A-Level

Calculus

2013-2018

(i)	Use product rule Obtain correct derivative in any form, e.g. $4\sin 2x \cos 2x \cos x - \sin^2 2x \sin x$ Equate derivative to zero and use a double angle formula Reduce equation to one in a single trig function Obtain a correct equation in any form, e.g. $10 \cos^3 x = 6 \cos x$, $4 = 6 \tan^2 x$ or $4 = 10 \sin^2 x$	M1 A1 M1* M1(dep*) A1	
	Solve and obtain $x = 0.685$	A1	[6]
(ii)	Using $du = \pm \cos x dx$, or equivalent, express integral in terms of u and du	M1	
	Obtain $\int 4u^2(1-u^2)du$, or equivalent	A1	
	Use limits $u = 0$ and $u = 1$ in an integral of the form $au^3 + bu^5$	M1	
	Obtain answer $\frac{8}{15}$ (or 0.533)	A1	[4]
Que	stion 2		
(i)	State $R = 2$	B1	
(1)	Use trig formula to find α	MI	
	New Strategy with the second	1000	
	Obtain $\alpha = \frac{1}{6}\pi$ with no errors seen	Al	[3]
(ii)		M1*	
	State correct indefinite integral $\frac{1}{4} \tan\left(x - \frac{1}{6}\pi\right)$	A1√ ^k	
	Substitute limits	M1 (dep*)	
	Obtain the given answer correctly	Al	[4]
	MEDAB		20070
Que	stion 3		
(i)	Use correct quotient or chain rule to differentiate sec x	M1	
	Obtain given derivative, sec $x \tan x$, correctly	A1	
	Use chain rule to differentiate y	M1	2.11
	Obtain the given answer	Al	[4]
(ii)	Using $dx\sqrt{3}\sec^2\theta d\theta$, or equivalent, express integral in terms of θ and $d\theta$	MI	
	Obtain $(\sec\theta \mathrm{d}\theta)$	A1	
	Use limits $\frac{1}{6}\pi$ and $\frac{1}{3}\pi$ correctly in an integral form of the form $k \ln(\sec\theta + \tan\theta)$	<i>θ</i>) M1	
	Obtain a correct exact final answer in the given form, e.g. $\ln\left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)$	Al	[4]

State
$$2ay \frac{dy}{dx}$$
 as derivative of ay^2 B1

State
$$y^2 + 2xy \frac{dy}{dx}$$
 as derivative of xy^2 B1

Equate derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1
of the 2 local state of the 1	

Obtain $3x^2 + y^2 - 6ax = 0$, or horizontal equivalent	Al
Eliminate y and obtain an equation in x	M1
Solve for x and obtain answer $x = \sqrt{3}a$	A1

Question 5

(a)	Carry out integration by parts and reach $ax^2 \ln x + b \int \frac{1}{2}x^2 dx$	M1*	
	Obtain $2x^2 \ln x - \int \frac{1}{x} \cdot 2x^2 dx$	A1	
	Obtain $2x^2 \ln x - x^2$	A1	
	Use limits, having integrated twice	M1 (dep*)	
	Confirm given result 56 ln 2 – 12	A1	[5]
	Obtain $2x^2 \ln x - x^2$ Use limits, having integrated twice	A1 M1 (dep*) A1	[5]

, / /

(b) State or imply $\frac{du}{dx} = 4\cos 4x$	B1	
Carry out complete substitution except limits	M1	
Obtain $\int (\frac{1}{4} - \frac{1}{4}u^2) du$ or equivalent	A1	
Integrate to obtain form $k_1 u + k_2 u^3$ with non-zero constants k_1, k_2	M1	
Use appropriate limits to obtain $\frac{11}{96}$	A1 [[5]

Question 6

(i)	Use correct quotient rule or equivalent	M1	
	Obtain $\frac{(1+e^{2x})2x - (1+x^2)2e^{2x}}{(1+e^{2x})^2}$ or equivalent	A1	
	Substitute $x = 0$ and obtain $-\frac{1}{2}$ or equivalent	A1	[3]

(ii) Differentiate y^3 and obtain $3y^2 \frac{dy}{dx}$ B1

Differentiate
$$5xy$$
 and obtain $5y + 5x \frac{dy}{dx}$ B1

Obtain
$$6x^2 + 5y + 5x\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 0$$
 B1

Substitute
$$x = 0, y = 2$$
 to obtain $-\frac{5}{6}$ or equivalent following correct work B1 [4]

Differentiate y^3 to obtain $3y^2 \frac{dy}{dx}$	Bl
CL.	

Use correct product rule at least once *M1

Obtain
$$6e^{2x}y + 3e^{2x}\frac{dy}{dx} + e^{x}y^{3} + 3e^{x}y^{2}\frac{dy}{dx}$$
 as derivative of LHS A1

Equate derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$		M1(d*M)
4		

Obtain
$$-\frac{4}{3}$$
 or equivalent as final answer A1 [5]

Question 8

Carry out complete substitution including the use of $\frac{du}{dx} = 3$	M1

Obtain $\int \left(\frac{1}{3} - \frac{1}{3u}\right) du$	A1	
Integrate to obtain form $k_1u + k_2 \ln u$ or $k_1u + k_2 \ln 3u$ where $k_1k_2 \neq 0$	M1	
Obtain $\frac{1}{3}(3x+1) - \frac{1}{3}\ln(3x+1)$ or equivalent, condoning absence of modulus signs and + c	A1	[4]
Question 9 $\frac{1}{2}$ $\frac{1}{2}$		

Using $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\overline{2}^{u}} - m\int e^{\overline{2}^{u}} du$	M1*
Obtain $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent	A1

Integrate again and obtain
$$2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$$
, or equivalent
Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice
Obtain answer $4\ln 4 - 4$, or exact equivalent
Question 10

Use correct product or quotient rule at least once	M1*
Obtain $\frac{dx}{dt} = e^{-t} \sin t - e^{-t} \cos t$ or $\frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t$, or equivalent	A1
- dv dv dx	1211213

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dt}{dt}$$
 M

Obtain
$$\frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t}$$
, or equivalent A1

EITHER: Express
$$\frac{dy}{dx}$$
 in terms of tan t only M1(dep*)

Show expression is identical to
$$\tan\left(t - \frac{1}{4}\pi\right)$$
 A1

OR: Express
$$\tan\left(t - \frac{1}{4}\pi\right)$$
 in terms of $\tan t$ M1

Show expression is identical to
$$\frac{dy}{dx}$$
 A1 [6]

(i)	Use Pythagoras Use the sin2A formula Obtain the given result	M1 M1 A1	[3]
(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the $p \ln \tan \theta$	form M1*	
	Obtain indefinite integral $\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta$, or equivalent, or $\frac{1}{2} \ln \tan \theta$	A1	
	Substitute limits correctly Obtain the given answer correctly having shown appropriate working	M1(dep)* A1	[4]
Que	stion 12		
(i)	Substitute for x and dx throughout using $u = \sin x$ and $du = \cos x dx$, or equivalent Obtain integrand e^{2u}	M1	
	Obtain indefinite integral $\frac{1}{2}e^{2u}$	Al	
	Use limits $u = 0$, $u = 1$ correctly, or equivalent	M1	
	Obtain answer $\frac{1}{2}(e^2 - 1)$, or exact equivalent	A1	5
(ii)	Use chain rule or product rule Obtain correct terms of the derivative in any form, e.g. $2\cos x e^{2\sin x} \cos x - e^{2\sin x} \sin x$	M1 A1 + A1	
	Equate derivative to zero and obtain a quadratic equation in $\sin x$	M1	
	Solve a 3-term quadratic and obtain a value of x	M1	105
	Obtain answer 0.896	A1	6
Que	estion 13		
	ain correct derivative of RHS in any form	B1	
	ain correct derivative of LHS in any form	B1	
Set	$\frac{dy}{dx}$ equal to zero and obtain a horizontal equation	M1	
Obt	ain a correct equation, e.g. $x^2 + y^2 = 1$, from correct work	A1	
By	substitution in the curve equation, or otherwise, obtain an equation in x^2 or y^2	M1	
Obt	$ain x = \frac{1}{2}\sqrt{3}$	A1	
	$ain y = \frac{1}{2}$	A1	7

