Subject - Math(Standard Level)
 Topic - Algebra
 Year - Nov 2011 - Nov 2019
 Paper-2

Question 1
(a) 10 terms
AI
N1
(b) evidence of binomial expansion
e.g. $a^{9} b^{0}+\binom{9}{1} a^{8} b+\binom{9}{2} a^{7} b^{2}+\ldots,\binom{9}{r}(a)^{n-r}(b)^{r}$, Pascal's triangle
evidence of correct term
e.g. $8^{\text {th }}$ term, $r=7,\binom{9}{7},\left(3 x^{2}\right)^{2} 2^{7}$
correct expression of complete term
e.g. $\binom{9}{7}\left(3 x^{2}\right)^{2}(2)^{7},{ }_{2}^{9} C\left(3 x^{2}\right)^{2}(2)^{7}, 36 \times 9 \times 128$
$41472 x^{4}$ (accept $41500 x^{4}$)

Question 2

(a) (i) correct approach
e.g. $u_{4}=(40) \frac{1}{2}^{(4-1)}$, listing terms

$$
u_{4}=5
$$

N2
(ii) correct substitution into formula for infinite sum
e.g. $S_{\infty}=\frac{40}{1-0.5}, S_{\infty}=\frac{40}{0.5}$

$$
S_{\infty}=80
$$

A1
N2
(b) (i) attempt to set up expression for u_{8}
e.g. $-36+(8-1) d$
correct working

$$
\begin{aligned}
\text { e.g. }-8 & =-36+(8-1) d, \frac{-8-(-36)}{7} \\
d & =4
\end{aligned}
$$

$$
A 1 \quad N 2
$$

(ii) correct substitution into formula for sum
e.g. $S_{n}=\frac{n}{2}(2(-36)+(n-1) 4)$
correct working
e.g. $S_{n}=\frac{n}{2}(4 n-76),-36 n+2 n^{2}-2 n$

$$
S_{n}=2 n^{2}-38 n
$$

AG No
[5 marks]
(c) multiplying S_{n} (AP) by 2 or dividing S (infinite GP) by 2
(M1)

$$
\text { e.g. } 2 S_{n}, \frac{S_{\infty}}{2}, 40
$$

evidence of substituting into $2 S_{n}=S_{\infty}$
e.g. $2 n^{2}-38 n=40,4 n^{2}-76 n-80(=0)$
attempt to solve their quadratic (equation)
(M1)
e.g. intersection of graphs, formula

$$
n=20 \quad A 2
$$

Question 3
(a) (i) $d=4$

A1
(M1)
e.g. $u_{\mathrm{s}}=36+7(4)$, repeated addition of d from 36
$u_{8}=64$
A1 [3 marks]
(b) (i) correct substitution into sum formula
e.g. $S_{n}=\frac{n}{2}\{2(36)+(n-1)(4)\}, \frac{n}{2}\{72+4 n-4\}$
evidence of simplifying
e.g. $\frac{n}{2}\{4 n+68\}$
$S_{n}=2 n^{2}+34 n$
(ii) 868

N1
(ii) evidence of valid approach

Question 4
(a) Valid attempt to find term in x^{20}
e.g. $\binom{8}{1}\left(2^{7}\right)(b),\left(2 x^{3}\right)^{7}\left(\frac{b}{x}\right)=3072$
correct equation
e.g. $\binom{8}{1}\left(2^{7}\right)(b)=3072$
$b=3$
(b) evidence of choosing correct term
e.g. $7^{\text {th }}$ term, $r=6$
correct expression
e.g. $\binom{8}{6}\left(2 x^{3}\right)^{2}\left(\frac{3}{x}\right)^{6}$
$k=81648$ (accept 81600$)$
A1

Question 5
(a) correct substitution into sum of a geometric sequence
(A1)
e.g. $200\left(\frac{1-r^{4}}{1-r}\right), 200+200 r+200 r^{2}+200 r^{3}$
attempt to set up an equation involving a sum and 324.8
M1
e.g. $\quad 200\left(\frac{1-r^{4}}{1-r}\right)=324.8,200+200 r+200 r^{2}+200 r^{3}=324.8$
$r=0.4$ (exact) A2 N3
[4 marks]
(b) correct substitution into formula

A1
e.g. $u_{10}=200 \times 0.4^{9}$
$u_{10}=0.0524288$ (exact), 0.0524
A1
N1
[2 marks]
Total [6 marks]
Question 6
(a) valid method
(M1)
e.g. subtracting terms, using sequence formula
$d=1.7$
A1 N2
[2 marks]
(A1)
e.g. $5+27(1.7)$
$28^{\text {th }}$ term is 50.9 (exact)
A1
N2
[2 marks]
(c) correct substitution into sum formula
(A1)
e.g. $\quad S_{28}=\frac{28}{2}(2(5)+27(1.7)), \frac{28}{2}(5+50.9)$
$S_{28}=782.6$ (exact) [782, 783]

