx^n) = a \ln x + b$		
	correct application of addition rule for logs $ = \ln k + \ln (x^n) $	(A1)	
	correct application of exponent rule for logs $eg = \ln k + n \ln x$	A1	
	comparing one term with regression equation (check FT) eg $n=a$, $b=\ln k$	(M1)	
	correct working for k eg $\ln k = 6.14210$, $k = e^{6.14210}$ 465.030	(A1)	
	465.030		
	n = -0.454, $k = 465$ (464 from 3sf)	A1A1	N2N2

METHOD 2

valid approach (M1)
$$eq e^{\ln y} = e^{a \ln x + b}$$

$$eg e^{\ln y} = e^{a \ln x + b}$$

correct use of exponent laws for
$$e^{a \ln x + b}$$
 (A1)

eg
$$e^{a \ln x} \times e^b$$

correct application of exponent rule for
$$a \ln x$$
 (A1)

eg
$$\ln x^a$$

eg
$$y = x^a \times e^b$$

eg
$$k = e^b$$
, $n = a$

465.030

$$n = -0.454$$
, $k = 465$ (464 from 3sf)

A1A1 N2N2

METHOD 3

valid approach for expressing
$$\ln y$$
 in terms of $\ln x$ (seen anywhere) (M1)

eg
$$\ln y = \ln (kx^n)$$
, $\ln (kx^n) = a \ln x + b$

eg
$$\ln(x^a) + b$$

correct working for
$$b$$
 (seen anywhere) (A1)

eg
$$b = \ln(e^b)$$

eg
$$\ln(e^b x^a)$$

eg
$$k = e^b$$
, $n = a$

465.030

$$n = -0.454$$
, $k = 465$ (464 from 3sf) **A1A1 N2N2 [7 marks]**

Total [13 marks]

(a) correct substitution into infinite sum

$$eg \qquad 200 = \frac{4}{1-r}$$

r=0.98 (exact) A1 N2 [2 marks]

(b) correct substitution (A1)

$$\frac{4(1-0.98^8)}{1-0.98}$$
29.8473

29.8 A1 N2 [2 marks]

(c) attempt to set up inequality (accept equation) (M1)

eg
$$\frac{4(1-0.98^n)}{1-0.98} > 163, \frac{4(1-0.98^n)}{1-0.98} = 163$$

correct inequality for n (accept equation) or crossover values (A1) eg n>83.5234, n=83.5234, $S_{83}=162.606$ and $S_{84}=163.354$

n = 84 A1 N1

[3 marks]

(A1)

[Total: 7 marks]

valid approach to find one of the required terms (must have correct substitution for parameters but accept "r" or an incorrect value for r) (M1)

eg
$$\binom{9}{r}(2x)^{9-r}\left(\frac{k}{x}\right)^r$$
, $\binom{9}{6}(2x)^6\left(\frac{k}{x}\right)^3$, $\binom{9}{0}(2x)^0\left(\frac{k}{x}\right)^9+\binom{9}{1}(2x)^1\left(\frac{k}{x}\right)^8+\dots$, Pascal's triangle to 9th row

te: Award M0 if there is clear evidence of adding instead of multiplying.

identifying correct terms (must be clearly indicated if only seen in expansion)

(A1)(A1)

eg for
$$x^3$$
 term: $r = 3$, $r = 6$, 7th term, $\binom{9}{6}$, $\binom{9}{3}$, $(2x)^6 \left(\frac{k}{x}\right)^3$, $5376k^3$

for
$$x^5$$
 term: $r = 2$, $r = 7$, 8th term, $\binom{9}{7}$, $\binom{9}{2}$, $(2x)^7 \left(\frac{k}{x}\right)^2$, $4608k^2$

correct equation (may include powers of x)

A1

eg
$$\binom{9}{3} (2x)^6 \left(\frac{k}{x}\right)^3 = \binom{9}{2} (2x)^7 \left(\frac{k}{x}\right)^2$$

valid attempt to solve their equation in terms of k only

(M1)

eg sketch,
$$84 \times 64k^3 - 36 \times 128k^2 = 0$$
, $5376k - 4608 = 0$, $\binom{9}{3}2^6k^3 = \binom{9}{2}2^7k^2$

0.857142

$$k = \frac{4608}{5376} \left(= \frac{6}{7} \right)$$
 (exact), 0.857

A1

[6 marks]