Ouestion 14

Que	stion 14		
(i)	Use product rule Obtain derivative in any correct form Differentiate first derivative using the product rule Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$	M1 A1 M1 A1	
	Verify the given statement	A1 A1	5
(ii)	Integrate and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$	M1*	
	Obtain $2x\sin\frac{1}{2}x - 2\int\sin\frac{1}{2}x dx$, or equivalent	A1	
	Obtain indefinite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$	A1	
	Use correct limits $x = 0$, $x = \pi$ correctly Obtain answer $2\pi - 4$, or exact equivalent	M1(dep*) A1	5
Que	stion 15		
(i)	State $\frac{dx}{dt} = 1 - \sec^2 t$, or equivalent	B1	
	Use chain rule	M1	
	Obtain $\frac{dy}{dt} = -\frac{\sin t}{\cos t}$, or equivalent	Al	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	Obtain the given answer correctly.	Al	5
(ii)	State or imply $t = \tan^{-1}(\frac{1}{2})$	B1	
	Obtain answer $x = -0.0364$	B1	2
0	ation 16		
-	stion 16	MI	
(1)	Use of product or quotient rule	M1	
	Obtain $-5e^{-\frac{1}{2}x}\sin 4x + 40e^{-\frac{1}{2}x}\cos 4x$	A1	
	Equate $\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or $R \cos(4x \pm \alpha)$	M1	
	Obtain $\tan 4x = 8 \text{ or } \sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8} \right)$	A1	
	Obtain 0.362 or 20.7° Obtain 1.147 or 65.7°	A1 A1	[6]
(ii)	State or imply that x-coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°	B1	
	Attempt solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 25	M1	
	Obtain $n > \frac{4}{\pi} (25 - 0.362) + 1$, following through on their value of x_1	A1√	
	22		E 43

Obtain
$$n > -(25 - 0.362) + 1$$
, following through on their value of x_1 A1V
 $n = 33$ A1 [4]

Obtain $\frac{2}{2t+3}$ for derivative of x	B1	
Use quotient of product rule, or equivalent, for derivative of y	M1	
Obtain $\frac{5}{(2t+3)^2}$ or unsimplified equivalent	A1	
Obtain $t = -1$	B1	
Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ in algebraic or numerical form	M1	
Obtain gradient $\frac{5}{2}$	A1	[6]
Question 18		
State $\frac{du}{dx} = 3 \sec^2 x$ or equivalent	B1	
Express integral in terms of u and du (accept unsimplified and without limits)	M1	
Obtain $\int \frac{1}{3} u^{\frac{1}{2}} du$	A1	
Integrate $Cu^{\frac{1}{2}}$ to obtain $\frac{2C}{3}u^{\frac{3}{2}}$	M1	
Obtain $\frac{14}{9}$	A1	[5]
WEDABP		

State or imply $\frac{du}{dr} = e^x$	B1

a.	
Substitute throughout for x and dx	M1

Obtain
$$\int \frac{u}{u^2 + 3u + 2} du$$
 or equivalent (ignoring limits so far) A1

State or imply partial fractions of form $\frac{A}{u+2} + \frac{B}{u+1}$, following their integrand	B 1
Carry out a correct process to find at least one constant for their integrand	M1
Obtain correct $\frac{2}{u+2} - \frac{1}{u+1}$	A1

Integrate to obtain $a \ln(u+2) + b \ln(u+1)$	M1	
Obtain $2\ln(u+2) - \ln(u+1)$ or equivalent, follow their A and B	A1√ ^k	
Apply appropriate limits and use at least one logarithm property correctly	M1	
Obtain given answer $\ln \frac{8}{5}$ legitimately	A1	<mark>[10]</mark>

SR for integrand $\frac{u^2}{u(u+1)(u+2)}$	
State or imply partial fractions of form $\frac{A}{u} + \frac{B}{u+1} + \frac{C}{u+2}$	(B1)
Carry out a correct process to find at least one constant	(M1)
Obtain correct $\frac{2}{u+2} - \frac{1}{u+1}$ complete as above.	(A1)
Question 20	

Use correct product rule or correct chain rule to differentiate y	M1	
Use $\frac{dy}{dx} = \frac{dy}{d\theta}$	M*1	
Obtain $\frac{-4\cos\theta\sin^2\theta + 2\cos^3\theta}{\sec^2\theta}$ or equivalent	A1	
Express $\frac{dy}{dx}$ in terms of $\cos \theta$	DM*1	
Confirm given answer $6\cos^5\theta - 4\cos^3\theta$ legitimately	Al	[5]

(i)	State or imply correct ordinates 1, 0.94259, 0.79719, 0.62000	B1	
(-)	Use correct formula or equivalent with $h = 0.1$ and four y values	M1	
	Obtain 0.255 with no errors seen	A1	[3]
(ii)	Obtain or imply $a = -6$	B1	
10-5-0018-1	Obtain x^4 term including correct attempt at coefficient	M1	
	Obtain or imply $b = 27$	A1	
	<u>Either</u> Integrate to obtain $x - 2x^3 + \frac{27}{5}x^5$, following their values of a and b	B1√	
	Obtain 0.259	B1	
	<u>Or</u> Use correct trapezium rule with at least 3 ordinates	M1	
	Obtain 0.259 (from 4)	A1	[5]
Que (i)	Use chain rule correctly at least once Obtain either $\frac{dx}{dt} = \frac{3 \sin t}{\cos^4 t}$ or $\frac{dy}{dt} = 3 \tan^2 t \sec^2 t$, or equivalent	M1 A1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain the given answer	M1 A1	[4]
(ii)		B1 M1 A1	[3]
Oue	stion 23		
(i)	Integrate and reach $bx \ln 2x - c \int x \cdot \frac{1}{x} dx$, or equivalent	M1*	
	Obtain $x \ln 2x - \int x \cdot \frac{1}{2} dx$, or equivalent	A1	
	Obtain integral $x \ln 2x - x$, or equivalent Substitute limits correctly and equate to 1, having integrated twice Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$ Obtain the given answer	A1 M1(dep*) A1 A1	[6]
Que	stion 24		
(i)	State or imply $f(x) = \frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$	B1	
	Use a relevant method to determine a constant	M1	
	Obtain one of the values $A = 2$, $B = -1$, $C = 3$	A1	
	Obtain the remaining values A1 +	A1	5
	[Apply an analogous scheme to the form $\frac{A}{2x-1} + \frac{Dx+E}{(x+2)^2}$; the values being $A = 2$,		
	Design 11		

$$D = -1, E = 1.$$
]

(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$ B1√+B1√+B1√

Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG. M1 Obtain the given answer following full and exact working

[The t marks are dependent on A, B, C etc.]

[SR: If B, C or E omitted, give B1M1 in part (i) and B1 $\sqrt{B1}M1$ in part (ii).]

A Ph

[NB: Candidates who follow the A, D, E scheme in part (i) and then integrate $\frac{-x+1}{(x+2)^2}$

by parts should obtain $\frac{1}{2} \cdot 2\ln(2x-1) - \ln(x+2) + \frac{x-1}{x+2}$ (the third term is equivalent to $-\frac{3}{x+2}+1$).]