N2

Question 7

attempt to expand binomial
e.g. $\quad(2 x)^{6} p^{0}+\binom{6}{1}(2 x)^{5}(p)^{1}+\ldots,\binom{n}{r}(2 x)^{r}(p)^{n-r}$
one correct calculation for term in x^{4} in the expansion for power 6
(A1)
e.g. $15,16 x^{4}$
correct expression for term in x^{4}
e.g. $\binom{6}{2}(2 x)^{4}(p)^{2}, 15.2^{4} p^{2}$

Notes: Accept sloppy notation e.g. omission of brackets around $2 x$. Accept absence of x in middle factor.
correct term
e.g. $\quad 240 p^{2} x^{4}$ (accept absence of x^{4})
setting up equation with their coefficient equal to 60
e.g. $\quad\binom{6}{2}(2)^{4}(p)^{2}=60,240 p^{2} x^{4}=60 x^{4}, p^{2}=\frac{60}{240}$

$$
p= \pm \frac{1}{2}(p= \pm 0.5)
$$

Question 8

(a) $d=3$
(b) (i) correct substitution into term formula

A1 N1
[1 mark]
(A1)
eg $\quad u_{100}=5+3(99), 5+3(100-1)$

$$
u_{100}=302
$$

(ii) correct substitution into sum formula

$$
\text { eg } \quad S_{100}=\frac{100}{2}(2(5)+99(3)), S_{100}=\frac{100}{2}(5+302)
$$

$$
S_{100}=15350
$$

(c) correct substitution into term formula
eg $1502=5+3(n-1), 1502=3 n+2$

$$
n=500
$$

Question 9
(a) $p=5, q=7, r=7 \quad$ (accept $r=5$)

A1A1A1
(b) correct working
(A1)

A1
N2
Note: Do not award the final $A 1$ for an answer that contains x.
[2 marks]
Total [5 marks]

Question 10

correct substitution into sum of a geometric sequence
eg $\quad 62.755=u_{1}\left(\frac{1-r^{3}}{1-r}\right), u_{1}+u_{1} r+u_{1} r^{2}=62.755$
correct substitution into sum to infinity
eg $\quad \frac{u_{1}}{1-r}=440$
attempt to eliminate one variable
eg substituting $u_{1}=440(1-r)$
correct equation in one variable
$e g \quad 62.755=440(1-r)\left(\frac{1-r^{3}}{1-r}\right), 440(1-r)\left(1+r+r^{2}\right)=62.755$
evidence of attempting to solve the equation in a single variable
$e g \quad$ sketch, setting equation equal to zero, $62.755=440\left(1-r^{3}\right)$

$$
r=0.95=\frac{19}{20}
$$

Question 11

evidence of binomial expansion
$e g \quad$ selecting correct term, $\left(\frac{x}{a}\right)^{6}\left(\frac{a^{2}}{x}\right)^{0}+\binom{6}{1}\left(\frac{x}{a}\right)^{5}\left(\frac{a^{2}}{x}\right)^{1}+\ldots$
evidence of identifying constant term in expansion for power 6
eg $\quad r=3,4^{\text {th }}$ term
evidence of correct term (may be seen in equation)
eg $\quad 20 \frac{a^{6}}{a^{3}},\binom{6}{3}\left(\frac{x}{a}\right)^{3}\left(\frac{a^{2}}{x}\right)^{3}$
attempt to set up their equation
eg $\quad\binom{6}{3}\left(\frac{x}{a}\right)^{3}\left(\frac{a^{2}}{x}\right)^{3}=1280, a^{3}=1280$
correct equation in one variable a
eg $\quad 20 a^{3}=1280, a^{3}=64$
$a=4$
A1

Question 12

(a) 11 terms

A1 N1
[1 mark]
(b) evidence of binomial expansion
(M1)
eg $\quad\binom{n}{r} a^{n-r} b^{r}$, attempt to expand
evidence of choosing correct term
(A1)
eg $\quad 8^{\text {th }}$ term, $r=7,\binom{10}{7},(x)^{3}(3)^{7}$
correct working
eg $\quad\binom{10}{7}(x)^{3}(3)^{7},\binom{10}{3}(x)^{3}(3)^{7}$,
$262440 x^{3}$ (accept $262000 x^{3}$)

Question 13

valid approach
eg $\binom{8}{r}\left(3 x^{2}\right)^{8-r}\left(\frac{k}{x}\right)^{r}$,
$\left(3 x^{2}\right)^{8}+\binom{8}{1}\left(3 x^{2}\right)^{7}\left(\frac{k}{x}\right)+\binom{8}{2}\left(3 x^{2}\right)^{6}\left(\frac{k}{x}\right)^{2}+\ldots$, Pascal's triangle to $9^{\text {th }}$ line
attempt to find value of r which gives term in x^{0}
$e g \quad$ exponent in binomial must give $x^{-2}, x^{2}\left(x^{2}\right)^{8-r}\left(\frac{k}{x}\right)^{r}=x^{0}$
correct working
eg $\quad 2(8-r)-r=-2,18-3 r=0,2 r+(-8+r)=-2$
evidence of correct term
eg $\binom{8}{2},\binom{8}{6}\left(3 x^{2}\right)^{2}\left(\frac{k}{x}\right)^{6}, r=6, r=2$
equating their term and 16128 to solve for k
eg $\quad x^{2}\binom{8}{6}\left(3 x^{2}\right)^{2}\left(\frac{k}{x}\right)^{6}=16128, k^{6}=\frac{16128}{28(9)}$
$k= \pm 2$
Note: If no working shown, award N0 for $k=2$.