N4

correct substitution into formula for infinite geometric series (A1)

eg
$$33.25 = \frac{u_1}{1-r}$$

correct substitution into formula for u_n (seen anywhere) (A1)

eg
$$7.98 = u_1 r$$

attempt to express u_1 in terms of r (or vice-versa) (M1)

eg
$$u_1 = \frac{7.98}{r}$$
, $u_1 = 33.25(1-r)$, $r = \frac{7.98}{u_1}$, $r = \frac{33.25 - u_1}{33.25}$

correct working (A1)

eg
$$\frac{\left(\frac{7.98}{r}\right)}{1-r} = 33.25, \ 33.25(1-r) = \frac{7.98}{r}, \ (0.4, 19.95), \ (0.6, 13.3), \ \frac{u_1}{1-\frac{7.98}{u_1}} = 33.25$$

$$r = 0.4 \ \left(= \frac{2}{5} \right), \ r = 0.6 \ \left(= \frac{3}{5} \right)$$

Total [6 marks]

Question 32

valid approach for expanding binomial (M1)

$$\text{eg} \quad \binom{12}{r} (2x^4)^{12-r} \left(\frac{x^2}{k}\right)^r, \ (2x^4)^{12} + \binom{12}{1} (2x^4)^{11} \left(\frac{x^2}{k}\right)^1 + \binom{12}{2} (2x^4)^{10} \left(\frac{x^2}{k}\right)^2 + \dots$$

valid attempt to find r for x^{40} or x^{38} eg $(x^4)^{12-r}(x^2)^r = (x)^{40}, (x^4)^r (x^2)^{12-r} = (x)^{40}$ (M1)

eg
$$(x^4)^{12-r}(x^2)^r = (x)^{40}, (x^4)^r(x^2)^{12-r} = (x)^{40},$$

eg
$$(x^4)^{12-r}(x^2)^r = (x)^{40}, (x^4)^r(x^2)^{12-r} = (x)^{40},$$

 $\binom{12}{r}(2^r)\left(\frac{1}{k}\right)^{12-r}(x^4)^r(x^2)^{12-r} = \binom{12}{r}(2^r)\left(\frac{1}{k}\right)^{12-r}x^{38}$
correct equation for finding one value of r

correct equation for finding one value of r (A1)

eg
$$48-2r=40, 48-2r=38, 24+2r=40, 2r+24=38$$

correct values for r (seen anywhere) (A1)(A1)

eg
$$r = 4, r = 5$$
 OR $r = 7, r = 8$

A1 correct equation to solve for k

eg
$$\binom{12}{4}(2^8)\left(\frac{1}{k}\right)^4 = 5\binom{12}{5}(2^7)\left(\frac{1}{k}\right)^5$$
, $\frac{126720}{k^4} = 5 \times \frac{792(128)}{k^5}$, $990k = 3960$

k = 4**A1** N2

Total [7 marks]

(a) attempt to find
$$d$$
 eg $1.4-1.3$, u_1-u_2 , $1.4=1.3+(2-1)d$ $d=0.1$ (may be seen in expression for u_n) (A1) correct equation eg $1.3+(k-1)\times 0.1=31.2$, $0.1k=30$ A1 N3 [4 marks] (b) correct substitution eg $\frac{300}{2}(1.3+31.2)$, $\frac{300}{2}[2(1.3)+(300-1)(0.1)]$, $\frac{300}{2}[2.6+299(0.1)]$ S_k = 4875 A1 N2 [2 marks] (c) recognizing need to find the sequence of multiples of 3 (seen anywhere) eg first term is u_3 (=1.5) (accept notation u_1 =1.5), $d=0.1\times 3$ (=0.3), 100 terms (accept $n=100$), last term is 31.2 (accept notation $u_{100}=31.2$), $u_3+u_6+u_9+...$ (accept $F=u_3+u_6+u_9+...$) correct working for sum of sequence where n is a multiple of 3 A2 $\frac{100}{2}(1.5+31.2)$, $50(2\times 1.5+99\times 0.3)$, 1635 valid approach (seen anywhere) (M1) eg $S_k-(u_3+u_6+...)$, $S_k-\frac{100}{2}(1.5+31.2)$, S_k (their sum for $(u_3+u_6+...)$) correct working (seen anywhere) eg S_k-1635 , $4875-1635$ A6 N0 [5 marks]

(d) attempt to find *r*

(M1)

eg dividing consecutive terms

correct value of r (seen anywhere, including in formula)

eg
$$\frac{1}{\sqrt{2}}$$
, 0.707106..., $\frac{a}{0.293...}$

A1

correct working (accept equation)

(A1)

eg
$$\frac{a}{1-\frac{1}{\sqrt{2}}} < 3240$$

correct working

A1

METHOD 1 (analytical)

eg
$$3240 \times \left(1 - \frac{1}{\sqrt{2}}\right)$$
, $a < 948.974$, 948.974

METHOD 2 (using table, must find both S_{∞} values)

eg when
$$a=948$$
, $S_{\infty}=3236.67...$ AND when $a=949$, $S_{\infty}=3240.08...$

a = 948

A1 N2 [5 marks]