Question 25

-			
Us	e correct quotient or product rule	M1	
Ob	tain correct derivative in any form	A1	
	uate derivative to zero and obtain a horizontal equation	M1	
	rry out complete method for solving an equation of the form $ae^{3x} = b$, or $ae^{5x} = be^{2x}$	M1	
	tain $x = \ln 2$, or exact equivalent	A1	
Ob	tain $y = \frac{1}{3}$, or exact equivalent	A1	6
Que	stion 26		
(i)	State $\frac{dx}{dt} = -4a\cos^3 t \sin t$, or $\frac{dy}{dt} = 4a\sin^3 t \cos t$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	Obtain correct expression for $\frac{dy}{dx}$ in a simplified form	A1	3
(ii)	Form the equation of the tangent	M1	
()	Obtain a correct equation in any form	A1	
	Obtain the given answer	A1	3
(iii)	State the x-coordinate of P or the y-coordinate of Q in any form	B1	
	Obtain the given result correctly	B1	2

5

A1

Que	501011			
(i)	State	or imply $du = -\frac{1}{2\sqrt{x}}dx$, or equivalent	B 1	
	Subst	itute for x and dx throughout	M1	
	Obtai	n integrand $\frac{\pm 2(2-u)^2}{u}$, or equivalent	A1	
		correct working to justify the change in limits and obtain the given answer with ors seen	A1	[4]
(ii)	Integr	rate and obtain at least two terms of the form $a \ln u$, bu , and cu^2	M1*	
	Obtai	n indefinite integral $8 \ln u - 8u + u^2$, or equivalent	A1	
			M1(dep*)	
	Obtai	n the given answer correctly having shown sufficient working	Al	[4]
Que	stion	29		
EIT	HER:	Use correct product rule	M1	
		Obtain correct derivative in any form, e.g. $-\sin x \cos 2x - 2\cos x \sin 2x$	Al	
		Use the correct double angle formulae to express derivative in $\cos x$ and $\sin x$,		
		or $\cos 2x$ and $\sin x$	M1	
OR	1:	Use correct double angle formula to express y in terms of $\cos x$ and attempt		
		differentiation	M1	
		Use chain rule correctly	M1	
		Obtain correct derivative in any form, e.g. $-6\cos^2 x \sin x + \sin x$	A1	
OR	2:	Use correct factor formula and attempt differentiation	M1	
		Obtain correct derivative in any form, e.g. $-\frac{3}{2}\sin 3x - \frac{1}{2}\sin x$	A1	
Fai	uate de	Use correct trig formulae to express derivative in terms of $\cos x$ and $\sin x$, or $\sin x$ in the trive to zero and obtain an equation in one trig function	x M1 M1	
		$\cos^2 x = 1$, $6\sin^2 x = 5$, $\tan^2 x = 5$ or $3\cos 2x = -2$	Al	
	Obtain ocos $x = 1$, osin $x = 5$, tan $x = 5$ or $5\cos 2x = -2$ Obtain answer $x = 1.15$ (or 65.9°) and no other in the given interval			[6]
[Ignore answers outside the given interval.]				[v]
	: Solu	ation attempts following the EITHER scheme for the first two marks can earn the		
Eau	iate dei	and third method marks as follows: rivative to zero and obtain an equation in $\tan 2x$ and $\tan x$	M1	
		et double angle formula to obtain an equation in tan x	M1]	
Que	stion	30		
(i)	Obta	in $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{t+2}$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 + 2$	B1	
	Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
	Obta	$\ln \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} (3t^2 + 2)(t+2)$	Al	
		ify value of t at the origin as -1	B1	
	Sube	titute to obtain $\frac{5}{2}$ as gradient at the origin	Al	
	5405	$\frac{1}{2}$		

[5]

(a)	Use identity $\tan^2 2x = \sec^2 2x - 1$	B1
	Obtain integral of form $ax + b \tan 2x$	M 1

Obtain correct
$$3x + \frac{1}{2} \tan 2x$$
, condoning absence of $+c$ A1 [3]

(b) State
$$\sin x \cos \frac{1}{2} \pi + \cos x \sin \frac{1}{6} \pi$$
 B1

Simplify integrand to $\cos \frac{1}{6} \pi + \frac{\cos x \sin \frac{1}{6} \pi}{\sin x}$ or equivalent Integrate to obtain at least term of form a In(sin x) **B1** *11

Integrate to obtain at least term of form
$$a \ln(\sin x)$$
*M1Apply limits and simplify to obtain two termsM1 dep *MObtain $\frac{1}{2}\pi\sqrt{3} = \frac{1}{2}\ln(\frac{1}{2})$ or equivalentA1

Obtain
$$\frac{1}{8}\pi\sqrt{3} - \frac{1}{2}\ln(\frac{1}{\sqrt{2}})$$
 or equivalent A1 [5]

[7]

Question 32

Question 32	
Differentiate to obtain form $a \sin 2x + b \cos x$	M1
Obtain correct $-6\sin 2x + 7\cos x$	Al
Use identity $\sin 2x = 2\sin x \cos x$	B1
Solve equation of form $c \sin x \cos x + d \cos x = 0$ to find at least one value of x	M1
Obtain 0.623	Al
Obtain 2.52	A1
Obtain 1.57 or $\frac{1}{2}\pi$ from equation of form $c \sin x \cos x + d \cos x = 0$	A1
Treat answers in degrees as MR – 1 situation	
Question 33	

State $du = 3 \sin x dx$ or equivalent	B1
Use identity $\sin 2x = 2\sin x \cos x$	B1
Carry out complete substitution, for x and dx	M1
Obtain $\int \frac{8-2u}{\sqrt{u}} du$, or equivalent	A1
Integrate to obtain expression of form $au^{\frac{1}{2}} + bu^{\frac{3}{2}}$, $ab \neq 0$	M1*
Obtain correct $16u^{\frac{1}{2}} - \frac{4}{3}u^{\frac{3}{2}}$	A1

Apply correct limits correctly	dep M1*	
Obtain $\frac{20}{3}$ or exact equivalent	A1	[8]

Use correct quotient rule or equivalent to find first derivative	M1*
Obtain $\frac{-(1+\tan x)\sec^2 x - \sec^2 x(2-\tan x)}{(1+\tan x)^2}$ or equivalent	A1

Substitute $x = \frac{1}{4}\pi$ to find gradient dep M1*

Obtain
$$-\frac{3}{2}$$
 A1

Form equation of tangent at
$$x = \frac{1}{4}\pi$$
 M1

Obtain
$$y = -\frac{3}{2}x + 1.68$$
 or equivalent [6]

Que	stion 35			
(i)	Use the quotient rule Obtain correct derivative in any form Equate derivative to zero and solve for x	M1 A1 M1		
	Obtain answer $x = \sqrt[3]{2}$, or exact equivalent	A1	[4]	
(ii)	State or imply indefinite integral is of the form $k \ln(1 + x^3)$	M1		
	State indefinite integral $\frac{1}{3}\ln(1+x^3)$	A1		
	Substitute limits correctly in an integral of the form $k \ln(1 + x^3)$	M1		
	State or imply that the area of <i>R</i> is equal to $\frac{1}{3}\ln(1+p^3) - \frac{1}{3}\ln 2$, or equivalent	A1		
	Use a correct method for finding p from an equation of the form $\ln(1 + p^3) = a$			
	or $\ln((1+p^3)/2) = b$	M1		
	or $\ln((1 + p^2)/2) = b$ Obtain answer $p = 3.40$	A1	[2]	
Que	stion 36			
(i)	State or imply that the derivative of e^{-2x} is $-2e^{-2x}$	B1		
2.2	Use product or quotient rule	M1		
	Obtain correct derivative in any form	A1		
	Use Pythagoras	M1		
	Justify the given form	A1	[5]	
(ii)	Fully justify the given statement	B1	[1]	
/ ···· >	o		F13	

(iii) State answer
$$x = \frac{1}{4}\pi$$
 B1 [1]