Question 14

valid approach to find the required term
eg $\quad\binom{8}{r}\left(\frac{x^{3}}{2}\right)^{8-r}\left(\frac{p}{x}\right)^{r},\left(\frac{x^{3}}{2}\right)^{8}\left(\frac{p}{x}\right)^{0}+\binom{8}{1}\left(\frac{x^{3}}{2}\right)^{7}\left(\frac{p}{x}\right)^{1}+\ldots$, Pascal's triangle to required value
identifying constant term (may be indicated in expansion)
(A1)
eg $\quad 7^{\text {th }}$ term, $r=6,\left(\frac{1}{2}\right)^{2},\binom{8}{6},\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}$
correct calculation (may be seen in expansion)
eg $\quad\binom{8}{6}\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}, \frac{8 \times 7}{2} \times \frac{p^{6}}{2^{2}}$
setting up equation with their constant term equal to 5103
eg $\quad\binom{8}{6}\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}=5103, p^{6}=\frac{5103}{7}$
$p= \pm 3$

A1A1
[6 marks]

Question 15

(a) (i) valid approach
eg $\quad r=\frac{u_{2}}{u_{1}}, \frac{4}{4.2}$
$r=1.05$ (exact) A1
N2
(ii) attempt to substitute into formula, with their r (M1)
eg $\quad 4 \times 1.05^{n}, 4 \times 1.05 \times 1.05 \ldots$
correct substitution
eg $\quad 4 \times 1.05^{4}, 4 \times 1.05 \times 1.05 \times 1.05 \times 1.05$
$u_{5}=4.862025$ (exact), $4.86[4.86,4.87]$

A1	N 2
	[5 marks]

(b) (i) attempt to substitute $n=1$
eg $\quad 0.05=a \times 1^{k}$
$a=0.05$
$A 1 \quad N 2$
(ii) correct substitution of $n=2$ into v_{2}
eg $\quad 0.25=a \times 2^{k}$
correct work
eg finding intersection point, $k=\log _{2}\left(\frac{0.25}{0.05}\right), \frac{\log 5}{\log 2}$
2.32192
$k=\log _{2} 5$ (exact), 2.32 [2.32, 2.33]
A1 N2
[5 marks]
(c) correct expression for u_{n}
eg $\quad 4 \times 1.05^{n-1}$
EITHER
correct substitution into inequality (accept equation)
(A1)
eg $\quad 0.05 \times n^{k}>4 \times 1.05^{n-1}$
valid approach to solve inequality (accept equation)
(M1)
eg finding point of intersection, $n=7.57994$ (7.59508 from 2.32)

$$
n=8 \text { (must be an integer) } \quad \boldsymbol{A 1}
$$

OR

table of values
when $n=7, u_{7}=5.3604, v_{7}=4.5836 \quad$ A1
when $n=8, u_{8}=5.6284, v_{8}=6.2496 \quad$ A1
$n=8$ (must be an integer)

A1 N2
[4 marks]

Question 16

(a) 9 terms

A1
[1 mark]
(M1)
eg $\binom{8}{r}(2 x)^{8-r}(3)^{r},(2 x)^{8}(3)^{0}+(2 x)^{7}(3)^{1}+\ldots$, Pascal's triangle to $8^{\text {th }}$ row
identifying correct term (may be indicated in expansion)
(A1)
eg 6th term, $r=5,\binom{8}{5},(2 x)^{3}(3)^{5}$
correct working (may be seen in expansion)
(A1)
eg $\binom{8}{5}(2 x)^{3}(3)^{5}, 56 \times 2^{3} \times 3^{5}$
$108864 x^{3}$ (accept $109000 x^{3}$)
A1 N3
[4 marks]
tes: Do not award any marks if there is clear evidence of adding instead of multiplying. Do not award final A1 for a final answer of 108864, even if $108864 x^{3}$ is seen previously. If no working shown award N2 for 108864.