Total [16 marks]

valid approach for expanding binomial (must have correct substitution for parameters, but accept "r" or an incorrect value for r) (M1)

eg
$$\binom{15}{r} \left(\frac{1}{2x}\right)^{(15-r)} \left(x^2\right)^r$$
, $\left(\frac{1}{2x}\right)^{15} \left(x^2\right)^0 + 15 \left(\frac{1}{2x}\right)^{14} \left(x^2\right)^1 + \binom{15}{2} \left(\frac{1}{2x}\right)^{13} \left(x^2\right)^2 + \dots$

recognizing need to find the term containing x^{-3} in the expansion of $\left(\frac{1}{2x} + x^2\right)^{15}$ (M1)

eg
$$(x^{-1})^{15-r}(x^2)^r = x^{-3}, (x^{-1})^r(x^2)^{15-r} = x^{-3}, -15+r+2r=-3$$

identifying the correct term (seen anywhere)

eg r = 4, r = 11, n - r = 4

correct working (A1)(A1)

eg
$$\binom{15}{4} \left(\frac{1}{2x}\right)^{15-4}$$
, $1365 \times \frac{1}{2^{11}}$

e: Award A1 for each factor.

1365 2048 A1 N2 [7 marks]

Question 35

eg
$$2+2$$
, $6+(-6)$, $2(3)^{n-1}+2(-3)^{n-1}$

correct value for w_5 (A1)

eg 324

[3 marks]

eg
$$4 \times r^1 = 36$$
, $4 \times 9^{n-1}$

$$r = 9$$
 (accept $\sum_{k=0}^{m} 4 \times 9^k$; m may be incorrect) A1 N2

(ii) recognition that 225 terms of
$$w_n$$
 consists of 113 non-zero terms (M1)

eg
$$\sum_{1}^{113}$$
 , \sum_{0}^{112} , 113

$$m=112$$
 (accept $\sum_{k=0}^{112} 4 \times r^k$; r may be incorrect) A1 N2

[4 marks]

Total [7 marks]

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r) (M1)

eg
$$\binom{n}{r} (x^2)^{n-r} (1.2)^r$$
, $\binom{n}{0} (x^2)^n + \binom{n}{1} (x^2)^{n-1} (1.2) + \binom{n}{2} (x^2)^{n-2} (1.2)^2 + \dots$

attempt to identify correct term (M1)

eg
$$2r=6$$
, $n-r=3$, $\binom{n}{3}$, $\binom{n}{n-3}$

correct expression (A1)

eg
$$\binom{n}{n-3} \times 1.2^{n-3} x^6$$
, $\binom{n}{n-3} \times 1.2^{n-3}$

EITHER (solving inequality)

attempt to set up inequality in terms of n (accept equation) M1

eg
$$\binom{n}{3} \times 1.2^{n-3} > 200\,000$$
, $1.2^{n-3} \binom{n}{3} x^6 = 200\,000$

correct working for binomial coefficient (may be seen in equation) (A1)

eg
$$\frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}$$
, $\frac{n(n-1)(n-2)}{6} \times 1.2^{n-3} = 200000$

n > 26.4959 (accept 26.4959 or n = 26.4959)

$$n = 27$$
 A1 N2

Note: If no working shown, award N1 for 26.4959.

OR (using table)

valid approach (M1)

eg
$$\binom{n}{3} \times 1.2^{n-3} > 200\,000$$
, one correct coefficient of x^{6} for a value of n

correct crossover values for n = 26 and n = 27

eg 172243, 232528

$$n = 27$$
 A1 N2

[7 marks]

(a) vertex is (-10, 15) A1A1 N1N1 [2 marks]

(b) valid approach (M1)

eg
$$f(0) = -20$$
, $-20 = a(0+10)^2 + 15$
 $a = -0.35$ (exact) A1 N2 [2 marks]

(c) valid approach (M1)

eg
$$f(8)$$
, $-0.35(8+10)^2+15$

$$b = -98.4$$
 (exact) (accept $f(8) = -98.4$) A1 N2 [2 marks]

Total [6 marks]

Question 38

(a) valid approach (M1)

eg
$$\frac{u_1}{u_2}$$
, $\frac{2.226}{2.1}$, $2.226 = 2.1r$

r = 1.06 (exact)

A1 N2
[2 marks]

(b) correct substitution (A1)

eg
$$2.1 \times 1.06^{9}$$

 3.54790
 $u_{10} = 3.55$

(c) correct substitution into S_n formula (A1)

eg
$$\frac{2.1(1.06^n - 1)}{1.06 - 1}$$
, $\frac{2.1(1.06^n - 1)}{1.06 - 1} > 5543$, $2.1(1.06^n - 1) = 332.58$, sketch of S_n and $y = 5543$

correct inequality for n or crossover values eg n > 87.0316, $S_{87} = 5532.73$ and $S_{88} = 5866.79$

$$n = 88$$
 A1 N2

[3 marks]

Total [7 marks]

[2 marks]