Use product rule to differentiate the LHS MI Obtain a complete and correct derivative of the UHS AI Obtain a complete and correct derived equation in any form AI Obtain a correct expression for $\frac{dy}{dx}$ in any form AI OR: State correct derivative of sin y with respect to x BI Rearrange the given equation as sin $y = x / (\ln x + 2)$ and attempt to differentiate both sides BI Use quotient or product rule to differentiate the RHS MI Obtain a correct expression for $\frac{dy}{dx}$ in any form AI [5] (ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or sin y MI Solve for $\ln x$ MI Obtain final answer $x = 1/e$, or exact equivalent AI [3] Question 38 (i) State or imply $dx = \sqrt{3} \sec^2 \theta \ d\theta$ BI Substitute for x and dx throughout MI Obtain answer $\frac{1}{2}\sqrt{3}\pi + \frac{2}{4}$, or exact equivalent BI Question 3 (i) State or integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ BI Obtain integral $\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta$ BI Substitute for x and dx throughout MI Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{4}$, or exact equivalent AI [3] (ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ BI Obtain integral $\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta$ BI (j) State or imply $dx = 2x \ dx$, or equivalent $x \ dx \ dx$ for $2\theta + b$, where $ab \neq 0$.] Question 3 (i) State or integrand to the form $x \ cos 2\theta + b$, where $ab \neq 0$.] Question 3 (j) State or ingly $dx = \frac{1}{2x} \ dx$, or equivalent $x \ dx \$	(i)	EITHER	State correct derivative of $\sin y$ with respect to x	B1	
Obtain a complete and correct derived equation in any formA1Obtain a correct expression for $\frac{\Phi}{dx}$ in any formA1OR:State correct derivative of sin y with respect to xB1NR:State correct derivative of the RHSB1Use quotient or product rule to differentiate the RHSM1Obtain a correct expression for $\frac{\Phi}{dx}$ in any formA1(ii)Equate $\frac{\Phi}{dx}$ to zero and obtain a horizontal equation in ln x or sin yM1Solve for ln xM1Obtain final answer $x = 1/e$, or exact equivalentA1Obtain the given answer correctlyA1(ii)State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ Substitute for x and dr throughoutB1Obtain the given answer correctlyA1(ii)Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain answer $\frac{1}{12}\sqrt{3}x + \frac{2}{w}$, or exact equivalentA1(iii)Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain answer $\frac{1}{12}\sqrt{3}x + \frac{2}{w}$, or exact equivalentA1(iii)Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain answer $\frac{1}{12}\sqrt{3}x + \frac{2}{w}$, or exact equivalentA1(iii)Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain answer $\frac{1}{12}\sqrt{3}x + \frac{2}{w}$, or equivalentB1Substitute for x and dr throughoutB1Substitute for x and dr throughoutB1(iii)Replace integrand by $\frac{1}{2} \sqrt{3}x + \frac{2}{w}$, or equivalent(iii)Replace integrand to a sum of integrable terms and attempt integration(iii)Convert integrand to a sum of integrable t			Use product rule to differentiate the LHS	M1	
Obtain a correct expression for $\frac{dy}{dx}$ in any formA1OR:State correct derivative of sin y with respect to x Rearrange the given equation as $\sin y = x/(\ln x + 2)$ and attempt to differentiate both sidesB1 Use quotient or product rule to differentiate the RHSB1 M1 Obtain correct derivative of the RHSObtain a correct expression for $\frac{dy}{dx}$ in any formA1[5](ii)Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or $\sin y$ M1 M1 Solve for $\ln x$ M1 M1 Obtain final answer $x = 1/e$, or exact equivalentM1 A1Question 38[3][3][3](ii)Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ Substitute for x and do throughout Obtain miss correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1 Obtain answer $\frac{1}{12}\sqrt{3\pi} + \frac{9}{8}$, or exact equivalentA1 [4] [7](ii)Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ Substitute for x and do throughout Obtain integral $\frac{1}{4}\sin^2 2\theta + \frac{1}{2}\theta$ Substitute for a and the thorm and since $\theta = 0$.]Question 3[4] (Dia answer $\frac{1}{12}\sqrt{3\pi} + \frac{9}{8}$, or exact equivalent Substitute for x and do throughout Obtain integral $\frac{1}{4}\sin^2 2\theta + \frac{1}{2}\theta$ Substitute for x and do throughout Obtain answer $\frac{1}{12}\sqrt{3\pi} + \frac{9}{8}$, or equivalent Substitute for x and do throughout Substitute for x and do throughout Substitute for x and do throughout Reduce to the given form and justify the change in limitsM1 A1 [3](ii)Cenvert integrand to a sum of integrable terms and attempt integration Substitute limits in an integral containing two terms of					
OR:State correct derivative of sin y with respect to xB1Rearrange the given equation as sin $y = x/(\ln x + 2)$ and attempt to differentiate both sidesB1Use quotient or product rule to differentiate the RHSM1Obtain correct derivative of the RHSA1Obtain a correct expression for $\frac{dy}{dx}$ in any formA1[5](ii)Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or sin yM1Solve for $\ln x$ M1Obtain final answer $x = 1/e$, or exact equivalentA1[3]Question 38(i)State or imply $dx = \sqrt{3}\sec^2 \theta d\theta$ Substitute for x and dx throughoutM1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $e\sin 2\theta + b\theta$, where $eb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalent[1]Cuestion 3(i)State or imply $dx = 2x dx$, or equivalent[1]The f.t. is on integrands of the form $a \cos 2\theta + b_{2}$, where $ab \neq 0.1$ Question 3(ii)Convert integrand to a sum of integrable terms and attempt integration(iii)Convert integrand to a sum of integrable terms and attempt integration(iii)Convert integrand to a sum of integrable terms of the form $a \ln u$ and bu^{-2} (iii)Convert integrand to a sum of integrable terms of the form $a \ln u$ and bu^{-2} (iii)Convert integrand to a sum of integrable terms of the form $a \ln u$ and bu^{-2} (iii)Convert integrand to a sum of integrable terms of the form $a \ln u$ and bu^{-2} <			Obtain a complete and correct derived equation in any form	A1	
Rearrange the given equation as $\sin y = x/(\ln x + 2)$ and attempt to differentiate both sidesB1 Use quotient or product rule to differentiate the RHSB1 M1Obtain correct derivative of the RHSA1Obtain a correct expression for $\frac{dy}{dx}$ in any formA1(ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or $\sin y$ M1Solve for $\ln x$ M1Obtain final answer $x = 1/e$, or exact equivalentM1Question 38B1(ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute for x and dx throughoutM1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1(ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1(j) State or imply $dx = 2x dx$, or equivalentA1(ii) Replace integrand by $\frac{1}{4}\cos 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $e\sin 2\theta + b\theta$, where $eb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1(i) State or imply $dx = 2x dx$, or equivalentM1(j) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} (ii) Convert integrand to a sum of integrable terms of the form $a \ln u$ and bu^{-2} M1Obtain integral $\frac{1}{2}\ln$			Obtain a correct expression for $\frac{dy}{dx}$ in any form	A1	
both sides Use quotient or product rule to differentiate the RHS (Distain correct derivative of the RHS (Distain a correct expression for $\frac{dy}{dx}$ in any form (A1 [5]) (ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or $\sin y$ (M1 Solve for $\ln x$ (Distain final answer $x = 1/e$, or exact equivalent (A1 [3]) Question 38 (i) State or imply $dx = \sqrt{3} \sec^2 \theta \ d\theta$ (B1 Substitute for x and dx throughout (Distain the given answer correctly (Distain the given answer correctly (Distain the given answer correctly (Distain answer $\frac{1}{2}\sqrt{3}x + \frac{3}{2}$, or exact equivalent (The f.t. is on integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ (Distain answer $\frac{1}{12}\sqrt{3}x + \frac{3}{2}$, or exact equivalent (Distain answer $\frac{1}{12}\sqrt{3}x + \frac{3}{2}$, or equivalent (Distain a dth throughout (Distain answer $\frac{1}{12}\sqrt{3}x + \frac{3}{2}$, or equivalent (Distain answer $\frac{1}{12}\sqrt{3}x + \frac{3}{2}$, or equivalent (Distain answer $\frac{1}{12}\sqrt{3}x + \frac{3}{2}$, or equivalent (Distain and $\frac{1}{3}$) (i) Convert integrand to a sum of integrable terms and attempt integration (Distain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (Distain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain and $\frac{bu^{-2}}{2}$ (Distain and $\frac{bu^{-2}}{2}$ (Distain integral $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent (Distain and $\frac{5}{2}$ (Distain a		OR:			
Use quotient or product rule to differentiate the RHS Obtain correct derivative of the RHS A1 Obtain a correct expression for $\frac{dy}{dx}$ in any form A1 [5] (ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in ln x or sin y M1 Solve for ln x M1 Obtain final answer $x = 1/e$, or exact equivalent A1 [3] Question 38 (i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ B1 Substitute for x and dx throughout M1 Obtain integral $\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta$ B1 (ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1 Obtain integral $\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta$ B1 Substitute limits correctly in an integral of the form $e\sin 2\theta + b\theta$, where $eb \neq 0$ M1 Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{3}$, or exact equivalent A1 [4] (ii) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Obtain answer $\frac{1}{2}\sqrt{3}x + \frac{2}{3}$, or exact equivalent A1 [4] (ii) Convert integrand by $\frac{1}{2}\cos 2\theta + b$, where $ab \neq 0$.] Question 3 (ii) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout A1 [4] (iii) Convert integrand to a sum of integrable terms and attempt integration M1 Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent A1 [3] (ii) Convert integrand to a sum of integrable terms and attempt integration M1 (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent A1					
Obtain correct derivative of the RHSA1Obtain a correct expression for $\frac{dy}{dx}$ in any formA1(ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in ln x or sin yM1Solve for ln xM1Obtain final answer $x = 1/e$, or exact equivalentM1Question 38M1(i) State or imply $dx = \sqrt{3} \sec^2 \theta \ d\theta$ B1Substitute for x and dx throughoutM1Obtain integral $\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{5}$, or exact equivalentA1[3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $\sin 2\theta + b\theta$, where $ab \neq 0$.]M1Question 3(i) State or imply $du = 2x \ dx$, or equivalentB1(ii) Convert integrand to a sum of integrable terms and attempt integrationM1(iii) Convert integrand to a sum of integrable terms and attempt integrationM1(iii) Convert integrand to a sum of integrable terms and attempt integrationM1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain integral $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1 + A1					
dr(ii) Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in ln x or sin yM1Solve for ln xM1Obtain final answer $x = 1/e$, or exact equivalentM1Question 38M1(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ B1Substitute for x and dx throughoutM1Obtain integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1(ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalentA1[4][4][5]State or imply $du = 2x dx$, or equivalentSubstitute form and dx throughoutM1Reduce to the given form and justify the change in limitsM1[6]Convert integrand to a sum of integrable terms and attempt integrationObtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{1}{16}$, exact simplified equivalentA1					
Solve for h x Obtain final answer $x = 1/e$, or exact equivalentM1 A1 [3]Question 38(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ Substitute for x and dx throughout Obtain the given answer correctlyB1 M1 A1 [3](ii) Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain integral $\frac{1}{4} \sin 2\theta + \frac{1}{2}\theta$ Substitute limits correctly in an integral of the form $c \sin 2\theta + b\theta$, where $cb \neq 0$ Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalent [The f.t. is on integrands of the form $a \cos 2\theta + b$, where $ab \neq 0$.]B1 B1 A1 [4]Question 3(i) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{1}{6}$, exact simplified equivalentM1 A1 + A1					[5]
Solve for h x Obtain final answer $x = 1/e$, or exact equivalentM1 A1 [3]Question 38(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ Substitute for x and dx throughout Obtain the given answer correctlyB1 M1 A1 [3](ii) Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain integral $\frac{1}{4} \sin 2\theta + \frac{1}{2}\theta$ Substitute limits correctly in an integral of the form $c \sin 2\theta + b\theta$, where $cb \neq 0$ Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalent [The f.t. is on integrands of the form $a \cos 2\theta + b$, where $ab \neq 0$.]B1 B1 A1 [4]Question 3(i) State or imply $du = 2x dx$, or equivalent 			A PD		
Solve for h x Obtain final answer $x = 1/e$, or exact equivalentM1 A1 [3]Question 38(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ Substitute for x and dx throughout Obtain the given answer correctlyB1 M1 A1 [3](ii) Replace integrand by $\frac{1}{2} \cos 2\theta + \frac{1}{2}$ Obtain integral $\frac{1}{4} \sin 2\theta + \frac{1}{2}\theta$ Substitute limits correctly in an integral of the form $c \sin 2\theta + b\theta$, where $cb \neq 0$ Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalent [The f.t. is on integrands of the form $a \cos 2\theta + b$, where $ab \neq 0$.]B1 B1 A1 [4]Question 3(i) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{1}{6}$, exact simplified equivalentM1 A1 + A1	(ii)	Fauate	$\frac{1}{2}$ to zero and obtain a horizontal equation in $\ln x$ or sin y	M1	
Obtain final answer $x = 1/e$, or exact equivalentA1 [3]Question 38(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ B1Substitute for x and dx throughoutM1Obtain the given answer correctlyA1 [3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{2}{8}$, or exact equivalentA1 [4][The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1Question 3M1(i) State or imply $du = 2x dx$, or equivalentM1Reduce to the given form and justify the change in limitsM1[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1	(11)		II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
Question 38(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ B1Substitute for x and dx throughoutM1Obtain the given answer correctlyA1(ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1[4][7he f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]Question 3M1(u) State or imply $du = 2x dx$, or equivalentM1Reduce to the given form and justify the change in limitsM1[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1					1222
(i) State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$ B1Substitute for x and dx throughout Obtain the given answer correctlyM1 A1(ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1 A1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalent [The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1 A1Question 3If (i) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughoutB1 M1 M1 Reduce to the given form and justify the change in limitsM1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1		Obtain f	inal answer $x = 1/e$, or exact equivalent	A1	[3]
Substitute for x and dx throughout Obtain the given answer correctlyM1 A1[3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1 Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1 M1 B1 MSubstitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1 Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalent [The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1 Question 3(u) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1 M1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentM1 A1	Que	stion 38	3		
Substitute for x and dx throughout Obtain the given answer correctlyM1 A1[3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1 Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1 M1 B1 MSubstitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1 Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalent [The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1 Question 3(u) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1 M1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentM1 A1					
Obtain the given answer correctlyA1 [3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1 [4][The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1Question 3M1(u) State or imply $du = 2x dx$, or equivalentM1Substitute for x and dx throughoutM1Reduce to the given form and justify the change in limitsA1[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct AI for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1	(i)	State or	imply $dx = \sqrt{3} \sec^2 \theta d\theta$	B1	
Obtain the given answer correctlyA1 [3](ii) Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$ B1Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1 [4][The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]M1Question 3M1(u) State or imply $du = 2x dx$, or equivalentM1Substitute for x and dx throughoutM1Reduce to the given form and justify the change in limitsA1[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct AI for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1		Substitu	te for x and dx throughout	M1	
Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1[The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]A1Question 3Image: Constraint of the form and the form a				A1	[3]
Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$ B1Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1[The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]A1Question 3Image: Constraint of the form and the form a		(ii) Repl	ace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$	B1	
Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$ M1Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1[4][The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0.$]A1[4]Question 3(1)State or imply $du = 2x dx$, or equivalentB1Substitute for x and dx throughoutM1A1Reduce to the given form and justify the change in limitsA1[3](ii)Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1				R1√	
Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalentA1 [4][The f.t. is on integrands of the form $a \cos 2\theta + b$, where $ab \neq 0$.]Question 3(u) State or imply $du = 2x dx$, or equivalentB1Substitute for x and dx throughoutM1Reduce to the given form and justify the change in limitsA1[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1					
[The f.t. is on integrands of the form $a \cos 2\theta + b$, where $ab \neq 0$.] Question 3 (i) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limits (ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2} \ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{16}$, exact simplified equivalent A1					F.47
Question 3B1(1) State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1(11) Convert integrand to a sum of integrable terms and attempt integrationM1(13) Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1				AI	[4]
(1)State or imply $du = 2x dx$, or equivalent Substitute for x and dx throughout Reduce to the given form and justify the change in limitsB1 M1 M1 [3](ii)Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2} \ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{16}$, exact simplified equivalentB1 M1 M1 M1 M1 A1		The	t.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]		
Substitute for x and dx throughout Reduce to the given form and justify the change in limitsM1 A1 [3](ii) Convert integrand to a sum of integrable terms and attempt integration Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentM1 A1	Que	stion 3			
Reduce to the given form and justify the change in limitsA1 [3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1 $A1 + A1$ Obtain integral $\frac{1}{2} \ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1 $A1 + A1$ (deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1 $A1$ Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{16}$, exact simplified equivalentA1	(1)			RI	
[3](ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1					
(ii) Convert integrand to a sum of integrable terms and attempt integrationM1Obtain integral $\frac{1}{2} \ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{16}$, exact simplified equivalentA1		Reduce t	o the given form and justify the change in limits		
Obtain integral $\frac{1}{2} \ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalentA1 + A1(deduct A1 for each error or omission)Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{16}$, exact simplified equivalentA1				[3]	
(deduct A1 for each error or omission)M1Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1	(ii)			M 1	
Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2} M1Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalentA1		Obtain in	ntegral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent	A1 + A1	
Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent A1		(deduct)	A1 for each error or omission)		
				M 1	
[5]		Obtain a	nswer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent	A1	
				[5]	