Question 17
(a) $d=-1.5$
A1 [1 mark]
(M1)
valid approach
eg $\quad u_{10}=u_{1}+9 d, 8=u_{1}-9(-1.5)$
correct working
eg $8=u_{1}+9 d, 6.5=u_{1}+10 d, u_{1}=8-9(-1.5)$
$u_{1}=21.5$
A1
N2

METHOD 2

attempt to list 3 or more terms in either direction
eg $9.5,11,12.5, \ldots ; 5,3.5,2$,
correct list of 4 or more terms in correct direction
eg $9.5,11,12.5,14$
$u_{1}=21.5$

A1	N2
[3 marks]	

(c) correct expression
eg $\frac{50}{2}(2(21.5)+49(-1.5)), \frac{50}{2}(21.5-52), \sum_{k=1}^{50} 21.5+(k-1)(-1.5)$
sum $=-762.5$ (exact)

Question 18
valid approach to find the required term
(M1)
eg $\quad\binom{8}{r} x^{8-r} k^{r}$, Pascal's triangle to $8^{\text {th }}$ row, $x^{8}+8 x^{7} k+28 x^{6} k^{2}+\ldots$
identifying correct term (may be indicated in expansion)
eg $\quad\binom{8}{2} x^{6} k^{2},\binom{8}{6} x^{6} k^{2}, r=2$
setting up equation in k with their coefficient/term
(M1)
eg $\quad 28 k^{2} x^{6}=63 x^{6},\binom{8}{6} k^{2}=63$
$k= \pm 1.5$ (exact)
A1A1
N3
[5 marks]

Question 19

METHOD 1

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
correct substitution into the sum of a geometric sequence
eg $\quad 80\left(\frac{1-0.9^{n}}{1-0.9}\right)$
any correct equation with sum of a geometric sequence
eg $\quad 80\left(\frac{0.9^{n}-1}{0.9-1}\right)=660,1-0.9^{n}=\frac{66}{80}$
attempt to solve their equation involving the sum of a GP
eg graph, algebraic approach
$n=16.54290788$
A1
since $n>15$
R1
he will be late

Continue...

METHOD 2

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
correct substitution into the sum of a geometric sequence
eg $\quad 80\left(\frac{1-0.9^{n}}{1-0.9}\right)$
attempt to substitute $n=15$ into sum of a geometric sequence
eg S_{15}
correct substitution
eg $\quad 80\left(\frac{0.9^{15}-1}{0.9-1}\right)$
$S_{15}=635.287$
since $S<660$
he will not be there on time
AG
Note: Do not award the R mark without the preceding A mark.

METHOD 3

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
listing at least 5 correct terms of the GP
15 correct terms
80, 72, 64.8, 58.32, 52.488, 47.2392, 42.5152, 38.2637, 34.4373, 30.9936, 27.8942, 25.1048, 22.59436, 20.3349, 18.3014
attempt to find the sum of the terms
eg $S_{15}, 80+72+64.8+58.32+52.488+\ldots+18.301433$
$S_{15}=635.287$ A1
since $S<660$ R1
he will not be there on time AG

Note: Do not award the R mark without the preceding A mark.

Question 20
(a) valid approach
eg $\frac{u_{1}}{u_{2}}, \frac{4}{1.6}, 1.6=r(0.64)$
$r=2.5\left(=\frac{5}{2}\right)$
A1
N2
[2 marks]
(b) correct substitution into S_{6}
(A1)
eg $\frac{0.64\left(2.5^{6}-1\right)}{2.5-1}$
$S_{6}=103.74$ (exact), $104 \quad$ A1
A1 N2
(c) METHOD 1 (analytic)
valid approach
eg $\quad \frac{0.64\left(2.5^{n}-1\right)}{2.5-1}>75000, \frac{0.64\left(2.5^{n}-1\right)}{2.5-1}=75000$
correct inequality (accept equation)
(A1)
eg $n>13.1803, n=13.2$
$n=14$
A1
METHOD 2 (table of values)
both crossover values
A2
eg $S_{13}=63577.8, S_{14}=158945$
$n=14$

A1 N1
[3 marks] Total [7 marks]

Question 21
(a) valid approach to find the required term
(M1)
eg $\binom{9}{r}(x)^{9-r}(2)^{r}, x^{9}+9 x^{8}(2)+\binom{9}{2} x^{7}(2)^{2}+\ldots$, Pascal's triangle to the 9th row identifying correct term (may be indicated in expansion)
eg $\quad 4$ th term, $r=6,\binom{9}{3},(x)^{6}(2)^{3}$
correct calculation (may be seen in expansion)
(A1)
eg $\quad\binom{9}{3}(x)^{6}(2)^{3}, 84 \times 2^{3}$
$672 x^{6}$
A1
(b) valid approach
(M1)
eg recognizing x^{7} is found when multiplying $5 x \times 672 x^{6}$

$$
3360 x^{7}
$$

A1
 [2 marks]

Total [6 marks]

Question 22
correct equation to find r
(A1)
eg $\quad u_{1} r^{3}=8 u_{1}, r^{3}=8$
$r=2$ (seen anywhere)
correct equation to find u_{1}
eg $\quad u_{1}\left(2^{10}-1\right)=2557.5, u_{1}=\frac{2557.5}{r^{10}-1}(r-1)$

$$
\begin{aligned}
& u_{1}=2.5 \\
& u_{10}=2.5(2)^{9}
\end{aligned}
$$

(A1)
(M1)

1280
A1
N4

Question 23
(a) valid approach
eg $\quad 1.5-0.3,1.5-2.7,2.7=0.3+2 d$

$$
d=1.2
$$

(b) correct substitution into term formula
eg $\quad 0.3+1.2(30-1), u_{30}=0.3+29(1.2)$

$$
u_{30}=35.1
$$

```
A1 N2
    [2 marks]
```

(c) correct substitution into sum formula
eg $\quad S_{30}=\frac{30}{2}(0.3+35.1), \frac{30}{2}(2(0.3)+29(1.2))$

$$
S_{30}=531
$$

Question 24
(a) 11 terms

A1
(M1)
eg $\quad\binom{10}{r}\left(x^{2}\right)^{10-r}\left(\frac{2}{x}\right)^{r}, a^{10} b^{0}+\binom{10}{1} a^{9} b^{1}+\binom{10}{2} a^{8} b^{2}+\ldots$
Pascal's triangle to $11^{\text {th }}$ row
valid attempt to find value of r which gives term in x^{8}
eg $\quad\left(x^{2}\right)^{10-r}\left(\frac{1}{x^{r}}\right)=x^{8}, x^{2 r}\left(\frac{2}{x}\right)^{10-r}=x^{8}$
identifying required term (may be indicated in expansion)
eg $r=6$, 5th term, 7th term
correct working (may be seen in expansion)
eg $\binom{10}{6}\left(x^{2}\right)^{6}\left(\frac{2}{x}\right)^{4}, 210 \times 16$
3360
[1 mark]

N1

Question 25
attempt to find r
eg $\frac{576}{768}, \frac{768}{576}, 0.75$
correct expression for u_{n}
eg $768(0.75)^{n-1}$
EITHER (solving inequality)
valid approach (accept equation)
eg $u_{n}<7$
valid approach to find n
eg $768(0.75)^{n-1}=7, n-1>\log _{0.75}\left(\frac{7}{768}\right)$, sketch
correct value
eg $\quad n=17.3301$
$n=18$ (must be an integer) A1
OR (table of values)
valid approach
eg $\quad u_{n}<7$, one correct crossover value
both crossover values, $u_{17}=7.69735$ and $u_{18}=5.77301$ A2
$n=18$ (must be an integer)
A1

OR (sketch of functions)
valid approach M1
eg sketch of appropriate functions
valid approach
(M1)
eg finding intersections or roots (depending on function sketched)
correct value
eg $n=17.3301$
(A1)
$n=18$ (must be an integer)

$$
n-10 \text { (miust ve anlimeger) }
$$

N2

Question 26
valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r)
eg $\binom{11}{r}(2)^{11-r} a x^{r},\binom{11}{3}(2)^{8}(a x)^{3}, 2^{11}+\binom{11}{1}(2)^{10}(a x)^{1}+\binom{11}{2}(2)^{9}(a x)^{2}+\ldots$
recognizing need to find term in x^{2} in binomial expansion
eg $\quad r=2,(a x)^{2}$
correct term or coefficient in binomial expansion (may be seen in equation)
(A1)
eg $\quad\binom{11}{2}(a x)^{2}(2)^{9}, 55\left(a^{2} x^{2}\right)(512), 28160 a^{2}$
setting up equation in x^{5} with their coefficient/term (do not accept other powers of x) (M1)
eg $\quad a x^{3}\binom{11}{2}(a x)^{2}(2)^{9}=11880 x^{5}$
correct equation
eg $\quad 28160 a^{3}=11880$

$$
a=\frac{3}{4}
$$

Question 27
(a) valid approach to find maxima
eg one correct value of x_{k}, sketch of f
any two correct consecutive values of x_{k}
(A1)(A1) eg $x_{1}=1, x_{2}=5$
$a=4 \quad$ A1 [4 N3
[4 marks]
(b) recognizing the sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is arithmetic eg $\quad d=4$
correct expression for sum
eg $\quad \frac{n}{2}(2(1)+4(n-1))$
valid attempt to solve for n
(M1)
eg graph, $2 n^{2}-n-861=0$
$n=21$
A1
N2
[4 marks]
Total [8 marks]

Question 28
(a) valid approach
eg one correct value
$-0.453620,6.14210$
$a=-0.454, b=6.14 \quad$ A1A1 [3 marks]
(b) correct substitution
eg $\quad-0.454 \ln 3.57+6.14$
correct working
(A1)
eg $\quad \ln y=5.56484$
261.083 (260.409 from 3 sf)
$y=261,(y=260$ from 3 sf$)$
Note: If no working shown, award $\mathbf{N 1}$ for 5.56484 . If no working shown, award N2 for $\ln y=5.56484$.
(c) METHOD 1
valid approach for expressing $\ln y$ in terms of $\ln x$
(M1)
eg $\quad \ln y=\ln \left(k x^{n}\right), \ln \left(k x^{n}\right)=a \ln x+b$
correct application of addition rule for logs
(A1)
eg $\quad \ln k+\ln \left(x^{n}\right)$
correct application of exponent rule for logs
eg $\quad \ln k+n \ln x$
comparing one term with regression equation (check FT)
(M1)
eg $\quad n=a, b=\ln k$
correct working for k
eg $\quad \ln k=6.14210, k=\mathrm{e}^{6.14210}$
465.030
$n=-0.454, k=465$ (464 from 3 sf)
A1A1
N2N2