Question 40		
(i) State $\frac{dx}{dt} = 1 - \sin t$	B1	
Use chain rule to find the derivative of y	M1	
Obtain $\frac{dy}{dt} = \frac{\cos t}{1 + \sin t}$, or equivalent	A1	
Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
Obtain the given answer correctly	A1	
	[5]	
(ii) State or imply $t = \cos^{-1}(\frac{1}{3})$	B1	
Obtain answers $x = 1.56$ and $x = -0.898$	B1 + B1 [3]	
Question 41		
State or imply derivative of $(\ln x)^2$ is $\frac{2\ln x}{x}$	B1	
Use correct quotient or product rule	M1	
Obtain correct derivative in any form, e.g. $\frac{2 \ln x}{r^2} - \frac{(\ln x)^2}{r^2}$	A1	
Equate derivative (or its numerator) to zero and solve for $\ln x$	M1	
Obtain the point $(1, 0)$ with no errors seen	A1	
Obtain the point $(e^2, 4e^{-2})$	A1	[6]
Question 42		
Integrate by parts and reach $ax^2 \cos 2x + b \int x \cos 2x dx$	M1*	
Obtain $-\frac{1}{2}x^2\cos 2x + \int x\cos 2x$, or equivalent	A1	
Complete the integration and obtain $-\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x$, or equivalen		
Use limits correctly having integrated twice Obtain answer $\frac{1}{8}(\pi^2 - 4)$, or exact equivalent, with no errors seen	DM1* A1	121
Solution answer ${}_8(n - 4)$, or exact equivalent, with no enois seen	AI	[2]
Question 43		
(i) State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B1	
State $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
Equate attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1	
Obtain the given answer	A1	
	[4]	
(ii) Equate numerator to zero	M1*	
Obtain $x = 2y$, or equivalent Obtain an equation in x or y	A1 DM1*	
Obtain an equation in x or y Obtain the point $(-2, -1)$	A1	
State the point (0, 1.44)	B1	
	[5]	