METHOD 2

valid approach
eg $\quad \mathrm{e}^{\ln y}=\mathrm{e}^{a \ln x+b}$
correct use of exponent laws for $\mathrm{e}^{a \ln x+b}$
eg $\quad \mathrm{e}^{a \ln x} \times \mathrm{e}^{b}$
correct application of exponent rule for $a \ln x$
eg $\quad \ln x^{a}$
correct equation in y
eg $y=x^{a} \times \mathrm{e}^{b}$
comparing one term with equation of model (check FT)
eg $\quad k=\mathrm{e}^{b}, n=a$
465.030
$n=-0.454, k=465$ (464 from 3 sf)

METHOD 3

valid approach for expressing $\ln y$ in terms of $\ln x$ (seen anywhere)
(M1)
eg $\quad \ln y=\ln \left(k x^{n}\right), \ln \left(k x^{n}\right)=a \ln x+b$
correct application of exponent rule for logs (seen anywhere)
(A1)
eg $\quad \ln \left(x^{a}\right)+b$
correct working for b (seen anywhere)
(A1)
eg $\quad b=\ln \left(\mathrm{e}^{b}\right)$
correct application of addition rule for logs
eg $\quad \ln \left(\mathrm{e}^{b} x^{a}\right)$
comparing one term with equation of model (check FT)
eg $\quad k=\mathrm{e}^{b}, n=a$
465.030
$n=-0.454, k=465$ (464 from 3sf)
A1A1
N2N2
[7 marks]
Total [13 marks]

Question 29
(a) correct substitution into infinite sum
eg $\quad 200=\frac{4}{1-r}$
$r=0.98$ (exact)
A1 N2 [2 marks]
(b) correct substitution
(A1)
$\frac{4\left(1-0.98^{8}\right)}{1-0.98}$
29.8473
29.8 A

A1 N2 [2 marks]
(c) attempt to set up inequality (accept equation)
eg $\quad \frac{4\left(1-0.98^{n}\right)}{1-0.98}>163, \frac{4\left(1-0.98^{n}\right)}{1-0.98}=163$
correct inequality for n (accept equation) or crossover values
eg $n>83.5234, n=83.5234, S_{83}=162.606$ and $S_{84}=163.354$
$n=84$
A1
N1
[3 marks]
[Total: 7 marks]

Question 30

valid approach to find one of the required terms (must have correct substitution for parameters but accept " r " or an incorrect value for r)
eg $\quad\binom{9}{r}(2 x)^{9-r}\left(\frac{k}{x}\right)^{r},\binom{9}{6}(2 x)^{6}\left(\frac{k}{x}\right)^{3},\binom{9}{0}(2 x)^{0}\left(\frac{k}{x}\right)^{9}+\binom{9}{1}(2 x)^{1}\left(\frac{k}{x}\right)^{8}+\ldots$, Pascal's triangle to
9th row
te: Award $\boldsymbol{M} \mathbf{0}$ if there is clear evidence of adding instead of multiplying.
identifying correct terms (must be clearly indicated if only seen in expansion)
(A1)(A1)
eg for x^{3} term: $r=3, r=6,7$ th term, $\binom{9}{6},\binom{9}{3},(2 x)^{6}\left(\frac{k}{x}\right)^{3}, 5376 k^{3}$
for x^{5} term: $r=2, r=7,8$ th term, $\binom{9}{7},\binom{9}{2},(2 x)^{7}\left(\frac{k}{x}\right)^{2}, 4608 k^{2}$
correct equation (may include powers of x)
eg $\quad\binom{9}{3}(2 x)^{6}\left(\frac{k}{x}\right)^{3}=\binom{9}{2}(2 x)^{7}\left(\frac{k}{x}\right)^{2}$
valid attempt to solve their equation in terms of k only
eg sketch, $84 \times 64 k^{3}-36 \times 128 k^{2}=0,5376 k-4608=0,\binom{9}{3} 2^{6} k^{3}=\binom{9}{2} 2^{7} k^{2}$
0.857142
$k=\frac{4608}{5376}\left(=\frac{6}{7}\right)$ (exact), 0.857