Use product rule	M1
Obtain correct derivative in any form, e.g. $\cos x \cos 2x - 2 \sin x \sin 2x$	A1
Equate derivative to zero and use double angle formulae	M1
Remove factor of cos x and reduce equation to one in a single trig function	M1
Obtain $6\sin^2 x = 1$, $6\cos^2 x = 5$ or $5\tan^2 x = 1$	A1
Solve and obtain $x = 0.421$	A1
	[6]

Question 45

Integrate by parts and reach $axe^{-2x} + b\int e^{-2x} dx$	<u>M1</u>
Obtain $-\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x} dx$, or equivalent	A1
Complete the integration correctly, obtaining $-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$, or equivalent	A1
Use limits $x = 0$ and $x = \frac{1}{2}$ correctly, having integrated twice	M1
Obtain answer $\frac{1}{4} - \frac{1}{2}e^{-1}$, or exact equivalent	A1
	[5]
Question 46	

Question 46

(i)	State or imply $du = \frac{1}{2\sqrt{x}} dx$	B1	
	Substitute for x and dx throughout Justify the change in limits and obtain the given answer	M1 A1	[3]
<mark>(ii)</mark>	Convert integrand into the form $A + \frac{B}{u+1}$	M1*	
	Obtain integrand $A = 1, B = -2$	A1	
	Integrate and obtain $u - 2\ln(u+1)$	$A1\sqrt{+} + A1\sqrt{+}$	
	Substitute limits correctly in an integral containing terms au and $b\ln(u + 1)$, where $ab \neq 0$	DM1	
	Obtain the given answer following full and correct working [The f.t. is on A and B.]	A1	[6]

Question 47

Use correct quotient or product rule Obtain correct derivative in any form	M1 A1	
Use Pythagoras to simplify the derivative to $\frac{1}{1 + \cos x}$, or equivalent	A1	
Justify the given statement, $-1 < \cos x < 1$ statement, or equivalent	A1	[4]