Question 31
correct substitution into formula for infinite geometric series
eg $\quad 33.25=\frac{u_{1}}{1-r}$
correct substitution into formula for u_{n} (seen anywhere)
(A1)
eg $\quad 7.98=u_{1} r$
attempt to express u_{1} in terms of r (or vice-versa)
eg $u_{1}=\frac{7.98}{r}, u_{1}=33.25(1-r), r=\frac{7.98}{u_{1}}, r=\frac{33.25-u_{1}}{33.25}$
correct working
eg $\quad \frac{\left(\frac{7.98}{r}\right)}{1-r}=33.25,33.25(1-r)=\frac{7.98}{r},(0.4,19.95),(0.6,13.3), \frac{u_{1}}{1-\frac{7.98}{u_{1}}}=33.25$
$r=0.4\left(=\frac{2}{5}\right), r=0.6\left(=\frac{3}{5}\right) \quad$ A1A1
N3

Question 32
valid approach for expanding binomial
eg $\quad\binom{12}{r}\left(2 x^{4}\right)^{12-r}\left(\frac{x^{2}}{k}\right)^{r},\left(2 x^{4}\right)^{12}+\binom{12}{1}\left(2 x^{4}\right)^{11}\left(\frac{x^{2}}{k}\right)^{1}+\binom{12}{2}\left(2 x^{4}\right)^{10}\left(\frac{x^{2}}{k}\right)^{2}+\ldots$
valid attempt to find r for x^{40} or x^{38}
(M1)
eg $\quad\left(x^{4}\right)^{12-r}\left(x^{2}\right)^{r}=(x)^{40},\left(x^{4}\right)^{r}\left(x^{2}\right)^{12-r}=(x)^{40}$,
$\binom{12}{r}\left(2^{r}\right)\left(\frac{1}{k}\right)^{12-r}\left(x^{4}\right)^{r}\left(x^{2}\right)^{12-r}=\binom{12}{r}\left(2^{r}\right)\left(\frac{1}{k}\right)^{12-r} x^{38}$
correct equation for finding one value of r
eg $\quad 48-2 r=40,48-2 r=38,24+2 r=40,2 r+24=38$
correct values for r (seen anywhere)
(A1)(A1)
eg $\quad r=4, r=5$ OR $r=7, r=8$
correct equation to solve for k
eg $\quad\binom{12}{4}\left(2^{8}\right)\left(\frac{1}{k}\right)^{4}=5\binom{12}{5}\left(2^{7}\right)\left(\frac{1}{k}\right)^{5}, \frac{126720}{k^{4}}=5 \times \frac{792(128)}{k^{5}}, 990 k=3960$
$k=4$
A1
N2

Question 33

(a) attempt to find d
eg $\quad 1.4-1.3, u_{1}-u_{2}, 1.4=1.3+(2-1) d$
$d=0.1$ (may be seen in expression for u_{n})
(A1)
correct equation
(A1)
eg $\quad 1.3+(k-1) \times 0.1=31.2,0.1 k=30$

$$
k=300
$$

A1 [4 marks]
(b) correct substitution

(A1)

eg $\frac{300}{2}(1.3+31.2), \frac{300}{2}[2(1.3)+(300-1)(0.1)], \frac{300}{2}[2.6+299(0.1)]$
$S_{k}=4875$
A1
[2 marks]
(c) recognizing need to find the sequence of multiples of 3 (seen anywhere)
(M1)
eg first term is $u_{3}(=1.5)$ (accept notation $u_{1}=1.5$),
$d=0.1 \times 3(=0.3), 100$ terms (accept $n=100)$, last term is 31.2
(accept notation $u_{100}=31.2$), $u_{3}+u_{6}+u_{9}+\ldots$ (accept $F=u_{3}+u_{6}+u_{9}+\ldots$)
correct working for sum of sequence where n is a multiple of 3
$\frac{100}{2}(1.5+31.2), 50(2 \times 1.5+99 \times 0.3), 1635$
valid approach (seen anywhere)
(M1)
eg $\quad S_{k}-\left(u_{3}+u_{6}+\ldots\right), S_{k}-\frac{100}{2}(1.5+31.2), S_{k}-\left(\right.$ their sum for $\left.\left(u_{3}+u_{6}+\ldots\right)\right)$
correct working (seen anywhere)
A1
eg $\quad S_{k}-1635,4875-1635$
$F=3240$
AG
NO [5 marks]
(d) attempt to find r
eg dividing consecutive terms
correct value of r (seen anywhere, including in formula)
eg $\frac{1}{\sqrt{2}}, 0.707106 \ldots, \frac{a}{0.293 \ldots}$
correct working (accept equation) (A1)
eg $\frac{a}{1-\frac{1}{\sqrt{2}}}<3240$
correct working A1

METHOD 1 (analytical)

eg $\quad 3240 \times\left(1-\frac{1}{\sqrt{2}}\right), a<948.974,948.974$
METHOD 2 (using table, must find both S_{∞} values)
eg when $a=948, S_{\infty}=3236.67 \ldots$ AND when $a=949, S_{\infty}=3240.08 \ldots$