Quest	1011 46	1		
(i)	Use the correct product rule	M1		
~~~~	Obtain correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$	A1		
	Equate derivative to zero and solve for $x$	<b>M1</b>		
	Obtain $x = \sqrt{5} - 1$ only	A1	[4]	
(ii)	Integrate by parts and reach $a(2x-x^2)e^{\frac{1}{2}x} + b\int (2-2x)e^{\frac{1}{2}x} dx$	M1*		
	Obtain $2e^{\frac{1}{2}x}(2x-x^2) - 2\int (2-2x)e^{\frac{1}{2}x}dx$ , or equivalent	A1		
	Complete the integration correctly, obtaining $(12x - 2x^2 - 24)e^{\frac{1}{2}x}$ , or equivalent	A1		
	Use limits $x = 0$ , $x = 2$ correctly having integrated by parts twice Obtain answer $24 - 8e$ , or <u>exact</u> simplified equivalent	DM1 A1	[5]	

-	1			II I
<b>(i)</b>	EITHER:		<b>M1</b>	
		Express as a single fraction in any correct form	A1	
		Use Pythagoras or cos 2A formula	M1	
		Obtain the given result correctly	A1	
	OR:	Express LHS in terms of $\sin 2\theta$ , $\cos 2\theta$ , $\sin \theta$ and $\cos \theta$	<b>M1</b>	
		Express as a single fraction in any correct form	A1	
		Use Pythagoras or $\cos 2A$ formula or $\sin(A - B)$ formula	M1	
		Obtain the given result correctly	A1	[4]
(ii)	Integrate :	and obtain a term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)	M1*	-+
	Obtain int	$\log ral = \frac{1}{2} \ln(\cos 2\theta) + \ln(\cos \theta)$ , or equivalent	A1	
	Substitute	limits correctly (expect to see use of both limits)	DM1	
		given answer following full and correct working	A1	[4]
		Z. B.		

Question	50		
EITHER:	EITHER:	State $2xy + x^2 \frac{dy}{dx}$ , or equivalent, as derivative of $x^2y$	<b>B1</b>
		State $6y^2 + 12xy \frac{dy}{dx}$ , or equivalent, as derivative of $6xy^2$	<b>B1</b>
	OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{dy}{dx})$ , or	
		equivalent	<b>B1</b>
		State term $(y + x \frac{dy}{dx})(x - 6y)$ , or equivalent	<b>B1</b>
		Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	<b>M1</b> *
		Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1
		Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$	A1
		Obtain an equation in $x$ or $y$	DM1
		Obtain answer $(-3a, -a)$	A1
OR:	Rearrange	to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)^2} \times \dots$	<b>B1</b>
	State term	(x-6y)+x(1-6y'), or equivalent	<b>B1</b>
	Justify div	vision by $x(x-6y)$	B1
	Set $\frac{dy}{dx}$ equ	ual to zero	M1*
	Obtain a h	orizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1
		equation in x or y	DM1
	Obtain ans	swer $(-3a, -a)$	A1 [
		THEDABH	

[7]

(i)	
 (1)	
× /	

(i)	State or imply derivative is $2\frac{\ln x}{x}$		B1
	State or imply gradient of the normal at $x = e$ is $-\frac{1}{2}e$ , or equivalent		B1
	Carry out a complete method for finding the <i>x</i> -coordinate of $Q$		M1
	Obtain answer $x = e + \frac{2}{e}$ , or exact equivalent		A1
		Total:	4
(ii)	Justify the given statement by integration or by differentiation		B1
		Total:	1
(iii)	Integrate by parts and reach $ax(\ln x)^2 + b\int x \cdot \frac{\ln x}{x} dx$		M1*
	Complete the integration and obtain $x(\ln x)^2 - 2x\ln x + 2x$ , or equivalent		A1
	Use limits $x = 1$ and $x = e$ correctly, having integrated twice		DM1
	Obtain exact value e – 2		A1
	Use x- coordinate of Q found in part (i) and obtain final answer $e - 2 + \frac{1}{e}$		B1√*
		Total:	5

Use product rule	M1
Obtain correct derivative in any form	A1
Equate derivative to zero, use Pythagoras and obtain a quadratic equation in $\tan x$	M1
Obtain $\tan^2 x - a \tan x + 1 = 0$ , or equivalent	A1
Use the condition for a quadratic to have only one root	M1
Obtain answer $a = 2$	A1
Obtain answer $x = \frac{1}{4}\pi$	A1
Total:	7

(i)	Use correct quotient rule or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for $x$	M1
	Obtain $x = 2$	A1
	Total:	4

## Question 54

i(i)	Use the chain rule	<b>M1</b>
	Obtain correct derivative in any form	A1
	Use correct trigonometry to express derivative in terms of $\tan x$	M1
	Obtain $\frac{dy}{dx} = -\frac{4\tan x}{4 + \tan^2 x}$ , or equivalent	A1
	Total:	4
(ii)	Equate derivative to $-1$ and solve a 3-term quadratic for tan x	M1
	Obtain answer $x=1.11$ and no other in the given interval	A1
Quest	Total:	2
Quest	ion 55	

Rearrange as $3u^2 + 4u - 4 = 0$ , or $3e^{2x} + 4e^x - 4 = 0$ , or equivalent	B1
Solve a 3-term quadratic for $e^x$ or for $u$	M1
Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$	A1
Obtain answer $x = -0.405$ and no other	A1
Total:	4

Integrate by parts and reach $a\theta \cos \frac{1}{2}\theta + b\int \cos \frac{1}{2}\theta  d\theta$	*M1
Complete integration and obtain indefinite integral $-2\theta \cos \frac{1}{2}\theta + 4\sin \frac{1}{2}\theta$	A1
Substitute limits correctly, having integrated twice	DM1
Obtain final answer $(4-\pi)/\sqrt{2}$ , or exact equivalent	A1
Total:	4

i)	Use quotient or chain rule	<b>M</b> 1
	Obtain given answer correctly	A1
	Total:	2
ii)	<i>EITHER</i> : Multiply numerator and denominator of LHS by $1 + \sin \theta$	(M1
	Use Pythagoras and express LHS in terms of sec $\theta$ and $\tan \theta$	<b>M</b> 1
	Complete the proof	A1)
	OR1:       Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of sin $\theta$	<b>M</b> 1
	Complete the proof	A1)
	OR2: Express LHS in terms of $\sec\theta$ and $\tan\theta$	( <b>M</b> 1
	Multiply numerator and denominator by $\sec\theta + \tan\theta$ and use Pythagoras	<b>M</b> 1
	Complete the proof	<b>A1</b> )
	Total:	3
iii)	Use the identity and obtain integral $2 \tan \theta + 2 \sec \theta - \theta$	B2
	Use correct limits correctly in an integral containing terms $a \tan \theta$ and $b \sec \theta$	M1
	Obtain answer $2\sqrt{2} - \frac{1}{4}\pi$	A1
	Total:	4

(i)	$\text{State} \frac{\mathrm{d}y}{\mathrm{d}t} = 4 + \frac{2}{2t - 1}$	B1
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1
	Obtain answer $\frac{dy}{dx} = \frac{8t-2}{2t(2t-1)}$ , or equivalent e.g. $\frac{2}{t} + \frac{2}{4t^2 - 2t}$	A1
	Total:	3
(ii)	Use correct method to find the gradient of the normal at $t = 1$	M1
		MI
	Use a correct method to form an equation for the normal at $t = 1$	<b>M1</b>
	Ose a correct method to form an equation for the normal at $t = 1$ Obtain final answer $x + 3y - 14 = 0$ , or horizontal equivalent	A1

(i)

State or imply $du = -\sin x  dx$	<b>B</b> 1
Using correct double angle formula, express the integral in terms of $u$ and $du$	M1
Obtain integrand $\pm (2u^2 - 1)^2$	A1
Change limits and obtain correct integral $\int_{\frac{1}{\sqrt{2}}}^{1} (2u^2 - 1)^2 du$ with no errors seen	A1
Substitute limits in an integral of the form $au^5 + bu^3 + cu$	M1
Obtain answer $\frac{1}{15}(7-4\sqrt{2})$ , or exact simplified equivalent	A1
EDA Total:	6

	Total:	
	Obtain answer 0.32	A1
	Obtain $10\cos^2 x = 9$ or $10\sin^2 x = 1$ , or equivalent	A1
	Use correct methods to obtain an equation in $\cos x$ or $\sin x$ only	M1
	Equate derivative to zero and use trig formulae to obtain an equation in $\cos x$ and $\sin x$	M1
	Obtain correct derivative in any form	A1
(ii)	Use product rule and chain rule at least once	M1

	Use chain rule to differentiate $x = \left(\frac{dx}{d\theta} = -\frac{\sin\theta}{\cos\theta}\right)$	M1
	State $\frac{dy}{d\theta} = 3 - \sec^2 \theta$	<b>B1</b>
	Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1
	Obtain correct $\frac{dy}{dx}$ in any form e.g. $\frac{3 - \sec^2 \theta}{-\tan \theta}$	A1
	Obtain $\frac{dy}{dx} = \frac{\tan^2 \theta - 2}{\tan \theta}$ , or equivalent	A1
	Total:	5
ii)	Equate gradient to $-1$ and obtain an equation in $\tan \theta$	M1
	Solve a 3 term quadratic $(\tan^2 \theta + \tan \theta - 2 = 0)$ in $\tan \theta$	M1
	Obtain $\theta = \frac{\pi}{4}$ and $y = \frac{3\pi}{4} - 1$ only	A1
	Total:	3
)ues	stion 61	
i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$	B1
i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$ Obtain the <b>given answer</b> $y = \frac{e^{-x}}{1+e^{-x}}$ following full working	B1 B1
i)	EDA	B1
200	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working	B1 2
200	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working Total:	B1
200	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working         Total:         State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$	B1 2 *M1
i) ii)	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working         Total:         State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$ State correct integral $-\ln(1 + e^{-x})$	B1 2 *M1 A1

Obtain correct derivative in any form	A1
Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
Obtain answers $x = 2 \pm \sqrt{3}$	A1
	4
Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$ , or equivalent	Al
Complete the integration and obtain $(-18 - 8x - 2x^2)e^{-\frac{1}{2}x}$ , or equivalent	A1
Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
Obtain the given answer	A1
0	5

State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of $xy^3$	B1
State or imply $4y^3 \frac{dy}{dx}$ as derivative of $y^4$	B1
Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
Obtain the given answer	Al
EDAV	4
Equate numerator to zero	*M1
Obtain $y = -2x$ , or equivalent	A1
Obtain an equation in $x$ or $y$	DM1
Obtain final answer $x = -1$ , $y = 2$ and $x = 1$ , $y = -2$	Al
	4

(i)	State or imply $3x^2y + x^3\frac{dy}{dx}$ as derivative of $x^3y$	<b>B1</b>
	State or imply $9xy^2 \frac{dy}{dx} + 3y^3$ as derivative of $3xy^3$	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer AG	A1
		4
(ii)	Equate numerator to zero and use $x = -y$ to obtain an equation in x or in y	<b>M1</b>
	Obtain answer $x = a$ and $y = -a$	<b>A1</b>
	Obtain answer $x = -a$ and $y = a$	A1
	Consider and reject $y = 0$ and $x = y$ as possibilities	<b>B1</b>
Ques	tion 65	4
-	correct product or quotient rule or rewrite as $2 \sec x - \tan x$ and differentiate	M1
Obta	in correct derivative in any form	A1
Equa	te the derivative to zero and solve for $x$	M1
Obta	in $x = \frac{1}{6}\pi$	A1
Obta	in $y = \sqrt{3}$	A1
		5
Carr	y out an appropriate method for determining the nature of a stationary point	M1
Curr.		

(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in $x$	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
		4
(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$ , or equivalent	A1
	Complete the integration and obtain $(-18 - 8x - 2x^2)e^{-\frac{1}{2}x}$ , or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5
Quest (i)	tion 67 State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of $xy^3$	B1
	State or imply $4y^3 \frac{dy}{dx}$ as derivative of $y^4$	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
		4
(ii)	Equate numerator to zero	*M1
	Obtain $y = -2x$ , or equivalent	A1
	Obtain an equation in $x$ or $y$	DM1
	Obtain final answer $x = -1$ , $y = 2$ and $x = 1$ , $y = -2$	A1
		4

State or imply $3y^2 \frac{dy}{dx}$ as derivative of $y^3$	B1
State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1
Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1
Obtain the given answer	A1
Total:	4
Equate denominator to zero and solve for $y$	M1*
Obtain $y = 0$ and $x = a$	A1
Obtain $y = \alpha x$ and substitute in curve equation to find x or to find y	M1(dep*)
Obtain $x = -a$	A1
Obtain $y = 2a$	A1
	5

i)	tion 69 State answer $R = \sqrt{5}$	B1
-)	State answer $K = \sqrt{5}$	
	Use trig formulae to find tan $\alpha$	M1
	Obtain $\tan \alpha = 2$	A1
	Total:	3
ii)	State that the integrand is $3\sec^2(\theta - \alpha)$	B1FT
	State correct indefinite integral $3\tan(\theta - \alpha)$	B1FT
	Substitute limits correctly	<b>M1</b>
	Use $tan(A \pm B)$ formula	<b>M1</b>
	Obtain the given exact answer correctly	<b>A1</b>
	Total:	5

(i)	Use the quotient or product rule	<b>M1</b>
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain the given equation	A1
	Total:	3
(ii)	Sketch a relevant graph, e.g. $y = \ln x$	B1
	Sketch a second relevant graph, e.g. $y = 1 + \frac{3}{x}$ , and justify the given statement	<b>B1</b>
	Total:	2
(iii)	Use iterative formula $x_{n+1} = \frac{3+x}{\ln x_n}$ correctly at least once	M1
	Obtain final answer 4.97	A1
	Show sufficient iterations to 4 d.p.to justify 4.97 to 2 d.p. or show there is a sign change in the interval (4.965, 4.975)	A1
	Total:	3

Question 71	
Integrate by parts and reach $ax \sin 3x + b \int \sin 3x dx$	M1*
Obtain $\frac{1}{3}x\sin 3x - \frac{1}{3}\int \sin 3x dx$ , or equivalent	A1
Complete the integration and obtain $\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x$ , or equivalent	A1
Substitute limits correctly having integrated twice and obtained $ax \sin 3x + b \cos 3x$	M1(dep*)
Obtain answer $\frac{1}{18}(\pi - 2)$ OE	A1
Total:	5

3(i)	Use correct product or quotient rule	Ml	$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{\frac{1}{3}x} + e^{\frac{1}{3}x}$ or $\frac{dy}{dx} = \frac{e^{\frac{1}{3}x} - (x+1)\frac{1}{3}e^{\frac{1}{3}x}}{e^{\frac{2}{3}x}}$
	Obtain complete correct derivative in any form	<b>A</b> 1	
	Equate derivative to zero and solve for $x$	<b>M</b> 1	
	Obtain answer $x = 2$ with no errors seen	Al	
		4	
(ii)	Integrate by parts and reach $a(x+1)e^{-\frac{1}{3}x} + b\int e^{-\frac{1}{3}x} dx$	M1*	
	Obtain $-3(x+1)e^{\frac{1}{3}x}+3\int e^{\frac{1}{3}x}dx$ , or equivalent	Al	$-3xe^{-\frac{1}{3}x} + 13e^{-\frac{1}{3}x}dx - 3e^{-\frac{1}{3}x}$
	Complete integration and obtain $-3(x+1)e^{-\frac{1}{3}x} - 9e^{\frac{1}{3}x}$ , or equivalent	Al	
	Use correct limits $x = -1$ and $x = 0$ in the correct order, having integrated twice	Ml(dep*)	
	Obtain answer $9e^{\frac{1}{3}}$ -12, or equivalent	A1	
		5	
Oue	estion 73		
<b>U</b>			
(i)	State or imply $3y^2 \frac{dy}{dx}$ as derivative of $y^3$	B1	
(i)	State or imply $3y^2 \frac{dy}{dx}$ as derivative of $y^3$ State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B1 B1	$3x^2 + 6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0$
(i)			$3x^2 + 6xy + 3x^2\frac{dy}{dx} - 3y^2\frac{dy}{dx} = 0$
(i)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$		$3x^2 + 6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0$
(i)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2 \left(1 + 3\frac{dy}{dx}\right)$ as derivative of		$3x^{2} + 6xy + 3x^{2}\frac{dy}{dx} - 3y^{2}\frac{dy}{dx} = 0$ Given answer so check working carefully
(1)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$	Bl	$3x^2 + 6xy + 3x^2 \frac{d}{dx} - 3y^2 \frac{d}{dx} = 0$
(i)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$ Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	Bl	$3x^2 + 6xy + 3x^2 \frac{d}{dx} - 3y^2 \frac{d}{dx} = 0$
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$ Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	B1 M1 A1	$3x^2 + 6xy + 3x^2 \frac{d}{dx} - 3y^2 \frac{d}{dx} = 0$
(i) (ii)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$ Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$ Obtain the given answer	B1 M1 Λ1 4	$3x^{2} + 6xy + 3x^{2} \frac{d}{dx} - 3y^{2} \frac{d}{dx} = 0$ Given answer so check working carefully
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$ Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$ Obtain the given answer Equate derivative to - 1 and solve for y Use their $y = -2x$ or equivalent to obtain an equation	B1 M1 A1 4 M1*	$3x^{2} + 6xy + 3x^{2} \frac{d}{dx} - 3y^{2} \frac{d}{dx} = 0$ Given answer so check working carefully
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$ <i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$ Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$ Obtain the given answer Equate derivative to - 1 and solve for y Use their $y = -2x$ or equivalent to obtain an equation in x or y	B1 M1 A1 4 M1* M1(dep*)	$3x^{2} + 6xy + 3x^{2} \frac{d}{dx} - 3y^{2} \frac{d}{dx} = 0$ Given answer so check working carefully

(i)	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	M1	$\frac{2\sin x - 2\sin x \cos x}{1 - \left(2\cos^2 x - 1\right)}$
	Obtain a correct expression	Al	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1 - \cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	Al	
	$\frac{\sin x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x} = \frac{\sin x - \sin x \cos x}{1-\cos^2 x}$ M1A1 $= \frac{2\sin x - 2\sin x \cos x}{2-2\cos^2 x}$		Given answer so check working carefully
	$=\frac{2\sin x - \sin 2x}{1 - \cos 2x} $ M1A1		
		4	
ii)	State integral of the form $a \ln(1 + \cos x)$	M1*	If they use the substitution $u = 1 + \cos x$ allow M1A1 for $-\ln u$
	Obtain integral $-\ln(1 + \cos x)$	Al	
	Substitute correct limits in correct order	Ml(dep)*	
	Obtain answer $\ln\left(\frac{3}{2}\right)$ , or equivalent	Al	$\sim$
		4	
Que	stion 75		

State or imply $dx = -2\cos\theta\sin\theta \mathrm{d}\theta$ , or equivalent	B1
Substitute for x and dx, and use Pythagoras	M1
Obtain integrand $\pm 2\cos^2\theta$	A1
Justify change of limits and obtain given answer correctly	A1
EDA	4
Obtain indefinite integral of the form $a\theta + b\sin 2\theta$	M1*
Obtain $\theta + \frac{1}{2}\sin 2\theta$	A1
Use correct limits correctly	M1(dep*)
Obtain answer $\frac{1}{6}\pi$ with no errors seen	A1
	.4.

Use quotient or product rule	M1
Obtain correct derivative in any form	A1
Equate derivative to zero and obtain a quadratic in $tan \frac{1}{2}x$ or an equation of the form $a \sin x = b$	M1*
Solve for <i>x</i>	M1(dep*)
Obtain answer 0.340	A1
Obtain second answer 2.802 and no other in the given interval	A1
	6

(i)	State correct derivative of $x$ or $y$ with respect to $t$	<b>B1</b>
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	<b>M1</b>
	Obtain $\frac{dy}{dx} = \frac{4\sin 2t}{2 + 2\cos 2t}$ , or equivalent	A1
	Use double angle formulae throughout	M1
	Obtain the given answer correctly AG	A1
	MER B	5
(ii)	State or imply $t = \tan^{-1}\left(-\frac{1}{4}\right)$	<b>B1</b>
	Obtain answer $x = -0.961$	<b>B1</b>
		2

(i)	State correct expansion of $\cos(3x + x)$ or $\cos(3x - x)$	<b>B1</b>
	Substitute in $\frac{1}{2}(\cos 4x + \cos 2x)$	M1
	Obtain the given identity correctly AG	A1
		3
(ii)	Obtain integral $\frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x$	B1
	Substitute limits correctly	M1
	Obtain the given answer following full, correct and exact working AG	A1
	T PD	3