Question 35

valid approach for expanding binomial (must have correct substitution for parameters, but accept " r " or an incorrect value for r)
eg $\binom{15}{r}\left(\frac{1}{2 x}\right)^{(15-r)}\left(x^{2}\right)^{r},\left(\frac{1}{2 x}\right)^{15}\left(x^{2}\right)^{0}+15\left(\frac{1}{2 x}\right)^{14}\left(x^{2}\right)^{1}+\binom{15}{2}\left(\frac{1}{2 x}\right)^{13}\left(x^{2}\right)^{2}+\ldots$
recognizing need to find the term containing x^{-3} in the expansion of $\left(\frac{1}{2 x}+x^{2}\right)^{15}$
correct equation
eg $\quad\left(x^{-1}\right)^{15-r}\left(x^{2}\right)^{r}=x^{-3},\left(x^{-1}\right)^{r}\left(x^{2}\right)^{15-r}=x^{-3},-15+r+2 r=-3$
identifying the correct term (seen anywhere)
eg $\quad r=4, r=11, n-r=4$
correct working
eg $\binom{15}{4}\left(\frac{1}{2 x}\right)^{15-4}, 1365 \times \frac{1}{2^{11}}$
Award $\boldsymbol{A 1}$ for each factor.
$\frac{1365}{2048}$
A1 N2
[7 marks]
Question 35
(a) attempt to add corresponding terms
eg $\quad 2+2,6+(-6), 2(3)^{n-1}+2(-3)^{n-1}$
correct value for w_{s}
(A1)
eg 324
$4,36,324$ (accept $4+36+324$)
A1
[3 marks]
(b) (i) valid approach
eg $\quad 4 \times r^{1}=36,4 \times 9^{n-1}$
$r=9$ (accept $\sum_{k=0}^{m} 4 \times 9^{k} ; m$ may be incorrect)
(ii) recognition that 225 terms of w_{n} consists of 113 non-zero terms

$$
\begin{aligned}
& \text { eg } \sum_{1}^{113}, \sum_{0}^{112}, 113 \\
& m=112 \text { (accept } \sum_{k=0}^{112} 4 \times r^{k} ; r \text { may be incorrect) }
\end{aligned}
$$

Question 36

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r)
eg $\binom{n}{r}\left(x^{2}\right)^{n-r}(1.2)^{r},\binom{n}{0}\left(x^{2}\right)^{n}+\binom{n}{1}\left(x^{2}\right)^{n-1}(1.2)+\binom{n}{2}\left(x^{2}\right)^{n-2}(1.2)^{2}+\ldots$
attempt to identify correct term
eg $\quad 2 r=6, n-r=3,\binom{n}{3},\binom{n}{n-3}$
correct expression
eg $\binom{n}{n-3} \times 1.2^{n-3} x^{6},\binom{n}{n-3} \times 1.2^{n-3}$

EITHER (solving inequality)

attempt to set up inequality in terms of n (accept equation)
eg $\quad\binom{n}{3} \times 1.2^{n-3}>200000,1.2^{n-3}\binom{n}{3} x^{6}=200000$
correct working for binomial coefficient (may be seen in equation)
eg $\frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}, \frac{n(n-1)(n-2)}{6} \times 1.2^{n-3}=200000$
$n>26.4959$ (accept 26.4959 or $n=26.4959$)
$n=27$
Note: If no working shown, award N1 for 26.4959.

OR (using table)

valid approach
eg $\quad\binom{n}{3} \times 1.2^{n-3}>200000$, one correct coefficient of x^{6} for a value of n correct crossover values for $n=26$ and $n=27$
eg 172243, 232528

$$
n=27
$$

A1

N2

Question 37
(a) vertex is $(-10,15)$

A1A1 N1N1 [2 marks]
(M1)
(b) valid approach
eg $\quad f(0)=-20,-20=a(0+10)^{2}+15$
$a=-0.35$ (exact)
A1 $\begin{array}{r}\mathrm{N} 2 \\ {[2 \text { marks] }}\end{array}$
(M1)
eg $\quad f(8),-0.35(8+10)^{2}+15$
$b=-98.4$ (exact) (accept $f(8)=-98.4$)
A1 N2 [2 marks]

Total [6 marks]
Question 38
(a) valid approach
(M1)
eg $\frac{u_{1}}{u_{2}}, \frac{2.226}{2.1}, 2.226=2.1 r$
$r=1.06$ (exact)
A1 N2
[2 marks]
(b) correct substitution
(A1)
eg $\quad 2.1 \times 1.06^{9}$
3.54790
$u_{10}=3.55$
A1 N2
[2 marks]
(c) correct substitution intp S_{n} formula
eg $\quad \begin{aligned} & \frac{2.1\left(1.06^{n}-1\right)}{1.06-1}, \frac{2.1\left(1.06^{n}-1\right)}{1.06-1} \\ & \text { sketch of } S_{n} \text { and } y=5543\end{aligned}>5543,2.1\left(1.06^{n}-1\right)=332.58$,
correct inequality for n or crossover values
A1
eg $n>87.0316, S_{87}=5532.73$ and $S_{88}=5866.79$

$$
n=88
$$

A1

